
24
Chern–Simons theories

In 2+ 1 dimensions it is possible to construct actions which include a ‘topolog-
ical’ interaction called the Chern–Simons term. The Chern–Simons term takes
the form

SCS =
∫
(dx)√

g

1

2
µεµνλAµ∂ν Aλ

=
∫

dn+1x
1

2
µεµνλAµ∂ν Aλ, (24.1)

for Abelian theories, and the extended form,

SCS−NA =
∫

dVt√
g

kg2

2h̄2C2(Gadj)
εµνλTr

(
Aµ∂ν Aλ − i

2

3
AµAν Aλ

)
,

(24.2)

in the non-Abelian case, where Hermitian generators are used. This action is
real, as may be seen by applying the Lie algebra relation in eqn. (23.3). The
effect of the Chern–Simons term on the dynamics of a field theory depends
on whether the Maxwell or Yang–Mills term is also present. Since the
Chern–Simons term is purely linear in all derivatives, and there are no additional
constraints, as in the Dirac equation, it does not carry any independent dynamics
of its own.

In the absence of dynamics from a Maxwell or Yang–Mills-like contribution
to the action, the effect of this term is to induce a duality of variables, i.e. an
equivalence relation between Fµ and Jµ. Coupled together with a Maxwell or
Yang–Mills term, the Chern–Simons term endows the vector potential with a
gauge-invariant mass [35, 36, 64, 110].

An unusual but important feature of the Chern–Simons action is that it is
independent of the spacetime metric. Since the Levi-Cevita tensor transforms
like a tensor density, a factor of

√
g is therefore required to cancel the one
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already in the volume element. This has obvious implications for the usefulness
of the variational definition of energy and momentum, by Tµν .

24.1 Parity- and time reversal invariance

The Chern–Simons terms violates parity- and time reversal invariance, both
of which are defined for 2 + 1 dimensions as the reflection in the axis of a
single coordinate [64]. This is clearly not a fundamental property of nature.
It is therefore only expected to play a role in physical systems where such
a breakdown of parity invariance is present by virtue of special physical
conditions. There are several such situations. Ferromagnetic states of spin fields,
in the Hall effect, strong magnetic fields and vortices are examples [54].

The presence of a Chern–Simons term in the action of a field theory would
lead to a rotation of the plane of polarization of radiation passing through a
two-dimensional system, as in the Faraday effect (see sections A.6.1 and 7.3.3
and refs. [14, 16]). In ref. [24], the authors use the formalism of parity-violating
terms to set limits on parity-violation from astronomical observations of distant
galaxies. Spin polarized systems can be made into junctions, where Chern–
Simons coefficients can appear with variable strength and sign [11, 14].

24.2 Gauge invariance

The transformation of the Chern–Simons action under gauge transformations,
with its independence of the metric tensor, is what leads to its being referred to
as a topological term. Consider the transformation of the non-Abelian action
under a gauge transformation

Aµ→ U AµU−1 − i
h̄

g
(∂µU )U−1; (24.3)

it transforms to

S → S +
∫
(dx) (∂µV µ)

+ k

6C2(Gadj)
εµνλ Tr

∫
(dx)

[
U (∂µU−1)U (∂νU

−1)U (∂λU
−1)

]
.

(24.4)

The second term in the transformed expression is a total derivative and therefore
vanishes, provided U (∞) = U (0): for instance, if U → 1 in both cases (this
effectively compactifies the spacetime to a sphere). The remaining term is:

δS = h̄k

6C2(Gadj)
εµνλ Tr

∫
(dx)

[
U (∂µU−1)U (∂νU

−1)U (∂λU
−1)

]
= 8h̄π2k W (U ), (24.5)
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488 24 Chern–Simons theories

where W (U ) is the winding number of the mapping of the spacetime into the
group, which is determined by the cohomology of the spacetime manifold. It
takes integer values n. Clearly the action is not invariant under large gauge
transformations. However, if k is quantized, such that 4πk is an integer,
the action only changes by an integral multiple of 2π , leaving the phase
exp(iS/h̄ + 2π i n) invariant. This quantization condition has been discussed
in detail by a number of authors [35, 36, 39, 40, 43].

24.3 Abelian pure Chern–Simons theory

The Abelian Chern–Simons theory is relatively simple and has been used mainly
in connection with studies of fractional statistics and the quantum Hall effect,
where it gives rise to ‘anyons’ [4].

24.3.1 Field equations and continuity

Pure Chern–Simons theory is described by the Chern–Simons action together
with a gauged matter action. In the literature, Chern–Simons theory is usually
analysed by coupling it only to some unspecified gauge-invariant source:

S =
∫ (

−1

2
µεµνλAµ∂ν Aλ + JµAµ

)
. (24.6)

The variation of the action is given by

δS =
∫
(dx){−µεµνλδAµ∂ν Aλ + JµδAµ} −

∫
dσν

1

2
µAµδAλ, (24.7)

implying that the field equations are

1

2
µεµνλFνλ = Jµ, (24.8)

with associated boundary (continuity) conditions

�

(
1

2
µεµσλAµ

)
= 0, (24.9)

where the boundary of interest points in the direction of xσ . Notice that, whereas
the field equations are gauge-invariant, the boundary conditions are not. The
physical interpretation of this result requires a specific context.
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24.4 Maxwell–Chern–Simons theory

24.4.1 Field equations and continuity

In the literature, Chern–Simons theory is usually analysed by coupling it only to
some unspecified gauge-invariant current:

S =
∫ (

1

4µ0
FµνFµν − 1

2
µεµνλAµ∂ν Aλ + JµAµ

)
. (24.10)

The same warnings about the generality of this notation apply as for pure Chern–
Simons theory. The field equations are now given by

1

µ0
∂µFµν + 1

2
µεµνλFνλ = Jµ, (24.11)

with associated boundary conditions

�

(
−µ−1

0 Fσλ + 1

2
µεµσλAµ

)
= 0. (24.12)

24.4.2 Topological mass

To see that the derivative terms of the Chern–Simons action lead to a gauge-
invariant massive mode, one may perform a diagonalization to the eigenbasis of
the action operator:

S = 1

2

∫
(dx) Aµ(− gµν + µεµ λν ∂λ)

=
∫
(dx)AµOµ

ν Aν. (24.13)

In a flat space, Cartesian coordinate basis, where all derivatives commute, this
is seen most easily by writing the components in matrix form:

Oµ
ν =

( − µ∂2 −µ∂1

−µ∂2 − µ∂0

µ∂1 µ∂0 −

)
. (24.14)

The determinant of this basis-independent operator is the product of its eigen-
values, which is the product of dispersion constraints. Noting that − =
−∂2

0 + ∂2
1 + ∂2

2 , it is straightforward to show that

detO = (− )2(− + µ2), (24.15)

showing that the dispersion of the Maxwell–Chern–Simons field contains two
massless modes and one mode of mass µ2. This massive theory has been studied
in refs. [35, 36, 64, 110].
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24.4.3 Energy–momentum tensors

In Chern–Simons theory, the energy–momentum tensors θµν and Tµν do not
agree. The reason for this is that the Chern–Simons action is independent of
the metric tensor (it involves only anti-symmetric symbols), thus the variational
definition of Tµν inevitably leads to a zero value. If we use eqn. (11.68) and
assume the gauge-invariant variation in eqn. (4.81), we obtain the following
contributions to θµν from the action in eqn. (24.1),

θµν = 1

4
µgµνε

ρσλAρFσλ − 1

2
µερ σµ AρFνσ . (24.16)

The fact that these two tensors do not agree can be attributed to the failure of
the variational definition of Tµν in eqn. (11.79). Since the Chern–Simons term
is independent of the spacetime metric, it cannot be used as a generator for the
conformal symmetry.

The contribution in eqn. (24.16) is not symmetrical but, in using the Bianchi
identity εµνρ∂µFνρ , it is seen to be gauge-invariant, provided the Chern–Simons
coefficient is a constant [11, 12, 14].

24.5 Euclidean formulation

In its Wick-rotated, Hermitian form, the Chern–Simons action acquires a factor
of i = √−1, unlike most other action terms, since the Levi-Cevita tensor does
not transform under Wick rotation. It has the Abelian form

SCS−E = i
∫
(dx)√

g

1

2
µεµνλAµ∂ν Aλ, (24.17)

and the non-Abelian form, for Hermitian generators

SCS−NA−E = i
∫
(dx)√

g

kg2

2C2(Gadj)
εµνλTr

(
Aµ∂ν Aλ − i

2

3
AµAν Aλ

)
.

(24.18)
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