
52

The QCD condensates

We anticipated this discussion in Chapter 27 when we discussed the anatomy of the SVZ
expansion. Here, we shall review the different determinations of the QCD condensates from
QSSR.

Indeed, a good control of the values of the QCD condensates is necessary in the phe-
nomenological applications of QSSR. The non-vanishing value of the light quark conden-
sate, which we shall discuss in the next section, is intimately related to the GMOR realization
of chiral symmetry, as can be inferred from the PCAC relation. SVZ [1,654] have also pos-
tulated that QCD is spontaneously broken by the gluon condensate, which they confirm
from their analysis of the charmonium sum rule. The non-vanishing value of the gluon
condensate and the gluon correlation length has been also checked on the lattice [402].
Since the pioneering work of SVZ, [1] a lot of effort has been devoted to this issue as can
be found in the long list of published papers in this subject (for reviews see e.g. [3],[51,46],
[356–363]). The condensates have been extracted from the light mesons [403–409], [325],
[33,328], [341,387], and in [329] (Section 52.10), from the baryons [424–430], from the
heavy quarkonia [433,434], and [313] (Section 51.3), and from the heavy-light mesons
[401].

The e+e− → hadrons and τ -decays data have been always used as a laboratory for testing
the perturbative and non-perturbative structure of QCD [1,3,325], [403–409], [346,338,341]
and [329,161] (Sections 19.4 and 52.10). As already mentioned, these channels have the
great advantage that the spectral functions are measured in a region where pQCD is ap-
plicable and therefore the analysis does not suffer from any model dependence in the
parametrization of the spectral functions. Therefore, one expects that the determinations
from these channels are model-independent.

52.1 Dimension-two tachyonic gluon mass

� e+e− → I = 1 hadrons below 2 GeV has been also used for extracting the hypothetical dimension-
two term beyond the SVZ expansion which has been interpreted in [161] as the effect due to a
tachyonic gluon mass. In [341,329], ratios of Laplace sum rules and τ -like sum rules which can
disentangle the leading radiative perturbative corrections from the non-perturbative contributions
have been used. As a result, one is able to extract the tiny contribution due to the dimension-two
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terms. The outcome of the analysis is:

d2 ≡ −1.05
(αs

π

)
λ2 � (0.03 ∼ 0.07) GeV2 . (52.1)

This is not the case of other attempts (see e.g. [653]), where in these approaches theαs contribution
masks the one of the tachyonic gluon mass.

� In [161], an alternative estimate of this quantity has been produced in the pseudoscalar channel
where one can notice that the size of this contribution is about four times the one in the ρ-meson
channel, such that its effect is more sizeable. At the optimization scale of the sum rule, one obtains:(αs

π

)
λ2 � −(0.12 ± 0.06) GeV2 , (52.2)

which is more precise than the etimate using e+e− data but still inaccurate.
� The value quoted in Table 48.2 corresponds to the intersection of these two estimates which we

take to be: (αs

π

)
λ2 � −(0.06 ∼ 0.07) GeV2 . (52.3)

52.2 Dimension-three quark condensate

The derivation of the 〈ψ̄ψ〉 condensate from the sum rules will be discussed in the chapter
on light quark masses and light baryons.

52.3 Dimension-four gluon condensate

� The estimate of the gluon condensate from τ -decays [328,33] is not very conclusive, which one can
understand from [325] because its contribution has an extra αs correction in the QCD expression of
the τ width. In this case, the analysis of e+e− data from the usual QSSR (in particular the Laplace
sum rule) is superior. Most recent results using e+e− data have been obtained in the Section 52.10.
It reads:

〈αs G2〉 � (7.1 ± 0.7) × 10−2 GeV4 , (52.4)

showing that the original SVZ result has been underestimated by a factor of about 2. An analogous
result has been already obtained in the past by Bell–Bertlmann [91–93] using Laplace sum rules for
heavy quark systems and adding a quantum mechanics argument for supporting their result. Similar
conclusions have been reached in [655–658], while the validity of the SVZ value has been also ques-
tioned in [659]. Analogously [405,406] use high moments in n of FESR in e+e− → I = 1 hadrons
and have found larger values of the different condensates but the results were not very convincing
due to the large sensitivity of the moments on the high-energy tails of the spectral functions.

� In [3], we have reworked in detail the different estimates of the gluon condensate from charmonium
systems and come to the conclusions that using the standard sum rules of SVZ, one cannot
extract an accurate value of the gluon condensate from the charmonium sum rules because of the
uncertainties induced by the correlated value and definition of the charm quark mass. The emerging
value from different heavy quark sum rules analysis is [3]:

〈αs G2〉 � (4 ∼ 6) × 10−2 GeV4 . (52.5)
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552 X QCD spectral sum rules

� However, working with sum rules which can disentangle these different contributions, one can
extract a more precise result. In Section 51.3, one has observed after examining the different QCD
contributions in various quarkonia sum rules that the ones for the J/� − ηc and ϒ − ηb mass
splittings is quite sensitive to the value of the gluon condensate, which one can disentangle from
the quark mass and leading αs corrections. In the case of the J/ψ-ηc, the sum rule reads:

RV P ≡ M2
J/ψ

M2
ηc

= 
V P
0

[
1 + αs(σ )
V P

αs
+ 4π

9
〈αs G2〉σ 2x2
V P

G

]
, (52.6)

where σ � (0.9 ± 0.1) GeV−2; 1/x ≡ 4M2
c σ � (6.6 ± 1.8) if one uses the conservative value

of the charm pole mass Mc � (1.2 ∼ 1.5) GeV, while numerically, the complete non-expanded
expressions in the quark mass read:


V P
0 = 0.995+0.001

−0.004 
V P
αs

= 0.0233−0.009
+0.011 
V P

G = 29.77+8.86
−10.23 , (52.7)

which leads, respectively, to a correction of about 0.5, 2 and 7% of the leading order term for
a typical value of the QCD parameters. It is informative to give the expression of these terms in
the limit where the quark mass is large. In this way, one obtains to leading order in x from the
table in Section 51.3


V P
0 = 1 − x2

2

V P

αs
=

√
π

9
x3/2 + 1.539x2 
V P

G = 5

x

(
1 − 4

5
x

)
, (52.8)

which shows, in particular, that the x dependence appearing in the gluon condensate correction is
partially compensated by the 1/x behaviour of 
V P

G . Using the experimental value Rexp
V P = 1.082

and αs(σ ) = 0.48+0.17
−0.10 for four flavours, one obtains:

〈αs G2〉 = (10 ± 4)10−2 GeV4. (52.9)

A similar analysis for the ϒ-χb mass-splitting gives a much more accurate result as we work
at higher scales. Numerically, the sum rule reads [313]:

Mc.o.m
χb

− Mϒ

Mϒ

� (
1.53+0.26

−0.42

) × 10−2 + (
1.20+0.10

−0.20

) × 10−2 + (
0.28+0.08

−0.06

)
GeV−4〈αs G2〉 , (52.10)

where Mc.o.m
χb

is the centre of mass energy:

Mc.o.m = 1

9

[
5MP3

2
+ 3MP3

0
+ MP3

0

]
, (52.11)

with P3
0 , P3

1 and P3
2 refer respectively to the scalar, axial vector and tensor χb states. Using the

experimental value of these mass-splittings, the analysis leads to:

〈αs G2〉 = (6.9 ± 2.5)10−2 GeV4 , (52.12)

The two channels give the average:

〈αs G2〉 = (7.5 ± 2.5)10−2 GeV4 , (52.13)

in good agreement with the previous value from e+e− → I = 1 hadrons data, although less precise.
� The average of these results from different sources reads:

〈αs G2〉 = (7.1 ± 0.9)10−2 GeV4 , (52.14)
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which we consider as a final estimate from the sum rules compiled in Table 48.2. Lattice
calculations support the above phenomenological estimate [402].

We then conclude from the previous analysis that the gluon condensate also breaks sponta-
neously QCD in a similar way that the quark condensate does for chiral symmetry. A more
physical intuitive picture of the non-vanishing value of the gluon condensate is given in
[654].

52.4 Dimension-five mixed quark-gluon condensate

� As discussed previously in Chapter 27, the mixed condensate can be parametrized as:〈
ψ̄

λa

2
σµνGµν

a ψ

〉
≡ M2

0 αγM /−β1
s 〈ψ̄ψ〉 , (52.15)

where γM = 1/3 is the anomalous dimension. Due to its important rôle in the baryon sum rules
analysis of odd dimension F2 part of the correlator, the size of the mixed condensate has been
initially obtained from this channel [424–430], where the result also appears to be independent of
the choice of the nucleon interpolating currents. It reads:

M2
0 � 0.8 GeV2 . (52.16)

� Alternatively, the mixed condensate has been also obtained from the heavy-light quark systems
[401], as it has been noticed that the B and B∗ masses are quite sensitive to this quantity, which
acts in opposing directions. A priori, this latter method is more reliable than the previous baryon
sum rules, due to the smaller complication of this meson channel. It gives a result that is consistent
with the one from the baryon sum rules, and extraordinarily accurate:

M2
0 = (0.80 ± 0.01) GeV2 , (52.17)

to the order we have used.
� From these two completely independent analyses, we deduce the value given in Table 48.2:

M2
0 = (0.8 ± 0.1) GeV2 , (52.18)

where we have estimated the error to be about 10% typical of the sum rule analysis. This result is
in agreement, with the quenched lattice estimate [660], and with the one from an effective quark
interaction model [661]. The result from an instanton liquid model [662] appears to be too high.
The analysis of [663] also indicates that the mixed condensate shows a SU (3)F breaking analogous
to the one of the quark condensate. However, this result is opposite with the one from baryon sum
rules [426]. The discrepancy of these two results needs clarification.

52.5 Dimension-six four-quark condensates

In Section 52.10 the e+e− → I = 1 hadrons data have been used for estimating the non-
perturbative condensates. The result obtained in [329] after using different forms of the sum
rules and the last iteration of different steps is quoted in Table 48.2. It reads:

δ
(6)
V � = (3.7 ± 0.6) × 10−2 (52.19)
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Fig. 52.1. Dimension-six condensate contributions to Rτ,V/A.

which is normalized as in Eq. (25.49):

M6
τ δ

(6)
V/A =

(
7

−11

)
256π3

27
ραs〈ψ̄ψ〉2 , (52.20)

where ρ = 1 if one uses vacuum saturation for the estimate of the four-quark operators.
For a comparison, Fig. 52.1 (figure taken from ALEPH) shows the different estimates from
τ -decay in the vector (V) and axial-vector (A) channels. The ALEPH result is [33]:

δ
(6)
V � −δ

(6)
A = (2.9 ± 0.4) × 10−2 , δ

(6)
V +A = −(0.1 ± 0.4) × 10−2 . (52.21)

The BNP [325] result shown in Fig. 52.1 is based on the vacuum saturation assumption
for the ratio of the axial-vector over the vector channel contributions. One should, however,
notice that the result of Section 52.10 quoted by ALEPH in this figure corresponds to the
first iteration result in the section. The improved result obtained in Section 52.10 and quoted
in Table 48.2 has a central value slightly higher and more precise than the one quoted in
Fig. 52.1. It corresponds to the value quoted in Eq. (52.19) which is more precise and in
excellent agreement with the ALEPH result.

We conclude from the previous analysis that the vacuum saturation or equivalently the
leading 1/Nc is a very crude estimate of the four-quark condensate values. In most cases,
the real value is two to three times the vacuum saturation value. These recent results confirm
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earlier estimates from e+e− data using the ratio of moments [404] and from baryon sum
rules [424].

52.6 Dimension-six gluon condensates

These condensates have already been discussed in Chapter 27. To my knowledge, there
are no sum rules estimates of these quantities. Therefore, we have nothing to add to the
discussions in the previous chapter. We shall use the value given in Table 48.2 coming from
a conservative range from lattice [402] and DIGA model.

52.7 Dimension-eight condensates

In Section 52.10, the analysis has been pursued for fixing the size of the dimension-eight
condensates appearing in the OPE of the vector channel. The final result quoted there is:

d8,V ≡ M8
τ δ

(8)
V � −(1.5 ± 0.6) GeV8 , (52.22)

normalized in the same way as in Eq. (25.49), although a value of −(0.85 ± 0.18) GeV8

has also been obtained in the first stage of the iteration. This result is consistent with the
one about −0.95 GeV8 in [346] and the one from ALEPH [33]:

d8,V = −(0.9 ± 0.1) GeV8 (52.23)

and of OPAL [33]:

d8,V = −(0.8 ± 0.1) GeV8 (52.24)

from τ -decay data. We can consider as a final result from the different estimates the
(arithmetic) average value:

d8,V ≡ M8
τ δ

(8)
V � −(1.1 ± 0.3) GeV8 (52.25)

The axial-vector channel is only accessible from τ -decay data. The results from
ALEPH is:

d8,A = (0.8 ± 0.1) GeV8 , (52.26)

and from OPAL:

d8,A = (0.4 ± 0.2) GeV8 , (52.27)

where the two central values differ almost by a factor 2. We adopt the average of the two
results as a final estimate:

d8,A ≡ M8
τ δ

(8)
V � (0.6 ± 0.2) GeV8 . (52.28)
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These estimates are about one order of magnitude bigger than the rough estimate coming
from the vacuum saturation [325]:1

d8,V ≈ d8,A ≈ − 39

162
π2〈αs G2〉2 ≈ 0.01 GeV8 . (52.29)

A fit of the (pseudo)scalar channel [394] also shows that the size of the D = 8 condensates
needed to reproduce the lattice data [393] at large x is also much bigger than the one from
the vacuum saturation estimate of these operators.

52.8 Instanton like-contributions

In Section 52.10 an attempt has been made to estimate the contributions of the dimension-
nine operators which can mimic the instanton-like effects to the vector correlator [382–387].
The result of the analysis is:

δ
(9)
V ≡ δinst

V = −(7.0 ± 26.5)10−4

(
1.78

Mτ

)9

, (52.30)

which is completely negligible in the sum rule working region. This result confirms the
alternative phenomenological estimate [387]:

δinst
V ≈ 3 × 10−3 , (52.31)

and theoretical estimate [385]:

δinst
V ≈ 2 × 10−5 (52.32)

at the τ mass. In [384], one also expects a further cancellation for the sum of the vector and
axial-vector channels:

δinst
V +A ≈ 1

20
δinst

V . (52.33)

Although there is a concensus over the negligible effect of small size instantons in
the V/A channels, the situation in the (pseudo)scalar channel is more controversial. In
[385], one also expects that the instanton effect is negligible at the sum rule working scale
of about 1 GeV, while in [383] one expects that it breaks completely the OPE in this
channel.

In the remaining part of the discussions of this book, we shall adopt the pragmatic attitude
that the usual OPE describes the (pseudo)scalar channel and the inclusion of the quadratic
term restores the discrepancy between the scales in the ρ and π meson sum rules [161]. This
attitude is supported by the lattice result for the (pseudo)scalar two-point function [393],
which can be fitted quite well until large x by the OPE including quadratic λ2 term and the
dimension-eight condensate.

1 A missprint of a factor 1/π2 has been corrected in the BNP formula.
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52.9 Sum of non-perturbative contributions to e+e− → I = 1 hadrons
and τ decays

A fit of the sum of the different non-perturbative terms entering in the QCD expression of
τ decays has been also done by ALEPH and OPAL [33,328]. Using the normalization in
Section 25.5, ALEPH obtains:

δN P,V = 0.020 ± 0.017 , δN P,A = −0.027 ± 0.009 , δN P,V +A = −0.003 ± 0.005 ,

(52.34)
while OPAL obtains for different structures of the perturbative QCD series:

δN P,V = 0.016 ± 0.004 , δN P,A = −0.023 ± 0.004 , δN P,V +A = −0.0035 ± 0.0035 .

(52.35)

In Section 52.10, the sum of the different non-perturbative contributions including the
dimension-nine condensates from e+e− data is found to be:

δN P,V = 0.024 ± 0.009 (52.36)

in good agreement with the former results from τ -decays.

52.10 Reprinted paper

QCD tests from e+e− → I = 1 hadrons data and implication
on the value of αs from τ-decays

S. Narison
Reprinted from Physics Letters B, Volume 361. pp. 121–130, Copyright (1995) with permission from Elsevier
Science.

1. Introduction

Measurements of the QCD scale � and of the q2-evolution of the QCD coupling are
one of the most important tests of perturbative QCD. At present LEP and τ -decay data
[1–7] indicate that the value of αs is systematically higher than the one extracted from
deep-inelastic low-energy data1. The existing estimate of αs from QCD spectral sum rules
[9] à la SVZ [10] in e+e− data [11,12] apparently favours a low value of αs , a result, which
is, however, in contradiction with the recent CVC-test performed by [13] using e+e− data. It
is therefore essential to test the reliability of the low-energy predictions before speculating
on the phenomenological consequences implied by the previous discrepancy.

Deep-inelastic scattering processes need a better control of the parton distributions and of
the power corrections in order to be competitive with the LEP and tau-decay measurements.
In addition, perturbative corrections in these processes should be pushed so far such that the
remaining uncertainties will only be due to the re-summation of the perturbative series at
large order. Indeed, the τ -decay rate has been calculated including the α3

s -term [3], while an

1However, new results of jet studies in deep-inelastic ep-scattering at HERA for photon momentum transfer
10 ≤ Q2 [GeV2] ≤ 4000 give a value of αs [8] compatible with the LEP-average.
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estimate [14] and a measurement [15] of the α4
s coefficient is done. Moreover, a resummation

of the (β1αs)n of the perturbative series is now available [16].
The QCD spectral sum rule (QSSR) [9] à la SVZ [10] applied to the I = 1 part of the

e+e− → hadrons total cross-section has a QCD expression very similar to the τ -decay
inclusive width, such that on a theoretical basis, one can also have a good control of it.

In a previous paper [17], we have derived in a model-independent way the running
mass of the strange quark from the difference between the I = 1 and I = 0 parts of the
e+e− → hadrons total cross-section. In this paper, we pursue this analysis by re-examining
the estimate of αs and of the condensates including the instanton-like and the marginal
D = 2-like operators obtained from the I = 1 channel of the e+e− data. In so doing, we
re-examine the exponential Laplace sum rule used by [11] in e+e−, which is a generalization
of the ρ-meson sum rule studied originally by SVZ [10]. We also expect that the Laplace
sum rule gives a more reliable result than the FESR due to the presence of the exponential
weight factor which suppresses the effects of higher meson masses in the sum rule. This
is important in the particular channel studied here as the data are very inaccurate above
1.4–1.8 GeV, where, at this energy, the optimal result from FESR satisfies the so-called
heat evolution test [12,18,19]. That makes the FESR prediction strongly dependent on the
way the data in this region are parametrized, a feature which we have examined [13,20] for
criticizing the work of [21]. We also test the existing and controversial estimates [18,19] of
the D = 2-type operator obtained from QSSR. Combining our different non-perturbative
results with the recent resummed perturbative series [16], we re-estimate and confirm the
value of αs from τ -decays.

2. αs from e+e− → I = 1 hadrons data

Existing estimates of αs or � from different aspects of QSSR for e+e− → I = 1 hadrons
data [11,12] lead to values much smaller than the present LEP and τ -decay measurements
[3–7]. However, such results contradict the stability-test on the extraction of αs from τ -like
inclusive decay [13] obtained using CVC in e+e− [22] for different values of the τ -mass.
In the following, we shall re-examine the reliability of these sum rule results.

We shall not reconsider the result from FESR [12] due to the drawbacks of this method
mentioned previously, and also, because the FESR-analysis has been re-used recently
[18,19] in the determination of the D =2-type operator, which we shall come back later on.

�3 and the condensates have been extracted in [11] from the Laplace sum rule:

L1 ≡ 2

3
τ

∫ ∞

4m2
π

ds e−st R I=1(s) (1)

and from its τ ≡ 1/M2 derivative:

L2 ≡ 2

3
τ 2

∫ ∞

4m2
π

ds s e−sτ RI=1(s) , (2)

where:

RI ≡ σ (e+e− → I hadrons)

σ (e+e− → µ+µ−)
. (3)
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In the chiral limit mu = md = 0, the QCD expressions of the sum rule can be written as:

Li = 1 +
∑

D=0,2,4,...



(D)
i . (4)

The perturbative corrections can be deduced from the ones of RI=1 obtained to order α3
s :

RI=1(s) = 3

2

{
1 + as + F3a2

s + F4a3
s + O(

a4
s

)}
, (5)

where, for 3 flavours: F3 = 1.623 [23], F4 = 6.370 [24]; the expression of the running cou-
pling to three-loop accuracy is:

as(v) = a(0)
s

{
1 − a(0)

s

β2

β1
log log

v2

�2

+ (
a(0)

s

)2
[
β2

2

β2
1

log2 log
v2

�2
− β2

2

β2
1

log log
v2

�2

− β2
2

β2
1

+ β3

β1

]
+ O(

a3
s

)}
, (6)

with:

a(0)
s ≡ 1

−β1 log(v/�)
(7)

and βi are the O(ai
s) coefficients of the β-function in the MS scheme for nf flavours:

β1 = −11

2
+ 1

3
n f

β2 = −51

4
+ 19

12
n f

β3 = 1

64

[
−2857 + 5033

9
n f − 325

27
n2

f

]
. (8)

For three flavours, we have:

β1 = −9/2, β2 = −8, β3 = −20.1198 . (9)

In the chiral limit, the D = 2-contribution vanishes. It has also been proved recently [16]
that renormalon-type contributions induced by the resummation of the QCD series at large
order cannot induce such a term.

In the chiral limit, the D = 4 non-perturbative corrections read [10,3]:



(4)
1 = π

3
τ 2〈αs G2〉

(
1 − 11

18

αs

π

)



(4)
2 = −


(4)
1 . (10)
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The D = 6 non-perturbative corrections read [10]:



(6)
1 = −448π3

81
τ 3ρ〈ūu〉2



(6)
2 = −2


(6)
1 . (11)

We shall use, in the first iteration of the analysis, the conservative values of the condensates
[9,3]:

〈αs G2〉 = (0.06 ± 0.03) GeV4,

ρ〈ūu〉2 = (3.8 ± 2.0)10−4 GeV6, (12)

and high values of � from LEP and tau-decay data [1–4] for 3 flavours:

�3 = 375+105
−85 MeV, (13)

corresponding to αs(MZ ) = 0.118 ± 0.06.

The phenomenological side of the sum rule has been parametrized using analogous data
as [11] and updated using the data used in [13]. The confrontation of the QCD and the
phenomenological sides of the sum rules is done in Fig. 1a and in Fig. 2a for a giving
value of �3 = 375 MeV and varying the condensates in the range given previously. One
can conclude that one has a good agreement between the two sides of L1 for M ≥ 0.8 GeV
and of L2 for M ≥ 1.0 ∼ 1.2 GeV. The effects of the condensates are important below 1
GeV for L1 and below 1.3 GeV for L2. In Fig. 1b and Fig. 2b, we fix the condensates at
their central values and we vary �3 in the range given above. One can notice that a value of
�3 as high as 525 MeV is still allowed by the data, while the shape of the QCD curve for
L2 changes drastically for a high value of �3. This phenomena is not informative as, below
1 GeV, higher dimension condensates can already show up and may break the Operator
Product Expansion (OPE).

By comparing these results with the ones of [11], one can notice that our QCD prediction
for L1 corresponding to the previous set of parameters is as good as the one of [11] obtained
from a different set of the QCD parameters, while for that of L2, the agreement between the
two sides of the sum rule is obtained here at a slightly larger value of M for high values of �3.

One can clearly conclude from our analysis is that the exponential Laplace sum rules
applied to e+e− → I = 1 hadrons data do not exclude values of �3 obtained from LEP
and τ -decay data. Contrary to some claims in the literature, the sum rules cannot also give
a precise information on the real value of �3 if the condensates are allowed to move inside
the conservative range of values given in Eq. (12). It is also important and reassuring, that
our analysis supports the value of �3 obtained from τ -decay and used in e+e− via CVC
[22] for the stability-test of the prediction for different values of the τ -mass [13] as we shall
see also below.
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Fig. 1. (a) The Laplace sum ruleL1 versus the sum rule parameter M. The dashed curves correspond to
the experimental data. The full curves correspond to the QCD prediction for �3 = 375 MeV, 〈αs G2〉 =
0.06 ± 0.03 GeV4 and ραs〈ūu〉2 = (3.8 ± 2.0)10−4 GeV6. (b) The same as Fig. 1a but for different
values of �3 and for 〈αs G2〉 = 0.06 GeV4 and ραs〈ūu〉2 = 3.8 10−4 GeV6.

3. The condensates from τ -like decays

In so doing, we shall work with the vector component of the τ decay-like quantity
deduced from CVC [22]:

Rτ,1 ≡ 3 cos2 θc

2πα2
SEW ×

M2
τ∫

0

ds

(
1 − s

M2
τ

)2 (
1 + 2s

M2
τ

)
S

M2
τ

σe+e− → I = 1 , (14)

where SEW = 1.0194 is the electroweak correction from the summation of the leading-log
contributions [25].
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Fig. 2. (a) The same as Fig. 1a but for L2. (b) The same as Fig. 1b but for L2.

Fig. 3. Experimental value of the ratio of Laplace sum rules R(τ ) versus the sum rule variable
τ = 1/M2.
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This quantity has been used in [13] in order to test the stability of the αs-prediction
obtained at the τ -mass of 1.78 GeV. It has also been used to test CVC for different exclusive
channels [13,26]. Here, we shall again exploit this quantity in order to deduce model-
independent informations on the values of the QCD condensates. The QCD expression of
Rτ,1 reads:

Rτ,1 = 3

2
cos2 θc SEW ×

(
1 + δEW + δ(0) +

∑
D=2,4,...

δ
(D)
1

)
, (15)

where δEW = 0.0010 is the electroweak correction coming from the constant term [27]; the
perturbative corrections read [3]:

δ(0)

(
as ≡ αs(Mτ )

π

)
+ 5.2023a2

s + 26.366a3
s + · · · , (16)

The a4
s coefficient has also been estimated to be about 103 [14,15], though we shall use

(78 ± 25) a4
s where the error reflects the uncalculated higher order terms of the D-function,

while the first term is induced by the lower order coefficients after the use of the Cauchy
integration.

In the chiral limit mi = 0, the quadratic mass-corrections contributing to δ
(2)
1 vanish.

Moreover, it has been proved [16] that the summation of the perturbative series cannot
induce such a term, while the one induced eventually by the freezing mechanism is safely
negligible [28,18]. Therefore, we shall neglect this term in the first step of our analysis. We
shall test, later on, the internal consistency of the approach if a such term is included into
the OPE.

In the chiral limit mi = 0, the D = 4 contributions read [3]:

δ
(4)
1 = 11

4
πa2

s

〈αs G2〉
M4

τ

, (17)

which, due to the Cauchy integral and to the particular s-structure of the inclusive rate, the
gluon condensate starts at O(a2

s ). This is a great advantage compared with the ordinary sum
rule discussed previously. The D = 6 contributions read [3]:

δ
(6)
1 � 7

256π3

27

ραs〈ψ̄ iψi 〉2

M6
τ

, (18)

The contribution of the D = 8 operators in the chiral limit reads [3]:

δ
(8)
1 = −39π2

162

〈αs G2〉2

M8
τ

. (19)

The phenomenological parametrization of Rτ,1 has been done using the same data input as
in [18,13]. We give in Table 1 its value for different values of the tau-mass. Neglecting the
D = 4-contribution which is of the order α2

s , we perform a two-parameter fit of the data
for each value of �3 corresponding to the world average value of αs(MZ ) = 0.118 ± 0.006
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Table 1. Phenomenological
estimate of Rτ,1

Mτ [GeV] Rτ,1

1.0 1.608 ± 0.064
1.2 1.900 ± 0.075
1.4 1.853 ± 0.072
1.6 1.793 ± 0.070
1.8 1.790 ± 0.081
2.0 1.818 ± 0.097

Table 2. Estimates of d6 and d8 from Rτ,1 for different
values of �3

�3 [MeV] d6 [GeV6] −d8 [GeV8]

480 −0.07 ± 0.43 1.15 ± 0.40
375 0.27 ± 0.34 0.69 ± 0.31
290 0.58 ± 0.29 0.83 ± 0.27

[1,2] and by letting the D = 6 and D = 8 condensates as free-parameters. We show the
results of the fitting procedure in Table 2 for different values of �3.

The errors take into account the effects of the τ -mass moved from 1.6 to 2.0 GeV, which
is a negligible effect, and the one due to the data. One can notice that the estimate of the
D = 8 condensates is quite accurate, while the one of the D = 6 is not very conclusive
for �3 ≥ 350 MeV. Indeed, only below this value, one sees that the D = 6 contribution is
clearly positive as expected from the vacuum saturation estimate. This fact also explains
the anomalous low value of −d8 around this transition region. Using the average value of
�3 in Eq. (13), we can deduce the result:

d8 ≡ M8
τ δ

(8)
1 = −(0.85 ± 0.18) GeV8

d6 ≡ M6
τ δ

(6)
1 = (0.34 ± 0.20) GeV6 , (20)

which we shall improve again later on once we succeed to fix the value of d6.

4. The condensates from the ratio of the Laplace sum rules

Let us now improve the estimate of the D = 6 condensates. In so doing, one can remark
that, though there are large discrepancies in the estimate of the absolute values of the
condensates from different approaches, there is a consensus in the estimate of the ratio of
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the D = 4 over the D = 6 condensates:2

r46 [GeV−2] ≡ 〈αs G2〉
ραs〈ūu〉2

= 94.80 ± 23 [29]

96.20 ± 35 [12]

114.6 ± 16 [30]

92.50 ± 50 [32] . (21)

from which we deduce the average:

r46 = (105.9 ± 11.9) GeV−2 . (22)

We use the previous informations on d8 and r46 for fitting the value of the D = 4 condensates
from the ratio of the Laplace sum rules:

R(τ ) ≡ τ−2 L2

L1
, (23)

used previously by [29] for a simultaneous estimate of the D = 4 and D = 6 condensates.
We recall that the advantage of this quantity is its less sensitivity to the leading order
perturbative corrections. The phenomenological value of R(τ ) is given in Fig. 2. Using a
one-parameter fit, we deduce:

〈αs G2〉 = (6.1 ± 0.7) 10−2 GeV4 . (24)

Then, we re-inject this value of the gluon condensate into the tau-like width in Eq. (14),
from which we re-deduce the value of the D = 8 condensate. After a re-iteration of this
procedure, we deduce our final results:〈
αs G2

〉 = (7.1 ± 0.7) 10−2 GeV4 ,

d8 = −(1.5 ± 0.6) GeV8 . (25)

Using the mean value of r46, we also obtain:

ραs〈ūu〉2 = (5.8 ± 0.9) 10−4 GeV6 . (26)

We consider these results as an improvement and a confirmation of the previous result in
Eq. (12). It is also informative to compare these results with the ALEPH and CLEO II
measurements of these condensates from the moments distributions of the τ -decay width.
The most accurate measurement leads to [5]:

〈αs G2〉 = (7.8 ± 3.1) 10−2 GeV4 , (27)

while the one of d6 has the same absolute value as previously but comes with the wrong sign.
Our value of d8 is in good agreement with the one d8 � −0.95 GeV8 in [13,6] obtained from

2We have multiplied the original error given by [30] by a factor 10. The constraint obtained in [31] is not very
conclusive as it leads to r46 ≤ 110 GeV−2 and does not exclude negative values of the condensates which are
forbidden from positivity arguments.
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the same quantity, but it is about one order of magnitude higher than the vacuum saturation
estimate proposed by [33] and about a factor 5 higher than the CLEO II measurement.
However, it is lower by a factor 2∼3 than the FESR result from the vector channel [32]3.
The discrepancy with the vacuum saturation indicates that this approximation is very crude,
while the one with the FESR is not very surprising, as the FESR approach done in the
vector and axial-vector channels [12,32] tends always to overestimate the values of the
QCD condensates. The discrepancy with the CLEO II measurement can be understood
from the wrong sign of the D = 6 condensate obtained there and to its correlation with the
D = 8 one.

5. Instanton contribution

Let us now extract the size of the instanton-like contribution by assuming that it acts
like a D ≥ 9 operator. A good place for doing it is Rτ,1 as, in the Laplace sum rules, this
contribution is suppressed by a 8! factor implying a weaker constraint. Using the previous
values of the D = 6 and D = 8 condensates, we deduce:

δ
(9)
1 ≡ δinst

V = −(7.0 ± 26.5) 10−4(1.78/Mτ )9 , (28)

which, though inaccurate indicates that the instanton contribution is negligible for the vector
current and has been overestimated in [34] (δinst

V ≈ 0.03 ∼ 0.05). Our result supports the
negligible effects found from an alternative phenomenological [35] (δinst

V ≈ 3 × 10−3) and
theoretical [36] (δinst

V ≈ 2 × 10−5) analysis. Further cancellations in the sum of the vector
and axial-vector components of the tau widths are however expected [34,35] (δinst ≈ 1

20δinst
V ).

6. Test of the size of the 1/M2
τ -term

Let us now study the size of the 1/M2
τ -term. From the QCD point of view, its possible

existence from the resummation of the PTS due to renormalon contributions [28] has not
been confirmed [16], while some other arguments [28,37] advocating its existence are
not convincing and seems to be a pure speculation. Postulating its existence (whatever its
origin!), [18] has estimated the strength of this term by using FESR and the ratio of moments
R(τ ). As already mentioned earlier, the advantage in working with the ratio of moments is
that the leading order perturbative corrections disappear such that in a compromise region
where the high-dimension condensates are still negligible, there is a possibility to pick up
the 1/M2

τ -contribution. Indeed, using usual stability criteria and allowing a large range of
values around the optimal result, [18] has obtained the conservative value:

d2 ≡ C2 ≡ δ2
1 M2

τ � (0.03 ∼ 0.08) GeV2 , (29)

3In the normalization of [32], our value of d8 translates into C8〈O8〉 = (0.18 ± 0.04) GeV8.
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Table 3. Estimates of 〈αs G2〉 from R(τ ) for different
values of d2

d2 [GeV]2 [18] −d2 [GeV]2 [19] 〈αs G2〉 102 [GeV4]

0.03 7.8 ± 0.5
0.05 8.1 ± 0.5
0.07 8.6 ± 0.5
0.09 9.1 ± 0.5

0.2 3.2 ± 0.29
0.3 1.2 ± 0.29
0.4 −0.7 ± 0.6

while the estimate of [18] from FESR applied to the vector current has not been very
conclusive, as it leads to the inaccurate value:

d2 � (0.02 ± 0.12) GeV2 . (30)

However, the recent FESR analysis from the axial-vector current [19] obtained at about
the same value of the continuum threshold tc satisfying the so-called evolution test [12],
disagrees in sign and magnitude with our previous estimate from the ratio of moments and
is surprisingly very precise compared with the result in Eq. (30) obtained from the same
method for the vector current. If one assumes like [19] a quadratic dependence in �3, the
result of [19] becomes for the value of �3 in Eq. (13):

d2 � −(0.3 ± 0.1) GeV2 , (31)

We test the reliability of this result, by remarking that d2 (if it exists!) is strongly correlated
to d4 in the analysis of the ratio of Laplace sum rules R(τ ), while this is not the case between
d2 or d4 with d6 and d8. Using our previous values of d6 and d8, one can study the variation
of d4 given the value of d2. The results given in Table 3 indicate that the present value of
the gluon condensate excludes the value of d2 in Eq. (31) and can only permit a negligible
fluctuation around zero of this contribution, which should not exceed the value 0.03 ∼ 0.05.
This result rules out the possibility to have a sizeable 1/M2

τ -term [28,37] and justifies its
neglect in the analysis of the τ -width. More precise measurement of the gluon condensate
or more statistics in the τ -decay data will improve this constraint.

7. Sum of the non-perturbative corrections to Rτ

Using our previous estimates, it is also informative to deduce the sum of the non-
perturbative contributions to the decay widths of the observed heavy lepton of mass 1.78
GeV. In so doing, we add the contributions of operators of dimensions D = 4 to D = 9 and
we neglect the expected small δ(2)-contribution.
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Table 4. QCD predictions for Rτ using the contour
coupling-expansion

αs(Mτ ) a3
s a4

s a6
s a8

s

0.26 3.364 ± 0.022 3.370 3.380 ± 0.019 3.381
0.28 3.402 ± 0.024 3.411 3.426 ± 0.019 3.426
0.30 3.442 ± 0.026 3.453 3.474 ± 0.021 3.472
0.32 3.484 ± 0.030 3.498 3.526 ± 0.023 3.520
0.34 3.526 ± 0.033 3.546 3.582 ± 0.031 3.568
0.36 3.571 ± 0.040 3.594 3.640 ± 0.045 3.613
0.38 3.616 ± 0.040 3.645 3.706 ± 0.069 3.655
0.40 3.664 ± 0.040 3.700 3.775 ± 0.108 3.685

For the vector component of the tau hadronic width, we obtain:4

δNP
V ≡

9∑
D=4

δ
(D)
1 = (2.38 ± 0.89)10−2 , (32)

while using the expression of the corrections for the axial-vector component given in [3],
we deduce:

δNP
A = −(7.95 ± 1.12)10−2 , (33)

and then:

δNP ≡ 1

2

(
δNP

V + δNP
A

) = −(2.79 ± 0.62)10−2 , (34)

Our result confirms the smallness of the non-perturbative corrections measured by the
ALEPH and CLEO II groups [5]:

δNP
exp = (0.3 ± 0.5)10−2 , (35)

though the exact size of the experimental number is not yet very conclusive.

8. Implication on the value of αs from Rτ

Before combining the previous non-perturbative results with the perturbative correction
to Rτ , let us test the accuracy of the resummed (αsβ1)n perturbative result of [16]. In so doing,
we fix αs(Mτ ) to be equal to 0.32 and we compare the resummed value of δ(0) including the
δ3

s -corrections with the one where the coefficients have been calculated in the MS scheme
[23]. We consider the two cases where Rτ is expanded in terms of the usual coupling αs or
in terms of the contour coupling [4]. In both cases, one can notice that the approximation

4We have used, for Mτ = 1.78 GeV, the conservative values: δ
(9)
V ≈ δ

(9)
A � −(0.7 ± 2.7)10−3 and δ(9) ≈

1/20δ
(9)
V [34].
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used in the resummation technique tends to overestimate the perturbative correction by
about 10%. Therefore, we shall reduce systematically by 10%, the prediction from this
method from the α5

s to α9
s contributions. We shall use the coefficient 27.46 of α4

s estimated
in [14,15]. Noting that, to the order where the perturbative series (PTS) is estimated, one
has alternate signs in the PTS, which is an indication for reaching the asymptotic regime.
Therefore, we can consider, as the best estimate of the resummed PTS, its value at the
minimum. That is reached, either for truncating the PTS by including the α6

s or the α8
s

contributions. The corresponding value of Rτ including our non-perturbative contributions
in Eq. (34) is given in Table 4. We show for comparison the value of Rτ including the
α3

s -term, where we have used the perturbative estimate in [6] (the small difference with the
previous papers [4,13,6,7,20] comes from the different non-perturbative term used here),
while the error quoted there comes from the naı̈ve estimate ±50a4

s . However, one can see
that the estimate of this perturbative error has taken properly the inclusion of the higher
order terms, while the truncation of the series at α3

s already gives a quite good evaluation of
the PTS. One can also notice that there is negligible difference between the PTS to order α6

s

and α8
s for small values of αs , while the difference increases for larger values. We consider,

as a final perturbative estimate of Rτ , the one given by the PTS including the α6
s -term at

which we encounter the first minimum. The error given in this column is the sum of the
non-perturbative one from Eq. (34) with the perturbative conservative uncertainty, which
we have estimated like the effect due to the last term i.e ±34.53(−β1as/2)6 at which the
minimum is reached, which is a legitimate procedure for asymptotic series [38]. We have
also added to the latter the one due to the small fluctuation of the minimum of the PTS from
the inclusion of the α6

s or α8
s -terms. One can notice that for αs ≤ 0.32, the error in Rτ is

dominated by the non-perturbative one, while for larger value of αs , it is mainly due to the
one from the PTS. Using the value of Rτ in Table 4, we deduce:

αs(Mτ ) = 0.33 ± 0.030, (36)

where we have used the experimental average [2]:

Rτ = 3.56 ± 0.03. (37)

Our result from the optimized resummed PTS is in good agreement with the most recent
estimate obtained to order α3

s [6,5,7]:

αs(Mτ ) = 0.33 ± 0.030. (38)

9. Conclusion

Our analysis of the isovector component of the e+e− → hadrons data has shown that
there is a consistent picture on the extraction of αs from high-energy LEP and low-energy
τ and e+e− data.
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It has also been shown that the values of the condensates obtained from QCD spectral
sum rules based on stability criteria are reproduced and improved by fitting the τ -like decay
widths and the ratio of the Laplace sum rules. Our estimates are in good agreement with the
determination of the condensates from the τ -hadronic width moment-distributions [5],
which needs to be improved from accurate measurements of the e+e− data or/and for more
data sample of the τ -decay widths which can be reached at the τ -charm factory machine.

Finally, our consistency test of the effect of the 1/M2
τ -term, whatever its origin, does

not support the recent estimate of this quantity from FESR axial-vector channel [19] and
only permits a small fluctuation around zero due to its strong correlation with the D = 4
condensate effects in the ratio of Laplace sum rules analysis, indicating that it cannot affect
in a sensible way the accuracy of the determination of αs from tau decays.

As a by-product, we have reconsidered the estimate of αs(Mτ ) from the τ -widths taking
into account the recent resummed result of the perturbative series. Our result in Eq. (36) is
a further support of the existing estimates.
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