# REPRESENTATIONS OF INTEGERS BY THE BINARY QUADRATIC FORM $x^2 + xy + ny^2$

### **BUMKYU CHO**

(Received 19 October 2014; accepted 19 August 2015; first published online 17 November 2015)

Communicated by I. E. Shparlinski

#### **Abstract**

In terms of class field theory we give a necessary and sufficient condition for an integer to be representable by the quadratic form  $x^2 + xy + ny^2$  ( $n \in \mathbb{N}$  arbitrary) under extra conditions  $x \equiv 1 \mod m$ ,  $y \equiv 0 \mod m$  on the variables. We also give some examples where their extended ring class numbers are less than or equal to 3.

2010 *Mathematics subject classification*: primary 11N32; secondary 11R37, 11F11. *Keywords and phrases*: quadratic forms, class field theory.

## 1. Introduction

As is well known, the principal binary quadratic form of discriminant D < 0 is  $x^2 - (D/4)y^2$  or  $x^2 + xy + ((1 - D)/4)y^2$  for  $D \equiv 0$  or 1 mod 4, respectively. Thanks to Cox [5], we are well aware of a necessary and sufficient condition for a prime to be representable by  $x^2 - (D/4)y^2$  and his result is described in terms of class field theory. In [3], the author of the present article gave a necessary and sufficient condition for an integer to be representable by the same form. The purpose of this article is to study the same problem for the other principal form  $x^2 + xy + ((1 - D)/4)y^2$ .

Let  $a = 3^l \prod_{i=1}^s p_i^{n_i} \prod_{j=1}^t q_j^{m_j}$  be the prime factorization of a positive integer a, where  $p_i \equiv 1 \mod 3$  and  $q_j \equiv 2 \mod 3$ . It is a classical result that  $a = x^2 + xy + y^2$  for some integers x, y if and only if each  $m_j$  is even. There are similar results for the binary forms  $x^2 + xy + ny^2$  with some small positive integers n (see, for example, [6, Ch. I]). In the present article we will give a generalization of those results for arbitrary  $n \in \mathbb{N}$ . Actually, we will consider the problem under the congruence conditions  $x \equiv 1 \mod m$  and  $y \equiv 0 \mod m$  on the variables, and the result will be described in terms of extended

The author was supported by NRF-2015R1C1A1A02037526 and the Dongguk University Research Fund of 2015.

<sup>© 2015</sup> Australian Mathematical Publishing Association Inc. 1446-7887/2015 \$16.00

ring class fields. When the extended ring class number is less than or equal to 3, we can give a more down-to-earth characterization. Some examples are given in Section 3.

## 2. Statements and proofs of results

We begin by briefly reviewing some properties of extended ring class fields. For more details the reader may refer to [2] or [5, Section 15].

Let  $O_K$  be the ring of integers in an imaginary quadratic field K,  $\mathfrak{m}$  an ideal of  $O_K$ , O an order of conductor f in K, and  $I_K(\mathfrak{m})$  the group of all fractional ideals of K relatively prime to  $\mathfrak{m}$ . We denote by  $P_{K,1}(\mathfrak{m})$  the subgroup of  $I_K(\mathfrak{m})$  generated by the principal ideals  $\alpha O_K$  where  $\alpha \in O_K$  satisfies  $\alpha \equiv 1 \mod \mathfrak{m}$ . Moreover, we define the subgroup  $P_{\mathfrak{m},O}$  of  $I_K(\mathfrak{m}(f))$  by

$$P_{\mathfrak{m},O} = \langle \{(\alpha) \in I_K(\mathfrak{m}(f)) \mid \alpha \in O_K, \alpha \equiv a \bmod \mathfrak{m}(f) \text{ for some } a \in \mathbb{Z} \text{ with } (a,f) = 1, a \equiv 1 \bmod \mathfrak{m} \} \rangle.$$

Note that  $P_{K,1}(\mathfrak{m}(f)) \subset P_{\mathfrak{m},O} \subset I_K(\mathfrak{m}(f))$ , and hence we may define the extended ring class field  $K_{\mathfrak{m},O}$  to be the class field of K corresponding to  $P_{\mathfrak{m},O}$ . Then the Galois group of  $K_{\mathfrak{m},O}$  over K is isomorphic to the ideal class group  $I_K(\mathfrak{m}(f))/P_{\mathfrak{m},O}$  via the Artin map. By definition,  $K_{O_K,O}$  equals the ring class field of the order O and  $K_{\mathfrak{m},O_K}$  equals the ray class field of K with modulus  $\mathfrak{m}$ . Of course,  $K_{O_K,O_K}$  is nothing but the Hilbert class field of K.

Let  $\rho: \mathbb{C} \to \mathbb{C}$  be complex conjugation. Then  $\rho(K_{\mathfrak{m},O})$  is abelian over  $\rho(K) = K$  with the Galois group  $\rho \operatorname{Gal}(K_{\mathfrak{m},O}/K)\rho^{-1}$ . If we assume  $\mathfrak{m} = \rho(\mathfrak{m})$ , then  $\rho(P_{\mathfrak{m},O}) = P_{\mathfrak{m},O}$  implies  $\rho(K_{\mathfrak{m},O}) = K_{\mathfrak{m},O}$  by the same argument as in the proof of [5, Lemma 9.3]. Thus,  $K_{\mathfrak{m},O}$  is Galois over  $\mathbb{Q}$ , and consequently there exists a real algebraic integer  $\varepsilon$  such that  $K_{\mathfrak{m},O} = K(\varepsilon)$  (see [5, Proposition 5.29(i)]). If we let  $f(X) \in \mathbb{Z}[X]$  be the minimal polynomial of  $\varepsilon$  over K and p a rational prime relatively prime to the discriminant of f(X), then by [5, Proposition 5.29(ii)] we have that p splits completely in  $K_{\mathfrak{m},O}$  if and only if  $(d_K/p) = 1$  and  $f(X) \equiv 0$  mod p has an integer solution.

Throughout the rest of this article, let n, m denote positive integers, D = 1 - 4n,  $K = \mathbb{Q}(\sqrt{D})$ ,  $O = \mathbb{Z}[(1 + \sqrt{D})/2]$ , and let f denote the conductor of the order O. Then  $O = \mathbb{Z} + fO_K$  and  $D = f^2d_K$ , where  $d_K$  is the discriminant of K.

**Lemma** 2.1. Let  $p \in \mathbb{N}$  be a prime with (p, 2Dm) = 1. Then p is of the form  $x^2 + xy + ny^2$  with  $x \equiv 1 \mod m$ ,  $y \equiv 0 \mod m$  if and only if (D/p) = 1 and  $\mathfrak{p} \in P_{(m),O}$ , where  $\mathfrak{p}$  is any prime ideal of  $O_K$  lying over p.

**PROOF.** Suppose that p is representable by the form described in the assumption. Since (p, y) = 1, we infer from  $(2x + y)^2 - Dy^2 \equiv 0 \mod p$  that (D/p) = 1. Setting  $\mathfrak{p} = (x + ((1 + \sqrt{D})/2)y)O_K$ , we have a factorization  $pO_K = \mathfrak{p}\bar{\mathfrak{p}}$ . Now it is straightforward to deduce  $\mathfrak{p} \in P_{(m),O}$  from

$$\mathfrak{p} = \left(x + \frac{1 - f}{2}y + \frac{1 + \sqrt{d_K}}{2}fy\right)O_K, \quad \left(f, x + \frac{1 - f}{2}y\right) = 1, \quad (f, p) = 1.$$

For the converse, we may put  $\mathfrak{p} = (u + mv + mw((1 + \sqrt{D})/2))O_K$  for some  $u, v, w \in \mathbb{Z}$  with (u, f) = 1,  $u \equiv 1 \mod m$ . Then

$$pO_K = p\bar{p} = ((u + mv)^2 + (u + mv)mw + n(mw)^2)O_K$$

and hence  $p = ((u + mv)^2 + (u + mv)mw + n(mw)^2)\alpha$  for some unit  $\alpha \in O_K^{\times}$ . The only possibility is  $\alpha = 1$ .

**Lemma 2.2.** Let  $q \in \mathbb{N}$  be a prime with (q, 2Dm) = 1 and (D/q) = -1. Then  $q \equiv \pm 1 \mod m$  if and only if  $qO_K \in P_{(m),O}$ .

**PROOF.** If  $q \equiv \pm 1 \mod m$ , then  $\pm q \equiv 1 \mod m$  with the same sign. Thus we have  $qO_K = (\pm q) \in P_{(m),O}$ .

For the converse, we may put  $qO_K = (u + mv + mw((1 + \sqrt{D})/2))O_K$  for some  $u, v, w \in \mathbb{Z}$  with (u, f) = 1,  $u \equiv 1 \mod m$ . Then

$$q = \left(u + mv + mw \frac{1 + \sqrt{D}}{2}\right) \alpha$$

for some unit  $\alpha \in O_K^{\times}$ . It is tedious to verify that  $\alpha = \pm 1$  and w = 0.

Proposition 2.3. Let  $p \in \mathbb{N}$  be a prime such that (p, 2Dm) = 1. Then

$$\begin{pmatrix} p = x^2 + xy + ny^2 \\ x \equiv 1 \mod m, \ y \equiv 0 \mod m \end{pmatrix} \iff p \ splits \ completely \ in \ K_{(m),O}.$$

Let  $f_{n,m}(X) \in \mathbb{Z}[X]$  be the minimal polynomial of a real algebraic integer which generates  $K_{(m),O}$  over K. Assuming further that p is relatively prime to the discriminant of  $f_{n,m}(X)$ ,

$$\begin{pmatrix} p = x^2 + xy + ny^2 \\ x \equiv 1 \mod m, \ y \equiv 0 \mod m \end{pmatrix} \Longleftrightarrow \begin{pmatrix} \left(\frac{D}{p}\right) = 1 \ and \ f_{n,m}(X) \equiv 0 \mod p \\ has \ an \ integer \ solution \end{pmatrix}.$$

Proof. By Lemma 2.1,

$$p = x^2 + xy + ny^2$$
  $x \equiv 1 \ (m), \quad y \equiv 0 \ (m) \Longleftrightarrow \left(\frac{D}{p}\right) = 1$   $\mathfrak{p} \in P_{(m),O}$ 

where  $\mathfrak p$  is any prime ideal lying over p. Since  $K_{(m),O} \subset K_{(mf)}$  and (mf,p)=1,  $\mathfrak p$  is unramified in  $K_{(m),O}$ . Hence, by class field theory,

$$\mathfrak{p} \in P_{(m),O} \iff \mathfrak{p} \text{ splits completely in } K_{(m),O}.$$

Since  $K_{(m),O}$  is Galois over  $\mathbb{Q}$ ,

$$\left(\frac{D}{p}\right) = 1$$
,  $\mathfrak{p} \in P_{(m),O} \iff p$  splits completely in  $K_{(m),O}$ .

Now, by means of [5, Proposition 5.29], we conclude that p splits completely in  $K_{(m),O}$  if and only if  $(d_K/p) = 1$  and  $f_{n,m}(X) \equiv 0 \mod p$  has an integer solution. This completes the proof.

Let P(n, m) (respectively,  $P^*(n, m)$ ) denote the set of all primes p such that (p, 2Dm) = 1, (D/p) = 1, and p is (respectively, is not) of the form  $x^2 + xy + ny^2$  with  $x \equiv 1 \mod m$  and  $y \equiv 0 \mod m$ . Further, let Q(n, m) (respectively,  $Q^*(n, m)$ ) denote the

set of all primes q such that (q, 2Dm) = 1, (D/q) = -1, and q is (respectively, is not) congruent to  $\pm 1$  modulo m. Then we see from Lemmas 2.1 and 2.2 that

$$p \in P(n, m) \iff \mathfrak{p} \in P_{(m),O},$$
  
 $q \in Q(n, m) \iff qO_K \in P_{(m),O}$ 

where p is any prime ideal of  $O_K$  lying over p. Assume further that p is relatively prime to the discriminant of  $f_{n,m}(X)$ . Appealing to Proposition 2.3,

$$p \in P(n,m) \iff f_{n,m}(X) \equiv 0 \mod p$$
 is solvable in  $\mathbb{Z}$ .

There are several articles describing methods of finding generators of  $K_{(m),O}$  and their minimal polynomials  $f_{n,m}(X)$ . See [1, 2, 4, 5, 7, 8, 10–12] for references. Explicit descriptions of P(n,m) for certain n,m will be given in Section 3.

We now state our main theorem.

#### THEOREM 2.4. Let

$$a = p_1 \cdots p_t p_{t+1}^{k_{t+1}} \cdots p_r^{k_r} q_1^{l_1} \cdots q_u^{l_u} q_{u+1}^{l_{u+1}} \cdots q_s^{l_s}$$

be a positive integer relatively prime to 2Dm, where  $r, s \ge 0$ ,  $k_i, l_j > 0$  and  $p_1, \ldots, p_t \in P^*(n, m), p_{t+1}, \ldots, p_r \in P(n, m), q_1, \ldots, q_u \in Q^*(n, m), q_{u+1}, \ldots, q_s \in Q(n, m)$ . Here  $p_1, \ldots, p_t$  are primes, not necessarily distinct; the other primes are mutually distinct. Then  $a = x^2 + xy + ny^2$  for some  $x, y \in \mathbb{Z}$  with  $x \equiv 1 \mod m$ ,  $y \equiv 0 \mod m$  if and only if:

- (1)  $l_i$  is even for each j = 1, ..., s;
- (2) there exist prime ideals  $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$  of  $O_K$  lying over  $p_1, \ldots, p_t$ , respectively, such that  $\prod_{i=1}^t \mathfrak{p}_i \prod_{j=1}^u (q_j O_K)^{l_j/2} \in P_{(m),O}$ .

REMARK 2.5. The prime ideals  $\mathfrak{p}_i$ ,  $\mathfrak{p}_j$  of  $O_K$  in the preceding theorem need not be equal even when  $p_i = p_j$  with  $i \neq j$ .

The primes  $q_j$  for which the discriminant D is a quadratic nonresidue must appear to even coefficients  $l_j$  in the factoring of an a that is represented by the principal form. If, further, m = 1, then  $Q^*(n, 1)$  is empty and hence the part  $q_j^{l_j}$  of the representation is inherently imprimitive. Namely, the primes  $q_j$  for which D is not a quadratic residue are irrelevant because they appear only in the imprimitive representation and hence we can concentrate on  $p_1, \ldots, p_t \in P(n, 1)$  as follows.

#### COROLLARY 2.6. Let

$$a = p_1 \cdots p_t p_{t+1}^{k_{t+1}} \cdots p_r^{k_r} q_1^{l_1} \cdots q_s^{l_s}$$

be a positive integer relatively prime to 2D, where  $r, s \ge 0$ ,  $k_i, l_j > 0$  and  $p_1, \ldots, p_t \in P^*(n, 1)$ ,  $p_{t+1}, \ldots, p_r \in P(n, 1)$ ,  $(D/q_j) = -1$ . Here  $p_1, \ldots, p_t$  are primes, not necessarily distinct; the other primes are mutually distinct. Then  $a = x^2 + xy + ny^2$  for some  $x, y \in \mathbb{Z}$  if and only if:

- (1)  $l_j$  is even for each j = 1, ..., s;
- (2) there exist prime ideals  $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$  of  $O_K$  lying over  $p_1, \ldots, p_t$ , respectively, such that  $\prod_{i=1}^t \mathfrak{p}_i \in P_{(1),O}$ .

**PROOF OF THEOREM 2.4.** Let  $a = \prod_{i=1}^r p_i \prod_{j=1}^s q_j^{l_j}$  be a positive integer relatively prime to 2Dm, where  $r, s \ge 0$ ,  $l_j > 0$ , the  $p_i$  are primes, not necessarily distinct, with  $(D/p_i) = 1$ , and the  $q_j$  are mutually distinct primes with  $(D/q_j) = -1$ . We need to show that  $a = x^2 + xy + ny^2$  for some  $x, y \in \mathbb{Z}$  with  $x \equiv 1 \mod m$ ,  $y \equiv 0 \mod m$  if and only if:

- (i)  $l_i$  is even for each  $1 \le j \le s$ ;
- (ii) there exist prime ideals  $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$  of  $O_K$  lying over  $p_1, \ldots, p_r$ , respectively, such that  $\prod_{i=1}^r \mathfrak{p}_i \prod_{j=1}^s (q_j O_K)^{l_j/2} \in P_{(m),O}$ .

Suppose that a satisfies conditions (i) and (ii). Put  $\mathfrak{a} = \prod_{i=1}^r \mathfrak{p}_i \prod_{j=1}^s (q_j O_K)^{l_j/2}$ . Since  $\mathfrak{a} \in P_{(m),O}$ , we may put  $\mathfrak{a} = (u + mv + mw((1 + \sqrt{D})/2))O_K$  for some  $u, v, w \in \mathbb{Z}$  with (u, f) = 1,  $u \equiv 1 \mod m$ . Then

$$aO_K = a\bar{a} = ((u + mv)^2 + (u + mv)mw + n(mw)^2)O_K,$$

and hence  $a = ((u + mv)^2 + (u + mv)mw + n(mw)^2)\alpha$  for some unit  $\alpha \in O_K^{\times}$ . Because a > 0,  $\alpha$  must be 1.

Now we prove the other direction. If  $q_j \nmid y$  for some j, then we can infer from  $(2x + y)^2 - Dy^2 \equiv 0 \mod q_j$  that  $(D/q_j) = 1$ , which is a contradiction. So  $q_j|y$  and hence  $q_j|x$  for all j. Applying the same argument to  $a/(q_1^2 \cdots q_s^2)$ , we can deduce that  $2|l_j$  for all j. Observe that

$$a = \left(x + \frac{1 + \sqrt{D}}{2}y\right)\left(x + \frac{1 - \sqrt{D}}{2}y\right)$$
$$= \left(x + \frac{1 - f}{2}y + \frac{1 + \sqrt{d_K}}{2}fy\right)\left(x + \frac{1 - f}{2}y + \frac{1 - \sqrt{d_K}}{2}fy\right).$$

Set  $\mathfrak{b} := (x + ((1-f)/2)y + ((1+\sqrt{d_K})/2)fy)O_K$ . Since (a,D) = 1, we deduce that  $(\mathfrak{b},f) = 1$ , and hence (x + ((1-f)/2)y,f) = 1. This shows that  $\mathfrak{b} \in P_{(m),O}$ . Since  $q_j$  is inert in K, we can infer from  $aO_K = b\bar{\mathfrak{b}}$  that  $(q_jO_K)^{l_j/2}$  divides  $\mathfrak{b}$  for all j. Because  $p_i$  splits completely in K, we can choose prime ideals  $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$  of  $O_K$  lying over  $p_1, \ldots, p_r$ , respectively, so that

$$\mathfrak{b} = \prod_{i=1}^r \mathfrak{p}_i \prod_{j=1}^s (q_j O_K)^{l_j/2}.$$

This completes the proof.

Let h(n, m) denote the order of the ideal class group  $I_K(mf)/P_{(m),O}$ . If the extended ring class number h(n, m) is small, we can obtain more down-to-earth statements as corollaries.

COROLLARY 2.7. Suppose that h(n, m) = 1. Let  $a = p_1 \cdots p_r b^2$  be a positive integer relatively prime to 2Dm, where the  $p_i$  are mutually distinct primes. Then  $a = x^2 + xy + ny^2$  for some  $x, y \in \mathbb{Z}$  with  $x \equiv 1 \mod m$  and  $y \equiv 0 \mod m$  if and only if  $(D/p_i) = 1$  for all i.

PROOF. Condition (2) of Theorem 2.4 holds trivially because h(n, m) = 1.

Corollary 2.8. Suppose that h(n, m) = 2. Let

$$a = p_1^{k_1} \cdots p_t^{k_t} p_{t+1}^{k_{t+1}} \cdots p_r^{k_r} q_1^{l_1} \cdots q_u^{l_u} q_{u+1}^{l_{u+1}} \cdots q_s^{l_s}$$

be a positive integer relatively prime to 2Dm, where the  $p_i$  and  $q_j$  are mutually distinct primes with  $p_1, \ldots, p_t \in P^*(n, m), p_{t+1}, \ldots, p_r \in P(n, m), q_1, \ldots, q_u \in Q^*(n, m), q_{u+1}, \ldots, q_s \in Q(n, m)$ . Then  $a = x^2 + xy + ny^2$  for some  $x \equiv 1 \mod m$ ,  $y \equiv 0 \mod m$  if and only if:

- (1)  $l_j$  is even for each j = 1, ..., s;
- (2)  $\sum_{i=1}^{t} k_i + \frac{1}{2} \sum_{i=1}^{u} l_i \equiv 0 \mod 2.$

**PROOF.** Let  $\mathfrak{p}_i$   $(1 \le i \le t)$  be a prime ideal of  $O_K$  lying over  $p_i$ . Then  $\mathfrak{p}_1, \ldots, \mathfrak{p}_t, q_1 O_K, \ldots, q_u O_K$  are not contained in  $P_{(m),O}$ . Since h(n,m) = 2,  $\mathfrak{p}_i P_{(m),O} = \overline{\mathfrak{p}_i} P_{(m),O}$ , and the ideals  $\mathfrak{p}_1, \ldots, \mathfrak{p}_t, q_1 O_K, \ldots, q_u O_K$  represent the same nonidentity element in the ideal class group  $I_K(mf)/P_{(m),O}$  of order 2. Therefore, condition (2) of Theorem 2.4 is equivalent to  $\sum_{i=1}^t k_i + \frac{1}{2} \sum_{j=1}^u l_j \equiv 0 \mod 2$ .

Corollary 2.9. Suppose that h(n, 1) = 3. Let

$$a = p_1 \cdots p_t p_{t+1}^{k_{t+1}} \cdots p_r^{k_r} q_1^{l_1} \cdots q_s^{l_s}$$

be a positive integer relatively prime to 2D with  $p_1, \ldots, p_t \in P^*(n, 1)$ ,  $p_{t+1}, \ldots, p_r \in P(n, 1)$ ,  $(D/q_j) = -1$ . Here  $p_1, \ldots, p_t$  are primes, not necessarily distinct. Then  $a = x^2 + xy + ny^2$  for some  $x, y \in \mathbb{Z}$  if and only if:

- (1)  $l_i$  is even for each j = 1, ..., s;
- (2)  $t = 0 \text{ or } t \ge 2.$

**PROOF.** Let  $\mathfrak{p}_i$   $(1 \le i \le t)$  be a prime ideal of  $O_K$  lying over  $p_i$ . Because  $\mathfrak{p}_i \overline{\mathfrak{p}_i} = p_i O_K \in P_{(1),O}$ , the ideal class  $\overline{\mathfrak{p}_i} P_{(1),O}$  is the inverse of  $\mathfrak{p}_i P_{(1),O}$  and hence the ideal classes  $\mathfrak{p}_i P_{(1),O}$  and  $\overline{\mathfrak{p}_i} P_{(1),O}$  are exactly the two nonidentity elements of the ideal class group  $I_K(f)/P_{(1),O}$  of order 3 for each i. Therefore, we can take  $\mathfrak{p}_i$  (or  $\overline{\mathfrak{p}_i}$  if necessary) lying above  $p_i$  so that  $\mathfrak{p}_1 \cdots \mathfrak{p}_t \in P_{(1),O}$  whenever  $t \ne 1$ . This demonstrates condition (2) of Corollary 2.6.

For completeness we need a formula for h(n, m), which is given in [3, Theorem 2.9].

Proposition 2.10. Let  $h_K$  be the class number of K and

$$O_{K,m,f}^\times = \{\alpha \in O_K^\times \mid \alpha \equiv a \bmod m \\ fO_K \\ \textit{for some } a \in \mathbb{Z} \\ \textit{with } a \equiv 1 \bmod m \}.$$

Then

$$h(n,m) = \frac{h_K m^2 f}{[O_K^\times:O_{K,m,f}^\times]} \prod_{p|m} \left(1 - \frac{1}{p}\right) \left(1 - \left(\frac{d_K}{p}\right) \frac{1}{p}\right) \prod_{\substack{p|f\\p \nmid m}} \left(1 - \left(\frac{d_K}{p}\right) \frac{1}{p}\right).$$

188 B. Cho [7]

REMARK 2.11. By direct computation and known results about imaginary quadratic fields of small class number,

$$h(n,m) = 1 \iff (n,m) = (1,1), (1,2), (1,3), (2,1), (2,2), (3,1), (5,1), (7,1), (11,1), (17,1), or (41,1), (11,1), (17,1), or (41,1), (19,1), (23,1), (25,1), (29,1), (31,1), (37,1), (47,1), (59,1), (67,1), (101,1), or (107,1), (101,1), or (107,1), (101,1) = 3 \iff n = 6, 8, 15, 21, 27, 35, 53, 61, 71, 77, 83, 95, 125, 137, 161, 221, or 227.$$

## 3. Examples

When we deal with primes dividing 2Dm, the following lemmas will turn out to be useful in some cases (see Examples 3.3 and 3.4).

## LEMMA 3.1. *If*

$$a = x^2 + xy + ny^2$$
  $x \equiv 1 \mod m$ ,  $y \equiv 0 \mod m$ 

and

$$b = z^2 + zw + nw^2$$
  $z \equiv 1 \mod m$ ,  $w \equiv 0 \mod m$ 

then

$$ab = (xz - nyw)^2 + (xz - nyw)(xw + yz + yw) + n(xw + yz + yw)^2$$
.

*Moreover,*  $xz - nyw \equiv 1 \mod m$  and  $xw + yz + yw \equiv 0 \mod m$ .

## LEMMA 3.2. *If*

$$a = x^2 + xy + ny^2$$
  $x \equiv 1 \mod m$ ,  $y \equiv 0 \mod m$ 

and if

$$p = z^2 + zw + nw^2$$
  $z \equiv 1 \mod m$ ,  $w \equiv 0 \mod m$ 

is a prime divisor of a, then

$$\frac{a}{p} = (x')^2 + x'y' + n(y')^2$$

for some  $x', y' \in \mathbb{Z}$  with  $x' \equiv 1 \mod m$  and  $y' \equiv 0 \mod m$ .

**PROOF.** Since  $aw^2 - py^2 = (xw - yz)(xw + yz + yw)$ , p divides xw - yz or xw + yz + yw. By exchanging z and w with z + w and -w, respectively, we may assume that p divides xw - yz. From the identity w(xw + xz + nyw) = (xw - yz)(z + w) + py we also see that p divides xw + xz + nyw. Now the asserted statement follows immediately by setting x' = (xw + xz + nyw)/p and y' = -(xw - yz)/p.

Example 3.3. Consider the case (n, m) = (2, 2). Let  $a = p_1 \cdots p_r b^2$  be a positive integer where the  $p_i$  are mutually distinct primes. Corollary 2.7 implies that if (a, 14) = 1 then

$$a = x^2 + xy + 2y^2$$
  $x \equiv 1 \mod 2$ ,  $y \equiv 0 \mod 2 \iff p_i \equiv 1, 2, 4 \mod 7$  for each *i*.

Since 2 and 7 are also representable by the given form, we deduce from Lemmas 3.1 and 3.2 that for a arbitrary,

$$a = x^2 + xy + 2y^2$$
  $x \equiv 1 \mod 2$ ,  $y \equiv 0 \mod 2 \iff p_i \equiv 0, 1, 2, 4 \mod 7$  for each i.

Example 3.4. Let (n, m) = (7, 1) and let  $a = p_1 \cdots p_r b^2$  be a positive integer, where the  $p_i$  are mutually distinct primes. If (a, 6) = 1, then

$$a = x^2 + xy + 7y^2 \iff p_i \equiv 1 \mod 3$$
 for each  $i$ 

by Corollary 2.7. Note that neither 2 nor 3 is representable by the given form. We claim that for a arbitrary,  $a = x^2 + xy + 7y^2$  if and only if:

- (1)  $p_i \neq 2$  and  $p_i \equiv 0, 1 \mod 3$  for each i;
- (2) if  $p_i = 3$  for some i, then b is divisible by 3.

First assume that conditions (1) and (2) hold true. Since  $3^3$  is representable by the given form, we can deduce from Lemma 3.1 that a can be expressed by the given form. Now we prove the other direction. Dividing x and y by d := (x, y),

$$a' := p_1 \cdots p_r (b/d)^2 = (x')^2 + x'y' + 7(y')^2$$

where x' = x/d and y' = y/d. Observe that a' must be odd. Let p be any prime divisor of a' not equal to 3. Then we deduce (-3/p) = 1 from  $(2x' + y')^2 + 27(y')^2 \equiv 0 \mod p$  and (p, y') = 1, so, in particular, we obtain condition (1). Furthermore, if  $p_i = 3$  for some i but  $3 \nmid b$ , then we divide a' by all the prime divisors of a' except 3 and deduce from Lemma 3.2 that  $3 = z^2 + zw + 7w^2$  for some  $z, w \in \mathbb{Z}$ . This is a contradiction.

**EXAMPLE 3.5.** Let (n, m) = (3, 3). Then  $K = \mathbb{Q}(\sqrt{-11})$ ,  $O = \mathbb{Z}[(1 + \sqrt{-11})/2] = O_K$ , and  $K_{(3),O}$  equals the ray class field of K with modulus (3). By means of [2, Corollary 6] and [1, page 289] we can take the class polynomial  $f_{3,3}(X)$  as

$$f_{3,3}(X) = X^2 + 33534X + 3^{12}.$$

The discriminant of  $f_{3,3}(X)$  is  $2^6 \cdot 3^{13} \cdot 11$  and for any prime  $p \neq 2, 3, 11$  we deduce from Proposition 2.3 that

$$p = x^2 + xy + 3y^2$$
  $x \equiv 1 \mod 3$ ,  $y \equiv 0 \mod 3 \iff p \equiv 1, 4, 16, 25, 31 \mod 33$ ,

and hence

$$P(3,3) = \{p \mid p \equiv 1, 4, 16, 25, 31 \mod 33\},\$$
  
 $P^*(3,3) = \{p \mid p \equiv 5, 14, 20, 23, 26 \mod 33\}.$ 

Let  $a = p_1^{k_1} \cdots p_t^{k_t} p_{t+1}^{k_{t+1}} \cdots p_r^{k_r} q_1^{l_1} \cdots q_s^{l_s}$  be a positive integer relatively prime to 66, where the  $p_i$  and  $q_j$  are mutually distinct primes such that

$$p_1, \dots, p_t \equiv 5, 14, 20, 23, 26 \mod 33,$$
  
 $p_{t+1}, \dots, p_r \equiv 1, 4, 16, 25, 31 \mod 33,$   
 $q_1, \dots, q_s \equiv 2, 6, 7, 8, 10 \mod 11.$ 

By Corollary 2.8,

$$a = x^2 + xy + 3y^2$$
  $x \equiv 1 \mod 3$ ,  $y \equiv 0 \mod 3$ 

if and only if:

- (1)  $l_i$  is even for each j;
- $(2) \quad k_1 + \dots + k_t \equiv 0 \bmod 2.$

EXAMPLE 3.6. Now we deal with an example of class number 3. Let (n, m) = (6, 1). Then  $K = \mathbb{Q}(\sqrt{-23})$ ,  $O = \mathbb{Z}[(1 + \sqrt{-23})/2] = O_K$ , and  $K_{(1),O}$  is the Hilbert class field of K. We remark that Hasse [10] has shown that the Hilbert class field of K is

$$K\left(\sqrt[3]{(25+3\sqrt{69})/2}+\sqrt[3]{(25-3\sqrt{69})/2}\right).$$

Hence, we can compute its class polynomial as

$$f_{6,1}(X) = X^3 - 3X - 25$$

with discriminant  $-3^6 \cdot 23$ . Using this, we may compute P(6,1) and  $P^*(6,1)$ . But a more explicit and useful condition for the prime p to be represented by  $x^2 + xy + ((1-D)/4)y^2$  (or  $x^2 - (D/4)y^2$ ) is given by Gurak [9] for D = -23 and by Williams and Hudson [12, Theorem 3] for all D with class number 3. The necessary and sufficient condition is described in terms of certain integer sequences: Let p > 3 be a prime such that (-23/p) = 1. We define the sequence  $\{u_n\}_{n=0,1,2,...}$  of integers by  $u_0 = 2$ ,  $u_1 = 25$ ,  $u_{n+2} = 25u_{n+1} - u_n$  (n = 0, 1, 2, ...). Then p is represented by  $x^2 + xy + 6y^2$  if and only if

$$u_{(p-(p/3))/3} \equiv 2 \mod p$$
.

Thanks to this result we easily compute P(6, 1) and  $P^*(6, 1)$  as

$$P(6,1) = \{59, 101, 167, 173, 211, 223, 271, 307, 317, 347, \ldots\},\$$
  
 $P^*(6,1) = \{13, 29, 31, 41, 47, 71, 73, 127, 131, 139, 151, 163, \ldots\}.$ 

Let  $a = p_1 \cdots p_t p_{t+1} \cdots p_r q_1^{l_1} \cdots q_s^{l_s}$  be a positive integer relatively prime to  $2 \cdot 3 \cdot 23$ , where the  $p_i$  are primes, not necessarily distinct, with  $p_{t+1}, \cdots, p_r \in P(6, 1)$ ,  $p_1, \cdots, p_t \in P^*(6, 1)$ , and the  $q_j$  are mutually distinct primes with  $(-23/q_j) = -1$ . From Corollary 2.9,  $a = x^2 + xy + 6y^2$  if and only if:

- (1)  $l_i$  is even for each j;
- (2)  $t = 0 \text{ or } t \ge 2.$

We further claim that  $a = 2x^2 + xy + 3y^2$  if:

- (1)  $l_j$  is even for each j;
- (2)  $t \ge 1$ .

Since the class number is 3, there is only one genus, and thus any odd prime p for which -23 is a quadratic residue is represented by either the form  $x^2 + xy + 6y^2$  or the forms  $2x^2 \pm xy + 3y^2$ . In other words, every prime  $p \in P(6, 1)$  (respectively,  $p \in P^*(6, 1)$ ) with  $p \ne 2, 3, 23$  is represented by the form  $x^2 + xy + 6y^2$  (respectively,  $2x^2 \pm xy + 3y^2$ ). Since the form class group  $\{x^2 + xy + 6y^2, 2x^2 \pm xy + 3y^2\}$  is isomorphic to the cyclic group of order 3, we easily infer from the composition law of form class group that a is representable as  $2x^2 + xy + 3y^2$  under the given conditions.

## Acknowledgement

The author would like to express sincere thanks to the anonymous referee for very useful and worthy comments on the manuscript.

#### References

- [1] I. Chen and N. Yui, 'Singular values of Thompson series', in: *Groups, Difference Sets, and The Monster (Columbus, OH, 1993)*, Ohio State University Mathematical Research Institute Publications, 4 (eds. K. T. Arasu, J. F. Dillon, K. Harada, S. Sehgal and R. Solomon) (de Gruyter, Berlin, 1996), 255–326.
- [2] B. Cho, 'Primes of the form  $x^2 + ny^2$  with conditions  $x \equiv 1 \mod N$ ,  $y \equiv 0 \mod N$ ', J. Number Theory 130 (2010), 852–861.
- [3] B. Cho, 'Integers of the form  $x^2 + ny^2$ ', Monatsh. Math. 174 (2014), 195–204.
- [4] B. Cho and J. K. Koo, 'Construction of class fields over imaginary quadratic fields and applications', Q. J. Math. 61 (2010), 199–216.
- [5] D. Cox, *Primes of the Form*  $x^2 + ny^2$ , 2nd edn (Wiley, Hoboken, NJ, 2013).
- [6] L. E. Dickson, History of the Theory of Numbers, Volume III: Quadratic and Higher Forms (Dover Publications, New York, 2005).
- [7] I. S. Eum, J. K. Koo and D. H. Shin, 'Primitive generators of certain class fields', J. Number Theory 155 (2015), 46–62.
- [8] A. Gee, 'Class invariants by Shimura's reciprocity law', J. Théor. Nombres Bordeaux 11 (1999), 45–72.
- [9] S. Gurak, 'On the representation theory for full decomposable forms', *J. Number Theory* **13** (1981), 421–442.
- [10] H. Hasse, 'Über den Klassenkörper zum quadratischen Zahlkörper mit der Diskriminante –47', Acta Arith. 9 (1964), 419–434.
- [11] P. Stevenhagen, 'Hilbert's 12th problem, complex multiplication, and Shimura reciprocity', in: Class Field Theory—Its Centenary and Prospect, Advanced Studies in Pure Mathematics, 30 (ed. K. Miyake) (Mathematical Society of Japan, Tokyo, 2001), 161–176.
- [12] K. S. Williams and R. H. Hudson, 'Representation of primes by the principal form of discriminant -D when the classnumber h(-D) is 3', *Acta Arith.* **57** (1991), 131–153.

BUMKYU CHO, Department of Mathematics, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 100-715, Republic of Korea e-mail: bam@dongguk.edu