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Abstract

In terms of class field theory we give a necessary and sufficient condition for an integer to be representable
by the quadratic form x2 + xy + ny2 (n ∈ N arbitrary) under extra conditions x ≡ 1 mod m, y ≡ 0 mod m
on the variables. We also give some examples where their extended ring class numbers are less than or
equal to 3.
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1. Introduction

As is well known, the principal binary quadratic form of discriminant D < 0 is
x2 − (D/4)y2 or x2 + xy + ((1 − D)/4)y2 for D ≡ 0 or 1 mod 4, respectively. Thanks to
Cox [5], we are well aware of a necessary and sufficient condition for a prime to be
representable by x2 − (D/4)y2 and his result is described in terms of class field theory.
In [3], the author of the present article gave a necessary and sufficient condition for an
integer to be representable by the same form. The purpose of this article is to study
the same problem for the other principal form x2 + xy + ((1 − D)/4)y2.

Let a = 3l ∏s
i=1 pni

i
∏t

j=1 qm j

j be the prime factorization of a positive integer a, where
pi ≡ 1 mod 3 and q j ≡ 2 mod 3. It is a classical result that a = x2 + xy + y2 for some
integers x, y if and only if each m j is even. There are similar results for the binary
forms x2 + xy + ny2 with some small positive integers n (see, for example, [6, Ch. I]).
In the present article we will give a generalization of those results for arbitrary n ∈ N.
Actually, we will consider the problem under the congruence conditions x ≡ 1 mod m
and y ≡ 0 mod m on the variables, and the result will be described in terms of extended
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ring class fields. When the extended ring class number is less than or equal to 3, we can
give a more down-to-earth characterization. Some examples are given in Section 3.

2. Statements and proofs of results

We begin by briefly reviewing some properties of extended ring class fields. For
more details the reader may refer to [2] or [5, Section 15].

Let OK be the ring of integers in an imaginary quadratic field K, m an ideal of
OK , O an order of conductor f in K, and IK(m) the group of all fractional ideals of K
relatively prime to m. We denote by PK,1(m) the subgroup of IK(m) generated by the
principal ideals αOK where α ∈ OK satisfies α ≡ 1 mod m. Moreover, we define the
subgroup Pm,O of IK(m( f )) by

Pm,O = 〈{(α) ∈ IK(m( f )) | α ∈ OK , α ≡ a mod m( f ) for some a ∈ Z
with (a, f ) = 1, a ≡ 1 mod m}〉.

Note that PK,1(m( f )) ⊂ Pm,O ⊂ IK(m( f )), and hence we may define the extended ring
class field Km,O to be the class field of K corresponding to Pm,O. Then the Galois group
of Km,O over K is isomorphic to the ideal class group IK(m( f ))/Pm,O via the Artin map.
By definition, KOK ,O equals the ring class field of the order O and Km,OK equals the ray
class field of K with modulus m. Of course, KOK ,OK is nothing but the Hilbert class
field of K.

Let ρ : C→ C be complex conjugation. Then ρ(Km,O) is abelian over ρ(K) = K
with the Galois group ρGal(Km,O/K)ρ−1. If we assume m = ρ(m), then ρ(Pm,O) = Pm,O
implies ρ(Km,O) = Km,O by the same argument as in the proof of [5, Lemma 9.3]. Thus,
Km,O is Galois over Q, and consequently there exists a real algebraic integer ε such
that Km,O = K(ε) (see [5, Proposition 5.29(i)]). If we let f (X) ∈ Z[X] be the minimal
polynomial of ε over K and p a rational prime relatively prime to the discriminant of
f (X), then by [5, Proposition 5.29(ii)] we have that p splits completely in Km,O if and
only if (dK/p) = 1 and f (X) ≡ 0 mod p has an integer solution.

Throughout the rest of this article, let n, m denote positive integers, D = 1 − 4n,
K = Q(

√
D), O = Z[(1 +

√
D)/2], and let f denote the conductor of the order O. Then

O = Z + fOK and D = f 2dK , where dK is the discriminant of K.

Lemma 2.1. Let p ∈ N be a prime with (p,2Dm) = 1. Then p is of the form x2 + xy + ny2

with x ≡ 1 mod m, y ≡ 0 mod m if and only if (D/p) = 1 and p ∈ P(m),O, where p is any
prime ideal of OK lying over p.

Proof. Suppose that p is representable by the form described in the assumption. Since
(p, y) = 1, we infer from (2x + y)2 − Dy2 ≡ 0 mod p that (D/p) = 1. Setting p =

(x + ((1 +
√

D)/2)y)OK , we have a factorization pOK = pp̄. Now it is straightforward
to deduce p ∈ P(m),O from

p =

(
x +

1 − f
2

y +
1 +
√

dK

2
f y

)
OK ,

(
f , x +

1 − f
2

y
)

= 1, ( f , p) = 1.
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For the converse, we may put p = (u + mv + mw((1 +
√

D)/2))OK for some u, v,
w ∈ Z with (u, f ) = 1, u ≡ 1 mod m. Then

pOK = pp̄ = ((u + mv)2 + (u + mv)mw + n(mw)2)OK ,

and hence p = ((u + mv)2 + (u + mv)mw + n(mw)2)α for some unit α ∈ O×K . The only
possibility is α = 1. �

Lemma 2.2. Let q ∈ N be a prime with (q, 2Dm) = 1 and (D/q) = −1. Then q ≡
±1 mod m if and only if qOK ∈ P(m),O.

Proof. If q ≡ ±1 mod m, then ±q ≡ 1 mod m with the same sign. Thus we have
qOK = (±q) ∈ P(m),O.

For the converse, we may put qOK = (u + mv + mw((1 +
√

D)/2))OK for some
u, v,w ∈ Z with (u, f ) = 1, u ≡ 1 mod m. Then

q =

(
u + mv + mw

1 +
√

D
2

)
α

for some unit α ∈ O×K . It is tedious to verify that α = ±1 and w = 0. �

Proposition 2.3. Let p ∈ N be a prime such that (p, 2Dm) = 1. Then(
p = x2 + xy + ny2

x ≡ 1 mod m, y ≡ 0 mod m

)
⇐⇒ p splits completely in K(m),O.

Let fn,m(X) ∈ Z[X] be the minimal polynomial of a real algebraic integer which
generates K(m),O over K. Assuming further that p is relatively prime to the discriminant
of fn,m(X),(

p = x2 + xy + ny2

x ≡ 1 mod m, y ≡ 0 mod m

)
⇐⇒


(D

p

)
= 1 and fn,m(X) ≡ 0 mod p

has an integer solution

 .
Proof. By Lemma 2.1,

p = x2 + xy + ny2 x ≡ 1 (m), y ≡ 0 (m)⇐⇒
(D

p

)
= 1 p ∈ P(m),O

where p is any prime ideal lying over p. Since K(m),O ⊂ K(m f ) and (m f , p) = 1, p is
unramified in K(m),O. Hence, by class field theory,

p ∈ P(m),O ⇐⇒ p splits completely in K(m),O.

Since K(m),O is Galois over Q,(D
p

)
= 1, p ∈ P(m),O ⇐⇒ p splits completely in K(m),O.

Now, by means of [5, Proposition 5.29], we conclude that p splits completely in K(m),O
if and only if (dK/p) = 1 and fn,m(X) ≡ 0 mod p has an integer solution. This completes
the proof. �

Let P(n, m) (respectively, P∗(n, m)) denote the set of all primes p such that
(p, 2Dm) = 1, (D/p) = 1, and p is (respectively, is not) of the form x2 + xy + ny2 with
x ≡ 1 mod m and y ≡ 0 mod m. Further, let Q(n,m) (respectively, Q∗(n,m)) denote the
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set of all primes q such that (q, 2Dm) = 1, (D/q) = −1, and q is (respectively, is not)
congruent to ±1 modulo m. Then we see from Lemmas 2.1 and 2.2 that

p ∈ P(n,m) ⇐⇒ p ∈ P(m),O,

q ∈ Q(n,m) ⇐⇒ qOK ∈ P(m),O

where p is any prime ideal of OK lying over p. Assume further that p is relatively
prime to the discriminant of fn,m(X). Appealing to Proposition 2.3,

p ∈ P(n,m) ⇐⇒ fn,m(X) ≡ 0 mod p is solvable in Z.

There are several articles describing methods of finding generators of K(m),O and their
minimal polynomials fn,m(X). See [1, 2, 4, 5, 7, 8, 10–12] for references. Explicit
descriptions of P(n,m) for certain n,m will be given in Section 3.

We now state our main theorem.

Theorem 2.4. Let

a = p1 · · · pt p
kt+1
t+1 · · · p

kr
r ql1

1 · · · q
lu
u qlu+1

u+1 · · · q
ls
s

be a positive integer relatively prime to 2Dm, where r, s ≥ 0, ki, l j > 0 and p1, . . . , pt ∈

P∗(n,m), pt+1, . . . , pr ∈ P(n,m), q1, . . . , qu ∈ Q∗(n,m), qu+1, . . . , qs ∈ Q(n,m). Here
p1, . . . , pt are primes, not necessarily distinct; the other primes are mutually distinct.
Then a = x2 + xy + ny2 for some x, y ∈ Z with x ≡ 1 mod m, y ≡ 0 mod m if and only
if:

(1) l j is even for each j = 1, . . . , s;
(2) there exist prime ideals p1, . . . , pt of OK lying over p1, . . . , pt, respectively, such

that
∏t

i=1 pi
∏u

j=1(q jOK)l j/2 ∈ P(m),O.

Remark 2.5. The prime ideals pi, p j of OK in the preceding theorem need not be equal
even when pi = p j with i , j.

The primes q j for which the discriminant D is a quadratic nonresidue must appear
to even coefficients l j in the factoring of an a that is represented by the principal form.
If, further, m = 1, then Q∗(n, 1) is empty and hence the part ql j

j of the representation is
inherently imprimitive. Namely, the primes q j for which D is not a quadratic residue
are irrelevant because they appear only in the imprimitive representation and hence we
can concentrate on p1, . . . , pt ∈ P(n, 1) as follows.

Corollary 2.6. Let
a = p1 · · · pt p

kt+1
t+1 · · · p

kr
r ql1

1 · · · q
ls
s

be a positive integer relatively prime to 2D, where r, s ≥ 0, ki, l j > 0 and p1, . . . , pt ∈

P∗(n, 1), pt+1, . . . , pr ∈ P(n, 1), (D/q j) = −1. Here p1, . . . , pt are primes, not
necessarily distinct; the other primes are mutually distinct. Then a = x2 + xy + ny2

for some x, y ∈ Z if and only if:

(1) l j is even for each j = 1, . . . , s;
(2) there exist prime ideals p1, . . . , pt of OK lying over p1, . . . , pt, respectively, such

that
∏t

i=1 pi ∈ P(1),O.
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Proof of Theorem 2.4. Let a =
∏r

i=1 pi
∏s

j=1 ql j

j be a positive integer relatively prime
to 2Dm, where r, s ≥ 0, l j > 0, the pi are primes, not necessarily distinct, with
(D/pi) = 1, and the q j are mutually distinct primes with (D/q j) = −1. We need to
show that a = x2 + xy + ny2 for some x, y ∈ Z with x ≡ 1 mod m, y ≡ 0 mod m if and
only if:

(i) l j is even for each 1 ≤ j ≤ s;
(ii) there exist prime ideals p1, . . . , pr of OK lying over p1, . . . , pr, respectively, such

that
∏r

i=1 pi
∏s

j=1(q jOK)l j/2 ∈ P(m),O.

Suppose that a satisfies conditions (i) and (ii). Put a =
∏r

i=1 pi
∏s

j=1(q jOK)l j/2. Since
a ∈ P(m),O, we may put a = (u + mv + mw((1 +

√
D)/2))OK for some u, v,w ∈ Z with

(u, f ) = 1, u ≡ 1 mod m. Then

aOK = aā = ((u + mv)2 + (u + mv)mw + n(mw)2)OK ,

and hence a = ((u + mv)2 + (u + mv)mw + n(mw)2)α for some unit α ∈ O×K . Because
a > 0, α must be 1.

Now we prove the other direction. If q j - y for some j, then we can infer from
(2x + y)2 − Dy2 ≡ 0 mod q j that (D/q j) = 1, which is a contradiction. So q j|y and
hence q j|x for all j. Applying the same argument to a/(q2

1 · · · q
2
s), we can deduce that

2|l j for all j. Observe that

a =

(
x +

1 +
√

D
2

y
)(

x +
1 −
√

D
2

y
)

=

(
x +

1 − f
2

y +
1 +
√

dK

2
f y

)(
x +

1 − f
2

y +
1 −
√

dK

2
f y

)
.

Set b := (x + ((1 − f )/2)y + ((1 +
√

dK)/2) f y)OK . Since (a,D) = 1, we deduce that
(b, f ) = 1, and hence (x + ((1 − f )/2)y, f ) = 1. This shows that b ∈ P(m),O. Since q j
is inert in K, we can infer from aOK = bb̄ that (q jOK)l j/2 divides b for all j. Because
pi splits completely in K, we can choose prime ideals p1, . . . , pr of OK lying over
p1, . . . , pr, respectively, so that

b =

r∏
i=1

pi

s∏
j=1

(q jOK)l j/2.

This completes the proof. �

Let h(n,m) denote the order of the ideal class group IK(m f )/P(m),O. If the extended
ring class number h(n,m) is small, we can obtain more down-to-earth statements as
corollaries.

Corollary 2.7. Suppose that h(n,m) = 1. Let a = p1 · · · prb2 be a positive integer
relatively prime to 2Dm, where the pi are mutually distinct primes. Then a = x2 + xy +

ny2 for some x, y ∈ Z with x ≡ 1 mod m and y ≡ 0 mod m if and only if (D/pi) = 1 for
all i.
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Proof. Condition (2) of Theorem 2.4 holds trivially because h(n,m) = 1. �

Corollary 2.8. Suppose that h(n,m) = 2. Let

a = pk1
1 · · · p

kt
t pkt+1

t+1 · · · p
kr
r ql1

1 · · · q
lu
u qlu+1

u+1 · · · q
ls
s

be a positive integer relatively prime to 2Dm, where the pi and q j are mutually
distinct primes with p1, . . . , pt ∈ P∗(n,m), pt+1, . . . , pr ∈ P(n,m), q1, . . . , qu ∈ Q∗(n,m),
qu+1, . . . , qs ∈ Q(n,m). Then a = x2 + xy + ny2 for some x ≡ 1 mod m, y ≡ 0 mod m if
and only if:

(1) l j is even for each j = 1, . . . , s;
(2)

∑t
i=1 ki + 1

2
∑u

j=1 l j ≡ 0 mod 2.

Proof. Let pi (1 ≤ i ≤ t) be a prime ideal of OK lying over pi. Then p1, . . .,
pt, q1OK , . . . , quOK are not contained in P(m),O. Since h(n,m) = 2, piP(m),O = piP(m),O,
and the ideals p1, . . . ,pt, q1OK , . . . ,quOK represent the same nonidentity element in the
ideal class group IK(m f )/P(m),O of order 2. Therefore, condition (2) of Theorem 2.4 is
equivalent to

∑t
i=1 ki + 1

2
∑u

j=1 l j ≡ 0 mod 2. �

Corollary 2.9. Suppose that h(n, 1) = 3. Let

a = p1 · · · pt p
kt+1
t+1 · · · p

kr
r ql1

1 · · · q
ls
s

be a positive integer relatively prime to 2D with p1, . . . , pt ∈ P∗(n, 1), pt+1, . . . , pr ∈

P(n, 1), (D/q j) = −1. Here p1, . . . , pt are primes, not necessarily distinct. Then
a = x2 + xy + ny2 for some x, y ∈ Z if and only if:

(1) l j is even for each j = 1, . . . , s;
(2) t = 0 or t ≥ 2.

Proof. Let pi (1 ≤ i ≤ t) be a prime ideal of OK lying over pi. Because pipi = piOK ∈

P(1),O, the ideal class piP(1),O is the inverse of piP(1),O and hence the ideal classes
piP(1),O and piP(1),O are exactly the two nonidentity elements of the ideal class group
IK( f )/P(1),O of order 3 for each i. Therefore, we can take pi (or pi if necessary) lying
above pi so that p1 · · · pt ∈ P(1),O whenever t , 1. This demonstrates condition (2) of
Corollary 2.6. �

For completeness we need a formula for h(n,m), which is given in [3, Theorem 2.9].

Proposition 2.10. Let hK be the class number of K and

O×K,m, f = {α ∈ O×K | α ≡ a mod m fOK for some a ∈ Z with a ≡ 1 mod m}.

Then

h(n,m) =
hKm2 f

[O×K : O×K,m, f ]

∏
p|m

(
1 −

1
p

)(
1 −

(dK

p

) 1
p

)∏
p| f
p-m

(
1 −

(dK

p

) 1
p

)
.
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Remark 2.11. By direct computation and known results about imaginary quadratic
fields of small class number,

h(n,m) = 1 ⇐⇒ (n,m) = (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (5, 1),
(7, 1), (11, 1), (17, 1), or (41, 1),

h(n,m) = 2 ⇐⇒ (n,m) = (1, 4), (2, 4), (3, 3), (4, 1), (4, 2), (9, 1), (13, 1),
(19, 1), (23, 1), (25, 1), (29, 1), (31, 1), (37, 1), (47, 1),
(59, 1), (67, 1), (101, 1), or (107, 1),

h(n, 1) = 3 ⇐⇒ n = 6, 8, 15, 21, 27, 35, 53, 61, 71, 77, 83, 95, 125, 137, 161,
221, or 227.

3. Examples

When we deal with primes dividing 2Dm, the following lemmas will turn out to be
useful in some cases (see Examples 3.3 and 3.4).

Lemma 3.1. If
a = x2 + xy + ny2 x ≡ 1 mod m, y ≡ 0 mod m

and
b = z2 + zw + nw2 z ≡ 1 mod m, w ≡ 0 mod m

then
ab = (xz − nyw)2 + (xz − nyw)(xw + yz + yw) + n(xw + yz + yw)2.

Moreover, xz − nyw ≡ 1 mod m and xw + yz + yw ≡ 0 mod m.

Lemma 3.2. If
a = x2 + xy + ny2 x ≡ 1 mod m, y ≡ 0 mod m

and if
p = z2 + zw + nw2 z ≡ 1 mod m, w ≡ 0 mod m

is a prime divisor of a, then

a
p

= (x′)2 + x′y′ + n(y′)2

for some x′, y′ ∈ Z with x′ ≡ 1 mod m and y′ ≡ 0 mod m.

Proof. Since aw2 − py2 = (xw − yz)(xw + yz + yw), p divides xw − yz or xw + yz + yw.
By exchanging z and w with z + w and −w, respectively, we may assume that p divides
xw − yz. From the identity w(xw + xz + nyw) = (xw − yz)(z + w) + py we also see that
p divides xw + xz + nyw. Now the asserted statement follows immediately by setting
x′ = (xw + xz + nyw)/p and y′ = −(xw − yz)/p. �
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Example 3.3. Consider the case (n,m) = (2, 2). Let a = p1 · · · prb2 be a positive integer
where the pi are mutually distinct primes. Corollary 2.7 implies that if (a, 14) = 1 then

a = x2 + xy + 2y2 x ≡ 1 mod 2, y ≡ 0 mod 2⇐⇒ pi ≡ 1, 2, 4 mod 7 for each i.

Since 2 and 7 are also representable by the given form, we deduce from Lemmas 3.1
and 3.2 that for a arbitrary,

a = x2 + xy + 2y2 x ≡ 1 mod 2, y ≡ 0 mod 2⇐⇒ pi ≡ 0, 1, 2, 4 mod 7 for each i.

Example 3.4. Let (n,m) = (7, 1) and let a = p1 · · · prb2 be a positive integer, where the
pi are mutually distinct primes. If (a, 6) = 1, then

a = x2 + xy + 7y2 ⇐⇒ pi ≡ 1 mod 3 for each i

by Corollary 2.7. Note that neither 2 nor 3 is representable by the given form. We
claim that for a arbitrary, a = x2 + xy + 7y2 if and only if:

(1) pi , 2 and pi ≡ 0, 1 mod 3 for each i;
(2) if pi = 3 for some i, then b is divisible by 3.

First assume that conditions (1) and (2) hold true. Since 33 is representable by the
given form, we can deduce from Lemma 3.1 that a can be expressed by the given form.

Now we prove the other direction. Dividing x and y by d := (x, y),

a′ := p1 · · · pr(b/d)2 = (x′)2 + x′y′ + 7(y′)2,

where x′ = x/d and y′ = y/d. Observe that a′ must be odd. Let p be any prime divisor
of a′ not equal to 3. Then we deduce (−3/p) = 1 from (2x′ + y′)2 + 27(y′)2 ≡ 0 mod p
and (p, y′) = 1, so, in particular, we obtain condition (1). Furthermore, if pi = 3 for
some i but 3 - b, then we divide a′ by all the prime divisors of a′ except 3 and deduce
from Lemma 3.2 that 3 = z2 + zw + 7w2 for some z,w ∈ Z. This is a contradiction.

Example 3.5. Let (n,m) = (3, 3). Then K = Q(
√
−11), O = Z[(1 +

√
−11)/2] = OK ,

and K(3),O equals the ray class field of K with modulus (3). By means of [2,
Corollary 6] and [1, page 289] we can take the class polynomial f3,3(X) as

f3,3(X) = X2 + 33534X + 312.

The discriminant of f3,3(X) is 26 · 313 · 11 and for any prime p , 2, 3, 11 we deduce
from Proposition 2.3 that

p = x2 + xy + 3y2 x ≡ 1 mod 3, y ≡ 0 mod 3⇐⇒ p ≡ 1, 4, 16, 25, 31 mod 33,

and hence

P(3, 3) = {p | p ≡ 1, 4, 16, 25, 31 mod 33},
P∗(3, 3) = {p | p ≡ 5, 14, 20, 23, 26 mod 33}.
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Let a = pk1
1 · · · p

kt
t pkt+1

t+1 · · · p
kr
r ql1

1 · · ·q
ls
s be a positive integer relatively prime to 66, where

the pi and q j are mutually distinct primes such that

p1, . . . , pt ≡ 5, 14, 20, 23, 26 mod 33,
pt+1, . . . , pr ≡ 1, 4, 16, 25, 31 mod 33,

q1, . . . , qs ≡ 2, 6, 7, 8, 10 mod 11.

By Corollary 2.8,

a = x2 + xy + 3y2 x ≡ 1 mod 3, y ≡ 0 mod 3

if and only if:

(1) l j is even for each j;
(2) k1 + · · · + kt ≡ 0 mod 2.

Example 3.6. Now we deal with an example of class number 3. Let (n,m) = (6, 1).
Then K = Q(

√
−23), O = Z[(1 +

√
−23)/2] = OK , and K(1),O is the Hilbert class field

of K. We remark that Hasse [10] has shown that the Hilbert class field of K is

K
(

3
√

(25 + 3
√

69)/2 +
3
√

(25 − 3
√

69)/2
)
.

Hence, we can compute its class polynomial as

f6,1(X) = X3 − 3X − 25

with discriminant −36 · 23. Using this, we may compute P(6, 1) and P∗(6, 1). But
a more explicit and useful condition for the prime p to be represented by x2 + xy +

((1 − D)/4)y2 (or x2 − (D/4)y2) is given by Gurak [9] for D = −23 and by Williams and
Hudson [12, Theorem 3] for all D with class number 3. The necessary and sufficient
condition is described in terms of certain integer sequences: Let p > 3 be a prime such
that (−23/p) = 1. We define the sequence {un}n=0,1,2,... of integers by u0 = 2, u1 = 25,
un+2 = 25un+1 − un (n = 0, 1, 2, . . .). Then p is represented by x2 + xy + 6y2 if and
only if

u(p−(p/3))/3 ≡ 2 mod p.

Thanks to this result we easily compute P(6, 1) and P∗(6, 1) as

P(6, 1) = {59, 101, 167, 173, 211, 223, 271, 307, 317, 347, . . .},
P∗(6, 1) = {13, 29, 31, 41, 47, 71, 73, 127, 131, 139, 151, 163, . . .}.

Let a = p1 · · · pt pt+1 · · · prq
l1
1 · · · q

ls
s be a positive integer relatively prime to 2 · 3 ·

23, where the pi are primes, not necessarily distinct, with pt+1, · · · , pr ∈ P(6, 1),
p1, · · · , pt ∈ P∗(6,1), and the q j are mutually distinct primes with (−23/q j) = −1. From
Corollary 2.9, a = x2 + xy + 6y2 if and only if:

(1) l j is even for each j;
(2) t = 0 or t ≥ 2.

We further claim that a = 2x2 + xy + 3y2 if:

(1) l j is even for each j;
(2) t ≥ 1.
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Since the class number is 3, there is only one genus, and thus any odd prime p for
which −23 is a quadratic residue is represented by either the form x2 + xy + 6y2 or
the forms 2x2 ± xy + 3y2. In other words, every prime p ∈ P(6, 1) (respectively, p ∈
P∗(6, 1)) with p , 2, 3, 23 is represented by the form x2 + xy + 6y2 (respectively, 2x2 ±

xy + 3y2). Since the form class group {x2 + xy + 6y2, 2x2 ± xy + 3y2} is isomorphic to
the cyclic group of order 3, we easily infer from the composition law of form class
group that a is representable as 2x2 + xy + 3y2 under the given conditions.
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