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We report on turbulent thermal convection experiments in a rotating cylinder with a
diameter (D) to height (H) aspect ratio of Γ = D/H = 0.5. Using nitrogen and pressurised
sulphur hexafluoride we cover Rayleigh numbers (Ra) from 8 × 109 to 8 × 1014 at Prandtl
numbers 0.72 � Pr � 0.94. For these Ra we measure the global vertical heat flux (i.e. the
Nusselt number – Nu), as well as statistical quantities of local temperature measurements,
as a function of the rotation rate, i.e. the inverse Rossby number – 1/Ro. In contrast to
measurements in fluids with a higher Pr we do not find a heat transport enhancement,
but only a decrease of Nu with increasing 1/Ro. When normalised with Nu(0) for the
non-rotating system, data for all different Ra collapse and, for sufficiently large 1/Ro,
follow a power law Nu/Nu0 ∝ (1/Ro)−0.43. Furthermore, we find that both the heat
transport and the temperature field qualitatively change at rotation rates 1/Ro∗

1 = 0.8
and 1/Ro∗

2 = 4. We interpret the first transition at 1/Ro∗
1 as change from a large-scale

circulation roll to the recently discovered boundary zonal flow (BZF). The second
transition at rotation rate 1/Ro∗

2 is not associated with a change of the flow morphology,
but is rather the rotation rate for which the BZF is at its maximum. For faster rotation the
vertical transport of warm and cold fluid near the sidewall within the BZF decreases and
hence so does Nu.
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1. Introduction

Thermal convection, the flow driven by a thermal gradient, is one of the most important
heat transport mechanisms in many natural and industrial systems and has been studied
for many decades in the well-defined Rayleigh–Bénard convection (RBC) system (Bénard
1900; Rayleigh 1916; Kadanoff 2001; Ahlers, Grossmann & Lohse 2009b). There, a
horizontal fluid layer of height H is confined by a warm plate at its bottom and a cold plate
at its top. Under sufficiently strong thermal driving, the flow in RBC is highly turbulent
and as such difficult to predict and calculate analytically. Nevertheless, good progress
has been made in recent years, in particular in understanding the functional dependency
between thermal driving and global-averaged heat transport (see e.g. Chavanne et al. 1997;
Niemela et al. 2000; Grossmann & Lohse 2000, 2001; He et al. 2012; Stevens et al. 2013;
Whitehead & Wittenberg 2014; Sondak, Smith & Waleffe 2015; Shishkina et al. 2017;
Tobasco & Doering 2017).

The most turbulent convection flows in nature occur in planets, stars and other large scale
astrophysical systems. In these systems, the flow is strongly influenced by the rotation
of their celestial body. For example, the fluid motion in the Earth’s outer core (Buffett
2000) is aligned with the Earth’s rotation axis, creating a dipolar magnetic field in the
same direction. Another example is the Earth’s atmosphere, where pressure equilibration
in depression areas is suppressed by Coriolis forces, causing hurricanes to develop that
can exists for weeks and travel over thousands of kilometres (Holton 2004). It is therefore
of crucial importance to study thermal convection in a rotating system.

For the sake of simplicity, one usually studies the RBC system under Oberbeck–
Boussinesq (OB) conditions, i.e. the temperature difference between the bottom and top
are small enough so that fluid properties are constant everywhere in the fluid (Oberbeck
1879; Boussinesq 1903; Spiegel & Veronis 1960). In the theoretical description of this
problem, only the density is assumed to depend linearly on the temperature, whereby the
isobaric thermal expansion α is the relevant coefficient. In this case, the non-rotating
system is governed by two dimensionless control parameters. These are the Rayleigh
number

Ra = gα�TH3

νκ
, (1.1)

and the Prandtl number

Pr = ν

κ
. (1.2)

Here, �T denotes the temperature difference between the bottom and top plates, g the
gravitational acceleration, ν and κ are the kinematic viscosity and the thermal diffusivity,
respectively.

In simulations and experiments, one is often interested in the heat flux from the bottom
to the top, which is expressed as the dimensionless Nusselt number

Nu = q
qcond

≈ qH
λ�T

, (1.3)

with q being the dimensional heat flux and qcond being the heat flux that would occur
purely due to conduction. In the most general case, calculation of qcond demands numerical
integration of the heat conductivity λ(T) over the entire cell (Shishkina, Weiss &
Bodenschatz 2016). For constant fluid properties (under OB conditions) this simplifies to
qcond = λ�T/H. Considerable effort has been devoted to understanding how Nu depends
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Rotating turbulent thermal convection at very large Ra

on Ra and Pr (Ahlers et al. 2009b), and multiple theoretical models have been proposed
that aim to predict these dependencies (see for instance Malkus 1954; Kraichnan 1962;
Castaing et al. 1989; Grossmann & Lohse 2000; Stevens et al. 2013; Tobasco & Doering
2017).

For a rotating system the rotation rate Ω is an additional control parameter. It is
incorporated in the dimensionless convective Rossby number

Ro =
√

αg�T/H
2Ω

(1.4)

and the Ekman number

Ek = ν

H2Ω
= 2Ro

√
Pr
Ra

. (1.5)

We note that, in the literature, other definitions for Ek are often used which differ by
a factor of two. However, since one is mostly interested in scaling behaviours, constant
coefficients do not influence the resulting power laws. In this paper we will usually
consider the inverse Rossby number 1/Ro since it is a dimensionless rotation rate. One
effect of rotation is that it increases the critical Rayleigh number Rac above which a
fluid at rest starts convecting. For a laterally infinite fluid layer, Rac scales as Ek−4/3

(Chandrasekhar 1981). This is the reason why in rotating RBC often a reduced Rayleigh
number is used as a control parameter, defined as

R̃a = RaEk4/3. (1.6)

A major question for rotating RBC is to understand how rotation affects the heat transport,
i.e. how Nu depends on Ra, Pr and Ro (or Ek). For sufficiently large Ra when the flow
is turbulent, one can very roughly distinguish two different regimes. For small rotation
rates, the flow in the bulk is still dominated by buoyancy. Then, heat is predominantly
transported by thermal plumes that detach from the top and bottom and that self-organise
in a large-scale convection (LSC) role. In this regime, the top and bottom boundary
layers are the major bottlenecks for the heat transport. Depending on Ra and Pr in this
regime, the heat transport can both increase and decrease with increasing rotation rate
(increasing 1/Ro) (see e.g. Stevens, Clercx & Lohse 2010; Zhong & Ahlers 2010; Weiss &
Ahlers 2011a; Weiss, Wei & Ahlers 2016). The increase (most significant for large Pr) is
attributed to Ekman pumping, which occurs in the vortices that form close to the top and
bottom boundaries when plumes emerge from the boundary layers and get twisted by the
Coriolis forces. At much larger rotation rates, Nu decreases monotonically with increasing
rotation rates (King et al. 2009). This is caused by the suppression of vertical velocity
gradients i.e. the Taylor–Proudmann effect (Taylor 1923) and thus a reduced advective
transport inside the bulk region. At constant Ra a critical rotation rate is reached when the
critical Rayleigh number for the onset of convection Rac exceeds Ra. Then convection is
completely suppressed (Chandrasekhar 1981) and heat transport is solely by conduction,
i.e. Nu = 1.

For fast rotation rates, geostrophic balance is reached, meaning that pressure gradients
are balanced by Coriolis forces (Holton 2004). Numerical simulations have found four
different flow morphologies in this regime (Julien et al. 2012b; Stellmach et al. 2014;
Plumley et al. 2016). These are (i) cellular convection, (ii) convective Taylor columns,
(iii) plumes and (iv) geostrophic turbulence. While cellular convection occurs at relatively
small Ra, geostrophic turbulence occurs at large Ra.

In particular in the geo- and astrophysical community, modelling the heat transport
under geostrophic conditions via scaling laws of the form Nu ∝ Raγ PrβEkα is of great
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importance. Finding good exponents γ and α, however, is challenging. While various
models that aim to predict γ and α have been proposed in the past (see e.g. Portegies
et al. 2008; King et al. 2009; King, Stellmach & Aurnou 2012; Julien et al. 2012a), they
cannot easily be verified or falsified due to the rather small range of geostrophic turbulence
that can be achieved in simulations and laboratory experiments. To reach geostrophic
turbulence one needs strong thermal driving (large Ra) and fast rotation so that Coriolis
forces dominate the flow over buoyancy (small Ro). While large Ra can be achieved in
experiments easily, the rotation rates are limited by unwanted centrifugal forces that occur
in large cylindrical cells (for an overview of experiments and a related discussion see
Cheng et al. 2018). Simulations are usually restricted by the strong turbulence that demand
high spatial and temporal resolution over many scales, which becomes computationally
very expensive at larger Ra. As a result, reliable direct numerical simulation (DNS) data
are available close to convection onset (Rac), but do not cover sufficiently large Ra ranges
in the turbulent regime, in particular when Ekman layers occur at the top and bottom due
to no-slip boundaries (see e.g. Stellmach et al. 2014; Plumley et al. 2016).

So far it is also not clear where transitions between different regimes are expected to
occur. In particular, at which rotation rates do Coriolis forces dominate over buoyancy?
Different propositions have been made for relevant mechanisms that consider either
properties of the bulk flow (e.g. Gilman 1977) or the dynamics in the boundary
layers (King et al. 2009; Julien et al. 2012b; Cheng et al. 2018; Long et al. 2020).
Below, in § 3, where we discuss Nusselt number measurements, we will also compare
our measurements with proposed scalings in the geostrophic regime and regime
transitions.

While most theoretical models assume laterally infinite or periodic systems, in
experiments and many simulations on rotating RBC an upright cylinder is considered of
finite aspect ratio Γ = D/H between its diameter D and its height H and with adiabatic
no-slip sidewalls. It is known that the onset of convection (i.e. when Ra exceeds Rac)
in rotating RBC in finite Γ -containers occurs first at the lateral sidewall in the form of
travelling waves, so called wall modes (Buell & Catton 1983a,b; Goldstein et al. 1993;
Zhong, Ecke & Steinberg 1993; Goldstein et al. 1994; Bajaj, Ahlers & Pesch 2002). These
wall modes set in at significantly smaller Ra than the convection in the bulk or in an infinite
system. For sufficiently large rotation rates the onset of wall modes was calculated to occur
at Raw ∝ Ek−1 (Goldstein et al. 1993, 1994; Herrmann & Busse 1993; Kuo & Cross 1993;
Zhang & Liao 2009; Favier & Knobloch 2020).

The lateral sidewall not only plays an important role in convection close to the onset,
but also in the turbulent state. There, Stewartson layers form, in which fluid is pumped
from the top and bottom towards the midheight of the cell and from there into the bulk
(Stewartson 1957, 1966; Kunnen et al. 2011). In addition, another flow pattern has been
found recently, which develops very close to the lateral sidewall at sufficiently fast rotation
rates, termed the boundary zonal flow (BZF) (de Wit et al. 2020; Zhang et al. 2020). A
schematic of the BZF is shown in figure 4(a). This flow structure is characterised by a
narrow region close to the sidewall with a positive average azimuthal velocity (prograde)
that surrounds a core region with negative average azimuthal velocity (retrograde). Inside
this narrow region warm fluid rises on one side and cold fluid sinks on the other. The
temperature field is periodic with wavenumber Γ (Zhang, Ecke & Shishkina 2021) in the
azimuthal direction, and drifts in the retrograde direction. Within the BZF warm and cold
fluid is pumped in large areas from the bottom to the top and vice versa, causing the heat
flux there to be significantly larger than in the bulk. In fact, in Γ = 1/2 cells, more than
60 % of the heat is transported inside the BZF. The radial width of the BZF decreases with
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increasing rotation rates. In a recent study by Favier & Knobloch (2020) it was suggested
that the BZF is related to the wall modes close to convection onset, and originates out of
them via an Eckhaus-like instability.

In this paper we present a comprehensive analysis of global heat flux measurements
as well as of measurements of the temperature at different vertical and radial positions
for rotating RBC. We measure statistical properties of the temperature field, such
as probability density functions (PDFs), time-averaged values, standard deviations or
skewness as a function of the radial and vertical coordinates, Ra, and 1/Ro. In particular,
we see qualitative differences between these quantities when measured inside the BZF and
when measured in the radial bulk.

The paper is structured as follows. In the next section we explain the details of
our experimental set-up. Section 3 reports on measurements of the Nusselt number for
different Ra and 1/Ro. Section 4 discusses the structure and dynamics of the BZF based on
temperature measurements inside the sidewall. In § 5 we report on vertical profiles of the
time-averaged temperature, followed by a detailed analysis of the temperature fluctuations
in § 6. This analysis considers the entire PDF (§ 6.1) such as its standard deviation or its
skewness, since all these quantities help to determine the onset of the BZF. We close the
paper with a conclusion in § 7.

2. Experimental set-up

The experiments were conducted at the high pressure convection facility (HPCF) at the
Max-Planck-Institute for Dynamics and Self-Organization in Göttingen. The convection
cell has been described in detail before in previous publications (see e.g. Ahlers,
Funfschilling & Bodenschatz 2009a; Ahlers et al. 2012b). Here, we use the version
HPCF-II, which consists of a cylinder of height H = 2.24 m and a diameter D = 1.12 m,
resulting in an aspect ratio of Γ = D/H = 0.50. The sidewall of the cylinder was made of
a 9.5 mm thick acrylic. The top and bottom plates were made of high-purity copper with
a heat conductivity of 394 W m−1 K−1. The bottom plate consisted of two such copper
plates (35 mm and 25 mm thick), separated by a 5 mm thin Lexan plate in between. The
temperature drop across the Lexan plate was used to determine the vertical heat flux.

The bottom plate was heated with an ohmic heater at its bottom side, whereas the top
plate was cooled using a circulated water bath which was temperature controlled with a
precision of 0.02 K. Thermal shields underneath the bottom plate and around the sidewall
ensured minimal heat loss through the bottom and the sides. Additional micro-shields
close to the boundary layers at top and bottom aimed to reduce the heat transport through
the sidewall close to the vertical boundaries (Ahlers 2000; Stevens, Lohse & Verzicco
2014).

The cell was mounted on a rotating table that could sustain an axial load up to
2800 kg. The table was driven by a direct drive motor (Siemens 1FW6150 SIMOTICS
T Torque-motor), which could deliver a torque of up to 1000 Nm even at very low
rotation rates (down to 1 rad min−1), ensuring very smooth rotation even at such low
speeds. Water feed-through and electrical slip rings were used to bring the coolant as
well as electrical connections from the laboratory into the rotating frame. The maximal
rotation rate in our experiment was 2 rad s−1 to keep the influence of the centrifugal forces
small. The maximal Froude number Fr = Ω2D/g (with D = HΓ ) in our experiment
did not exceed the value of Frc = 0.5 below which the influence of centrifugal forces
is expected to be small compared to Coriolis forces and where their influence on
the flow field and the heat transport are expected to be not significant (see Horn &
Aurnou 2018, 2019).
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Figure 1. (a) Radial and azimuthal positions of the thermistors. (b) Vertical and azimuthal position of the
thermistors. The black open circles mark thermistors that are embedded inside the acrylic sidewall. Filled
circles mark thermistors inside the fluid. The colour code reflects the radial position according to the legend
given in (b).

Run P (bar) �T (K) Pr Ra 1/Ro Ek Tm (◦C) Working gas

E1a 1.0 7.0 0.718 7.7 × 109 0–13.0 ≥1.5 × 10−6 25.0 N2
E1b 1.0 9.6 0.718 1.0 × 1010 0–11.1 ≥1.5 × 10−6 25.0 N2
E1c 1.0 19.2 0.718 2.1 × 1010 0–7.9 ≥1.5 × 10−6 24.8 N2
E2a 0.9 5.0 0.784 2.0 × 1011 0–15.1 ≥2.6 × 10−7 22.0 SF6
E2b 1.3 11.6 0.786 1.0 × 1012 0–9.9 ≥1.8 × 10−7 22.0 SF6
E2c 5.0 5.0 0.804 8.4 × 1012 0–10.4 ≥5.9 × 10−8 22.0 SF6
E2d 5.0 15.0 0.804 2.5 × 1013 0–6.0 ≥6.0 × 10−8 22.0 SF6
E2e 10.0 5.0 0.836 4.9 × 1013 0–10.4 ≥2.1 × 10−8 22.0 SF6
E2f 10.0 8.0 0.836 7.8 × 1013 0–12.2 ≥3.0 × 10−8 22.0 SF6
E2g 10.0 15.0 0.836 1.5 × 1014 0–7.1 ≥2.1 × 10−8 22.0 SF6
E2h 17.8 5.0 0.941 3.9 × 1014 0–9.2 ≥1.1 × 10−8 22.0 SF6
E2i 18.7 5.0 0.966 5.1 × 1014 0–6.1 ≥1.4 × 10−8 22.0 SF6
E2j 18.7 8.0 0.966 8.0 × 1014 0–4.9 ≥1.4 × 10−8 22.0 SF6
E2k 17.8 10.0 0.941 8.0 × 1014 0–6.5 ≥1.1 × 10−8 22.0 SF6

Table 1. Overview of the conducted experiments. The U-Boot temperature TU was close to the mean
temperature Tm = (Tt + Tb)/2, i.e. Tm − TU < 3.0 K, for all measurements.

The rotating table and cell were installed into the U-Boot of Göttingen, a 4 m long and
up to 4.3 m high pressure vessel (see Ahlers et al. 2009a), which can be filled with nitrogen
or sulphur hexafluoride (SF6). The pressure inside the U-Boot could be increased to 19 bar.

Next to the vertical heat flux, we also measured temperatures at various locations inside
the sidewall and the fluid. For this, three rows of thermistors were placed into blind holes
inside the sidewall at heights H/4, H/2 and 3H/4. Each row consists of eight thermistors
distributed azimuthally at equal distance. An additional 62 thermistors were arranged in
vertical columns close to the sidewall. An overview of the radial and azimuthal locations
of these thermistors is given in figure 1.

During a typical experiment, the rotation rate Ω , as well as Tb and Tt were held constant
while thermistors were read out every 5 s. Experiments lasted at least 12 h, while the first
2 h were discarded during which Tb and Tt settled to their desired values. We conducted
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various sets of experiments, with constant Ra and different 1/Ro by changing the rotation
rate Ω . Experiments with SF6 were also conducted for different pressures, causing a
change of Pr from 0.78 (at 1 bar) to 0.97 (at 19 bar). While the U-Boot temperature TU
was found to have only little impact on the results, we, however, kept it close to the mean
temperature Tm = (Tb + Tt)/2. A list of measurements is given in table 1.

Often in this paper, whenever we are investigating how certain quantities change under
the influence of rotation at constant Ra, we present data from run E2e with Ra = 4.9 ×
1013. There is nothing special about this run, except that its Rayleigh number is somewhere
in the middle of all Rayleigh numbers.

3. Nusselt number measurements

We have conducted heat flux measurements for a rather large range of Ra and 1/Ro. The
measurements without rotation are in good agreement with previous measurements in a
similar set-up (Ahlers et al. 2012b), and follow a power law relation of Nu(1/Ro = 0) ∝
Ra0.314 (see supplemental material available at https://doi.org/10.1017/jfm.2020.1149).
Since we are predominantly interested in the effect of rotation on the heat transport,
we show in figure 2 the normalised Nusselt number Nu/Nu0 = Nu(1/Ro)/Nu(0) as a
function of the dimensionless rotation rate, i.e. the inverse Rossby number (1/Ro). As
clearly seen in figure 2(a), the data for different Ra collapse rather well over the entire
1/Ro range. Looking at the data, one can distinguish three different 1/Ro regimes, with
different monotonic behaviours of Nu/Nu0 in each of them. (i) For 1/Ro � (1/Ro∗

1 = 0.8),
Nu/Nu0 is rather constant and close to unity, i.e. rotation has barely any effect on the
vertical heat transport. (ii) For 0.8 � 1/Ro � 4.0, Nu/Nu0 decreases with increasing 1/Ro.
(iii) In the range (1/Ro∗

2 = 4.0) � 1/Ro, Nu/Nu0 decreases strongly with 1/Ro revealing
a fitted exponent of the power law Nu/Nu0 ∝ 1/Roβ of β = −0.43 ± 0.02. It seems clear
that in regime (i) the flow is dominated by the action of buoyancy, while in regime (iii)
rotation and the occurring Coriolis forces cause a suppression of vertical fluid motion
and hence of vertical convective heat transport (i.e. the Taylor–Proudman effect). While
model predictions based on scaling estimates predict power law relationships between
Nu/Nu0 and 1/Ro we note that a logarithmic function appears to fit the data in regime (iii)
slightly better (green dash-dotted line in figure 2(a), Nu/Nu0 ∝ log((0.015 ± 0.002)/Ro)).
Furthermore, we note that in regime (iii) the data points for larger Ra are slightly above
those for smaller Ra. While the difference is within the margin of uncertainty of the Nu0
measurements of approximately 1 %–2 % or so, we cannot exclude a Ra-dependency. A
possible explanation could be the increasing influence of centrifugal forces. Data points at
larger Ra have also larger Fr at the same 1/Ro. However, one then would also observe
a slight temperature decrease at the sidewall at midheight, which we did not observe
(figure 7).

While we do not see any sign of heat transport enhancement in our measurements, we
nevertheless want to estimate at which 1/Ro such an enhancement is expected to occur from
previous measurements and how this compares with our transitional rotation rates 1/Ro∗

1
and 1/Ro∗

2. The critical inverse Rossby number for the onset of heat transport enhancement
(1/Roc) (see e.g. Zhong et al. 2009; Weiss et al. 2016) depends on the aspect ratio of the
convection cylinder Γ (Weiss et al. 2010). For example, for Γ = 0.5, 1/Roc = 0.8 was
measured for water as the working fluid (Pr = 4.38). Indeed, this value is quite close to
our first transition from regime (i) to the intermediate regime (ii). However, we learnt from
previous measurements in cylinders of Γ = 1 that 1/Roc increases with decreasing Pr.
In Weiss et al. (2016), an empirical power law fit of 1/Roc = K1Prα was determined with
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Figure 2. (a) Semi-logarithmic plot of Nu/Nu0 as a function of 1/Ro. Different symbols mark different Ra as
given in the legend. The dashed vertical lines mark the approximate points of transition at 1/Ro∗

1 = 0.8 and
1/Ro∗

2 = 4.0. The dashed red and dot-dashed green lines are power law and logarithmic fits to the data in the
range 4 < 1/Ro. (b) Shows our data for the lowest Ra (solid blue circles, error bars mark the estimated 2 %
uncertainty) in comparison with experimental and numerical results by others. Filled red squares are results
measurements in helium (Pr = 0.7) at Ra = 6.2 × 109 (Ecke & Niemela 2014). Open down-pointing black
triangles are results from DNS for Ra = 109, Pr = 0.8 (Horn & Shishkina 2015). Orange stars mark most
recent results for Ra = 109 (Zhang et al. 2021). Dotted vertical lines display the estimated critical Rossby
number 1/Roc,est (from Weiss et al. 2010) and two transition points 1/Rot and 1/RoT from Ecke & Niemela
(2014).

K1 = 0.75 and α = −0.41. While it is unclear how α and K1 depend on Γ , we know that
1/Roc = a/Γ (1 + b/Γ ) for Pr = 4.38 with a = 0.381 and b = 0.061 (Weiss et al. 2010).
Therefore, one could combine the 1/Roc-dependency of Pr and Γ to

1
Roc

= K1Prα

1 + b
1
Γ

(1 + b/Γ ). (3.1)

This rather rough estimate results for our experiments with Γ = 0.5 and Pr = 0.8
in 1/Roc,est = 1.74. This value is somewhere in between 1/Ro∗

1 and 1/Ro∗
2 in the

intermediate regime (ii). Neither in the heat transport measurements (figure 2) nor in the
local temperature measurements (e.g. figure 8) can any significant changes be observed
at this 1/Ro. This suggests that the mechanisms leading to a heat transport enhancement
for larger Pr, like Ekman pumping, are absent for Pr < 1 and are not just counteracted by
suppression of vertical velocity.

In figure 2(b), we compare our results with other studies that have been conducted in
a similar Pr- and Ra-range. As shown, the general trend of our data (blue bullets) agrees
well with other results. Quantitative agreement also exists for small and large 1/Ro with the
results from cryogenic helium experiments by Ecke & Niemela (2014) (red solid squares)
and with DNS at Ra = 109 (Horn & Shishkina 2015). For intermediate 1/Ro, however,
our heat flux measurements are slightly smaller than those of Ecke & Niemela (2014) and
Horn & Shishkina (2015). In fact, Ecke & Niemela (2014) and Horn & Shishkina (2015)
observe a very small heat transport enhancement. This might, however, also be within
the margin of uncertainty. The enhancement for the black triangles (Horn & Shishkina
2015) is for example only seen in a single data point. Furthermore, no heat transport
enhancement is observed in the most recent simulations by Zhang et al. (2021), where
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Rotating turbulent thermal convection at very large Ra

finer computational grids were used and the DNS data were collected for much longer
than in Horn & Shishkina (2015).

A major goal in research on rotating turbulent convection is to find simple scaling
relationships in the regime of geostrophic turbulence, i.e. where Coriolis forces balance
horizontal pressure gradients but the flow is still highly turbulent. It is generally difficult
to achieve this regime in experiments as both the Rayleigh- and the inverse Rossby number
need to be very large.

However, we also note that there are no obvious reasons for the collapse of different
Ra-measurements, and various other scaling laws have been proposed in the past for the
geostrophic turbulent regime. In the following, we aim to test some of them. In the limit of
strong rotation (Ek → 0) the critical Rayleigh number Rac for the onset of convection (for
an infinitely large container) increases according to Rac ∝ Ek−4/3 (Chandrasekhar 1981).
Thus, it is useful to consider RaEk4/3 as a control parameter. Geostrophic turbulence is
expected for RaEk4/3 	 1 and it is argued by Julien et al. (2012a) that RaEk4/3 is the only
relevant parameter and therefore the relation Nu ∝ (RaEk4/3)α was proposed.

In figure 3(a), we plot Nu as a function of RaEk4/3. The Nu-data in this representation
do not collapse. While they are not expected to collapse for large RaEk4/3, the data all
bend down if RaEk4/3 decreases and they might collapse for smaller values that were
not achievable in our experimental set-up without entering the regime where centrifugal
forces start to play a significant role. We plot as solid and dashed lines results from DNS of
the full equation and of the asymptotic quasi-geostrophic model by Plumley et al. (2016).
While our data are in a completely different range of RaEk4/3 we see that they do not
contradict the data by Plumley et al. (2016). However, it also hints that our measurements
might still be far away from the geostrophic turbulent regime.

A good collapse of the Nu/Nu0-data was found by Ecke & Niemela (2014) when plotted
against Ra/Ek7/4. This control parameter was suggested by King et al. (2009, 2012), who
proposed that the transition between the buoyancy-dominated and the rotation-dominated
regime occurs when the thermal boundary layer and the Ekman boundary layer are of
equal thickness. We therefore plot our data points in such a way in figure 3(b). We see
in this plot that data taken with N2 as a working fluid collapse very well for different Ra
and data for SF6 also collapse decently well for larger Ra. However, the N2 data do not
collapse with the SF6 data. The reason for this mismatch is unclear as both Ra and Pr
are different for the two datasets, but also both change within each of the data sets. In
particular, Pr ≈ 0.72 for N2 while 0.8 < Pr < 0.97 for SF6, and thus it is unlikely that
the different Pr values are causing this mismatch. One of course gets a better collapse
when the exponent of Ek is increased to 2, which results in figure 2 since RaEk2 ∝ Ro2.
We also want to note that RaEk7/4 assumes a scaling for the non-rotating case of Nu ∝
Ra2/7. In our case the Ra-exponent is larger (Nu ∝ Ra0.31), which would in fact result in
a control parameter with an even smaller Ek-exponent (RaEk1.6) and consequently in a
worse collapse. Furthermore, the same RaEk8/5 should collapse the transition from the
rotation-dominated regime to the buoyancy-dominated regime according to Julien et al.
(2012a), which is when the geostrophic balance breaks down in the thermal boundary
layer. We note that in simulations of convection in a spherical geometry using RaEk8/5

has in fact collapsed the data for different Ra and Ek quite well, however, at significantly
smaller Ra (Long et al. 2020).

As just mentioned, RaEk4/3 was proposed as a control parameter, because the Rac for
the onset of convection under rotation increases as Ek−4/3. This, however, is only true for
a container with an infinite aspect ratio Γ . For any cylinders with finite Γ , convection
occurs at much smaller Ra close to the sidewall in the form of periodic wall modes, while
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Figure 3. Heat transport (Nu) as a function of buoyancy (Ra) and Coriolis forces (Ek). The legend in (b) is
valid for all panels. (a) Value of Nu as function of RaEk4/3 for various Ra. The red dashed line is a power law
with exponent 3, which was found for small RaEk4/3 by Plumley et al. (2016). The solid green line is a power
law with exponent 3/2 as found for large values of RaEk4/3 by Plumley et al. (2016). Green triangles are results
from DNS by Plumley et al. (2016) for constant Ek. The coefficients are chosen such that the intersection of both
power laws happens at approximately RaEk4/3 = 30 with Nu = 15 as estimated from figure 2 of Plumley et al.
(2016). (b) Value of Nu/Nu0 as a function of RaEk1.75 as suggested in Ecke & Niemela (2014). (c) Value of Nu as
a function of RaEk. Colours are the same as in the legend in (b). Open symbols are data with 1/Ro < 4. Solid
symbols mark 1/Ro ≥ 4. The solid green line represents a power law with exponent 0.62 that was gained from
a fit to all data with 1/Ro ≥ 4. (d) Nusselt number compensated by Ra0.54Ek0.46, i.e. the exponents calculated
from a two-dimensional fit to all data with 1/Ro ≥ 4 (solid points). Symbols as in (c).

no convection occurs in the radial bulk. However, these wall modes already transport heat
and one might argue that one should rather compare Ra with its critical value for the
onset of wall modes (Raw). (In fact this suggestion was made by one of the anonymous
referees of this paper, to whom we are grateful.) It has been shown (Herrmann & Busse
1993; Kuo & Cross 1993) that for asymptotically small Ek the critical value scales as
Raw ∝ Ek−1, i.e. it increases slower with increasing rotation rate than for the laterally
infinite case.

We therefore plot in figure 3(c) Nu as a function of RaEk. The data in this representation
qualitatively look similar to figure 3(a), but the data for sufficiently large rotation rates
(filled symbols mark data with 1/Ro ≥ 4) seem to follow a power law better. The best fit
(green line in figure 3c) gives Nu ∝ (RaEk)0.62. This is quite remarkable and suggests that
(i) the influence of the wall is strong, even in the turbulent regime and that mechanisms
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Rotating turbulent thermal convection at very large Ra

leading to wall modes at onset prevail also in the highly turbulent regime, perhaps as BZF
(see also Favier & Knobloch 2020). It also suggests that (ii) these near wall flow structures
(the BZF) play a crucial role for the global heat transport, an observation that has been
confirmed by DNS already (Zhang et al. 2020, 2021).

While the proposed scalings discussed here were based to some extent on physical
scaling arguments, it certainly would be interesting to determine the best exponents from a
two-dimensional fit of the form Nu ∝ RaaEkb to the data. We have done this by using only
data with sufficiently large rotation rates (1/Ro ≥ 4). The best fit results in a = 0.54 and
b = 0.46. We note that these values are subject to a rather large uncertainty, as there is no
very localised narrow minimum in the residuals. Instead, there is a long extended minima
valley, such that combinations of a and b with b = 0.85a provide equally good fits (see
figure 2 in the supplemental material).

We plot compensated values of Nu in figure 3(d) so that data following this relation lie
on a horizontal line. Although the data (solid bullets) are rather close to each other on
the vertical scale over two decades on the x-axis, they do show clear deviations for each
individual Ra-dataset, which suggests that some other exponents would have been fitted
if additional measurements at even larger rotation rates (smaller Ek) would have been
available.

4. The dynamics and strength of the BZF

Most of our measurements here need to be interpreted in light of the previously discovered
BZF (de Wit et al. 2020; Zhang et al. 2020). In order to remind the reader, we show
in figure 4(a) a schematic based on a projection of simulated temperature data onto the
sidewall. In a narrow region close to the sidewall the azimuthal warm fluid rises on one
side and sinks on the opposite side. We want to point out that, in fact, the wavenumber
of this periodicity is k = 2Γ , so that in a Γ = 1 cell, there are two areas of warm upflow
separated by two cold downflow regions (Zhang et al. 2021). While the time-averaged
azimuthal velocity in this thin region is positive (prograde), the warm–cold structure itself
drifts in the negative (retrograde) direction, as observed in simulations (figure 4(b) and
Zhang et al. 2020).

While simulations provide a very detailed view of the temperature structure, in the
experiments we can make significantly longer observations for better statistics. For
this, we analyse measurements that are taken inside the cylindrical plastic sidewall
at heights z = H/4, H/2 and 3H/4 and at 8 equally spaced azimuthal positions θ =
(0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4). The structure of the BZF can be seen well
in figure 4(c), where the temperature (colour code) measured at z = H/2 is plotted as a
function of the azimuthal position (x-axis) and time (y-axis). The time span plotted here
corresponds to approximately 8 min. Albeit the spatial resolution is significantly smaller
than in the simulation (figure 4b), one clearly sees the signature of the BZF, namely a
mode k = 1 wave with warm temperature on one side of the cell and cold temperature
on the opposite side. In particular, we see here that the temperature structure drifts in the
azimuthal direction with negative drift rate ∂θm/∂t < 0, where θm is the azimuthal location
of the warmest temperature, as defined below in (4.1).

Because the BZF in our Γ = 1/2 cell has an azimuthal wavenumber of k = 1, we can
analyse it in the same way as large-scale circulation is usually analysed for the non-rotating
(see e.g. Verzicco & Camussi 2003; Brown & Ahlers 2007; Weiss & Ahlers 2011c) and
rotating systems (Zhong & Ahlers 2010; Weiss & Ahlers 2011b). For this, we fit for every
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Figure 4. (a) Schematic of the BZF. Top and bottom show the average azimuthal velocity, the sidewall is colour
coded with a snapshot of the simulated fluid temperature. The schematic was created using simulation results
that were published already in Zhang et al. (2020). The black circle marks the circumference at midheight,
at which temperature was measured and plotted against time in (b). (b) Simulated dimensionless temperature
at r = R and z = 0.5H as a function of time for Ra = 109 and 1/Ro = 10 (adapted from Zhang et al. 2020).
(c) Azimuthal temperature distribution for Ra = 4.9 × 1013, 1/Ro = 9.18, r/R = 1.0, z/H = 0.5 as a function
of time. (d) Temperature distribution as a function of the azimuthal angle (blue bullets) and a fit of (4.1) to the
data (red solid line). Conditions are as in (c). The fitted parameters θm and δm are also marked by a solid vertical
line and a down-pointing arrow. Note that for both plots we plot the temperature at θ = 0 also for θ = 2π for a
better visual appearance.

measurement in time a harmonic function

Ti,j = Tw,j + δj cos
(

iπ
4

− θj

)
, i = 0, . . . , 7, (4.1)

to the data. Here the index i denotes the azimuthal position, and j stands for the vertical
position and takes indices j = (‘b’, ‘m’, ‘t’), corresponding to the vertical locations z =
(H/4, H/2, 3H/4). The fit parameters are the azimuthally averaged wall temperature Tw,j,
the amplitude δj and the orientation θj. An example of the data and the corresponding fit is
shown in figure 4(d). Note that this approach works for both analysing the LSC for small
rotation rates as well as analysing the BZF for larger rotation rates. In the following, we
will only focus on the dynamics of the azimuthal orientations θj. The average temperature
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Figure 5. (a) Azimuthal orientation of the LSC (for small 1/Ro) and the BZF (for large 1/Ro) as a function
of time for Ra = 4.9 × 1013 (run E2e) and various 1/Ro. (b) The average azimuthal drift velocity ωt,m,b/Ω for
heights z/H = 0.75 (blue circles), z/H = 0.5 (green diamonds) and z/H = 0.25 (red squares). (c) The average
azimuthal drift velocity ωm/Ω as a function of 1/Ro and for various Ra (see legend). Horizontal dashed lines
mark ωm/Ω = 0. The vertical dashed lines mark 1/Ro∗

1 and 1/Ro∗
2. (d) Same data as in (c) multiplied by

−1, only shown for 1/Ro > 1 and plotted in a double-logarithmic plot. The black lines mark power laws with
exponents −3/4 and −5/3 for comparison.

Tw,j will be discussed later in § 5. The amplitudes δj are well reflected in measurements of
d (see § 6.1) and σ (see § 6.2) and therefore will also not be discussed now.

4.1. The azimuthal drift of the BZF
Figure 5(a) shows the evolution of θm (at midheight) as a function of time. Here, we have
made θm continuous by adding or subtracting 2π whenever the difference θm(ti+1) − θm(ti)
at consecutive time steps was larger than π or smaller than −π, respectively. The data
plotted in this way show a nearly linear change of θm with time, indicating a monotonic
drift with fairly constant drift speed ωm = 〈∂θm/∂t〉t.

We already see here that the average drift velocity is a non-monotonic function of 1/Ro.
Even the direction of rotation changes with increasing 1/Ro. For very small 1/Ro ωm is
positive, which means that the observed structure rotates in the same direction (in the
rotating frame) as the convection cell, i.e. in the prograde or cyclonic direction. The value
of θm decreases with time for large 1/Ro, which suggest a retrograde or anticyclonic motion
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of the temperature structure in the region close to the sidewall. This anticyclonic movement
of the temperature field corresponds to the reported drift of the BZF in Zhang et al. (2020).

For a more quantitative analysis we calculate the average drift speed ω(b,m,t) as the
slope of a linear fit to θ(b,m,t). The result is plotted in figure 5(b). We see that, for
sufficiently small rotation rates (1/Ro < 1/Ro∗

1), there is a discrepancy between the drift
rates measured at heights H/4, H/2 and 3H/4. While ωb and ωt are almost zero, we see
a finite drift of the structure in positive (cyclonic) direction at the middle, i.e. ωm > 0.
With increasing 1/Ro also ωm increases and reaches a maximum at around 1/Ro ≈ 0.3 or
so, before it decreases again and reaches zero at 1/Ro ≈ 1/Ro∗

1. We note that differences
in the drift rates at the top and bottom compared to the midheight were also observed in
measurements in a Γ = 1/2 cell with water (Pr = 4.38) as the working fluid (Weiss &
Ahlers 2011b). There, however, a prograde rotation was observed at all three heights for
slow rotation that turned into a retrograde rotation for faster rotation rates.

What is measured for such small 1/Ro is not the BZF, but the structure of the LSC, which
is not a coherent structure close to the sidewall. Consider a large-scale circulation roll of
elliptical shape that lies diagonally inside the convection cell. Then, the fluid flows at
midheight on average towards the cell centre, and the Coriolis force causes an acceleration
of the azimuthal velocity, causing a cyclonic drift at midheight but no or only a very slow
drift at H/4 and 3H/4. The shape and strength of the LSC is clearly a function or Pr and
hence quantitative differences are expected for different Pr.

For 1/Ro > 1/Ro∗
1 the drifts ωj are the same for all heights and negative, i.e. in

anticyclonic direction, suggesting a vertical coherent temperature structure – the BZF.
With increasing rotation rate ωj decreases as well and reaches a minimum at 1/Ro ≈ 6. A
further increase in 1/Ro results again in an increase of ωj, so it reaches zero asymptotically.

We will now compare the effect of Ra on this observation. Therefore, we show in
figure 5(c) ωm, normalised with the rotation velocity of the convection cylinder Ω for
different Ra as a function of 1/Ro. First of all, we see that data for different Ra collapse
very well for large 1/Ro, but not so much for small 1/Ro. That is an initial cyclonic drift
(ωm/Ω > 0) for small 1/Ro turns into an anticyclonic drift ωm/Ω < 0 for large 1/Ro.
The 1/Ro where ωm/Ω = 0 is, albeit close to 1/Ro∗

1, smaller for larger Ra. A similar
Ra-dependency has also been observed in previous experiments with water (Pr = 4.38)
(Weiss & Ahlers 2011b). For larger 1/Ro, ωm/Ω reaches again a minimum and then
increases asymptotically to zero.

The collapse of different Ra-data for sufficiently large 1/Ro occurs when the BZF is
present, which suggests that the drift rate of the BZF (ωm) is for a given 1/Ro proportional
to Ω (or 1/Ek), but otherwise independent of Ra. We only cover nearly a decade in 1/Ro,
and therefore it is difficult to compare our data with scaling laws observed or predicted
by others. Nevertheless, we show in figure 5(d) the same data again (−ω/Ω) for large
1/Ro plotted in a double-log plot. In this logarithmic representation of −ω/Ω , small
dependencies of Ra become visible at the largest 1/Ro. We note, however, that also Pr
varies slightly and hence it is unclear whether the variations in ω/Ω are caused by Ra or
Pr.

In this representation, no single scaling over the entire shown 1/Ro-range is visible.
For 2 � 1/Ro � 7 the data seem to follow ∝ (1/Ro)−3/4 or so. For larger 1/Ro data
for different Ra seem to diverge slightly and show a larger negative exponent. We note
that Zhang et al. (2021) observed a normalised BZF drift rate of ω/Ω ∝ 1/Ro−5/3,
which is not too far from the small-Ra data at larger 1/Ro. We further note that in a
recent measurement in slender cylinders (Γ = 0.2) at Pr = 5.2 (de Wit et al. 2020) a
relation ωscH2/ν = 6 × Ra1.16 was measured, however, at constant Ek = 10−7. We cannot
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Figure 6. Azimuthal Fourier energy of the temperature measured at z/H = 0.5 for Ra = 2 × 1011 (a) and
Ra = 8 × 1014 (b). Horizontal dashed lines mark 1/Ro∗

1 and 1/Ro∗
2.

compare our data with their results, since their dependency on Ek is unknown. We note,
however, that a relation ωscH2/ν ∝ Ek3.32Ra1.16 would remove the Ra-dependency when
plotted as a function of 1/Ro. This in turn would then lead to ω/Ω ∝ (1/Ro)−2.32, which
is rather different to our data.

4.2. The azimuthal Fourier modes of the BZF
Fitting (4.1) to the thermistor measurements as described above also gives the amplitudes
δj, which we have not discussed so far. By fitting (4.1) to the 8 sidewall thermistors, we
gain with δj basically the energy in the first Fourier mode (E1). However, since we measure
the temperature at 8 azimuthal positions, we can also calculate the energy of the second,
third and fourth, Fourier modes, namely E2, E3 and E4.

Figure 6 shows the time average of the first four Fourier modes normalised with the
total spectral energy Etot = ∑4

n=1 En as a function of 1/Ro for Ra = 2 × 1011 (a) and Ra =
8 × 1014 (b). Up to a rotation rate of 1/Ro ≈ 1/Ro∗

2 the first mode E1 is significantly larger
than the others. This is due to the existence of the LSC for small 1/Ro and due to the BZF at
larger 1/Ro. However, it is interesting that E1/Etot reaches a local maximum pretty much
at 1/Ro∗

1. After that, it decreases slightly first, before it increases again with increasing
1/Ro. In experiments with water in a cell of Γ = 0.5 we have seen similarly a maximum
at 1/Ro ≈ 0.8 of E1/Etot (see figure 4a in Weiss & Ahlers 2011b).

We can only speculate, but it seems that E1 is enhanced right when the BZF starts to
appear and the LSC vanishes. The fact that we see the same feature for very different
Ra and Pr suggests that the transition of the LSC into the BZF only depends on 1/Ro.
For larger 1/Ro, say 1/Ro > 1/Ro∗

2, the first mode E1/Etot decreases for small Ra = 2 ×
1011, while for Ra = 8 × 1014 it continues to increase. This is in accordance with the
behaviour of the standard deviation σ shown in figure 15. This finding is a bit puzzling.
While the decreases of E1/Etot suggests that the BZF only exists in a finite 1/Ro-range,
which depends on Ra, we in fact know from simulation (Zhang et al. 2020) that the size
of the BZF layer δBZF is expected to slightly decrease with Ra at a fixed 1/Ro following
δBZF ∝ Ra−0.08Ro0.66. Since it seems reasonable to believe that the pumping efficiency
inside the BZF decreases with decreasing thickness δBZF one would expect the decrease
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of E1/Etot to appear at smaller 1/Ro for the larger Ra, i.e. the opposite to what is observed
in the measurements.

5. Mean temperature profiles

As shown in figure 1, 62 thermistors were installed inside the cell, predominantly close
to the sidewall, to acquire vertical temperature profiles. We now want to analyse these
data and see how the vertical temperature profiles as well as fluctuations change as a
function of 1/Ro. We note that the thermal and viscous boundary layers close to the top
and bottom plates are only of the order of a millimetre or less and are not resolved in these
measurements. Data presented here thus are measurements in the (vertical) bulk region.

Before we discuss the effect of rotation on the vertical temperature profiles, we quickly
recapitulate what is known for the non-rotating case. It has been shown by Ahlers et al.
(2012a) and Ahlers, Bodenschatz & He (2014) that the vertical temperature profile close
to the sidewall can be well approximated by a logarithmic function of the form

Θ(z) = −ab ln (2z/H) + bb for z < H/2, (5.1)

Θ(z) = at ln (1 − 2z/H) + bt for z > H/2, (5.2)

where Θ(z) denotes the normalised temperature

Θ = 〈T〉 − Tm

�T
, (5.3)

with 〈· · · 〉 denoting the time average over an entire run.
The logarithmic slope of the temperature profiles, i.e. the coefficients at,b, decrease with

Ra following a power law of at,b ∝ Ra−η, where η depends on the radial position. Our
measurements were conducted with the same cell that was used for the comprehensive
investigation of the vertical temperature profile (Ahlers et al. 2014) and our measurements
for the non-rotating case are in accordance with those reported in Ahlers et al. (2014).

Figure 7 shows Θ as a function of z very close to the sidewall at radial distance
r = 0.98R, for Ra = 4.9 × 1013 and different 1/Ro. While the solid lines in figure 7(a)
are just guides to the eyes, we show the same data in figure 7(b) plotted against a
logarithmically scaled x-axis, and see that the data indeed follow straight lines for all
rotation rates. This indicates that, also under rotation, the vertical temperature profiles are
well represented by a logarithmic function ((5.1) and (5.2)) over the measured vertical
distance, which is approximately a single order of magnitude. Furthermore, we see that
the profiles at the bottom and the top behave rather similarly, at least for the Ra plotted
here. The logarithmic temperature gradient increases with increasing rotation, which also
suggests that the temperature drop across the thin top and bottom boundary layers is
reduced with increasing rotation rate, an observations that is in accordance with previous
findings, such as, for instance, those by Julien et al. (2012b). The steeper temperature
gradient in the bulk is a result of suppressed vertical fluid motion due to Coriolis forces.
We also see that the temperature at midheight is close to the mean temperature Tm between
top and bottom plates. This is because non-OB effects are rather small in this particular
case as the temperature difference between bottom and top was only �T = 5 K and the
pressure was not too high (10 bar – run E2e). We note that non-OB effects in pressurised
gases are expected to lower the midheight temperature compared to Tm. The very same
effect would occur under the presence of centrifugal forces, which apparently also do not
play a significant role here.

912 A30-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
49

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1149


Rotating turbulent thermal convection at very large Ra

–0.15

–0.10

–0.05

0

0.05

0.10

0.15

–0.15

–0.10

–0.05

0

0.05

0.10

0.15

0 0.2 0.4 0.6 0.8 1.0 0.01 0.02 0.04 0.08 0.16 0.32 0.64

0.01 0.02 0.04 0.08 0.16 0.32 0.64

Θ

z/H

1/Ro = 0.0
1/Ro = 1.23
1/Ro = 3.06
1/Ro = 6.13
1/Ro = 9.18

z/H

1 – z/H

Top

Bottom

(a) (b)

Figure 7. (a) Reduced temperature Θ as a function of the vertical distance from the bottom plate for Ra =
4.9 × 1013 and various 1/Ro (see legend) and at radial position r/R = 0.98. (b) The same data plotted against
z/H (bottom x-axis) and against 1 − z/H (top x-axis). The top and bottom x-axes are both logarithmically
scaled. In this way we can compare measurements from the bottom half of the cell with measurements from
the top half of the cell. The solid lines in (a,b) are logarithmic fits of ((5.1) and (5.2)) to the data. The vertical
dotted line marks z = H/2.

Figure 8 shows the logarithmic slope ab as a function of 1/Ro for data taken at r/R =
0.98. We have seen already in figure 7 that, with increasing rotation, the coefficient at (ab)
increases. In figure 8(a), we see that the change of the logarithmic slope a with 1/Ro is
not the same for all 1/Ro. Instead, a for small 1/Ro remains rather constant, but increases
for larger 1/Ro. The transition between these two regimes coincides approximately with
1/Ro∗

1. The increase of at (ab) is well approximated for large 1/Ro by a power law at,b ∝
1/Roε, with exponents ε = 0.51 ± 0.02 and 0.50 ± 0.02 for both top and bottom halves
of the cell, respectively. The fact that this exponent resembles a pitchfork bifurcation is
merely a coincidence for the particular case of Ra = 4.9 × 1013. We will see below that
the exponent actually depends on Ra.

In figure 8(b) we show how the offset parameters bt and bb change with increasing 1/Ro.
From (5.1) and (5.2) we see that bt,b give us the fitted temperature at midheight (z = H/2).
Since in the ideal OB case it is θ(H/2) = 0, the bt,b mark whether the fits overshoots or
undershoots this value, and hence also contain information on the relative slope of the
temperature profile at the top and the bottom compared to the temperature gradient at
midheight. For the ideal OB case, we expect bb and bt to have opposite signs. For a better
comparison, we thus plot in figure 8(b) bt and −bb as functions of 1/Ro.

We see that bt is positive and bb is negative for all 1/Ro, denoting that the logarithmic
fits undershoot slightly the temperature at z = H/2. Furthermore, we see that there is an
asymmetry between the bottom and the top. For small 1/Ro bt is considerably smaller
than bb. This discrepancy might be due to small non-OB effects, or imperfections in the
experimental set-up that destroy the up–down symmetry of the system. While bt is rather
constant for 1/Ro < 1/Ro∗

1, it increases for 1/Ro > 1/Ro∗
1. This trend is also visible for

bb, albeit much weaker.
In general, the fit of (5.1) and (5.2) to the data returns small residuals for not too

large rotation rates, i.e. 1/Ro � 8. For larger 1/Ro the vertical temperature profile starts
to deviate from a logarithmic profile consistently, as shown in figure 8(b). We further
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Figure 8. (a) Log slope for the top at and the bottom ab as a function of 1/Ro for Ra = 4.9 × 1013 for
measurements close to the sidewall at r/R = 0.98. Dotted vertical lines mark 1/Ro∗

1 and 1/Ro∗
2. Fitted dotted

lines show at ∼ 1/Ro0.51, ab ∼ 1/Ro0.50 for 1/Ro > 1/Ro∗
1 = 0.8. (b) Fit parameters bt and −bb as a function

of 1/Ro for the bottom (red squares) and the top (blue bullets) part of the cell in log–log representation. The
error bars mark the uncertainty of the fit value.

note that the residuals are in general larger at the cold top part of the cell than in the warm
lower part. However, for sufficiently fast rotation (1/Ro � 1/Ro ≈ 8), the residuals at both
locations merge and increase consistently.

To compare measurements at different Ra, we show in figure 9(a) the logarithmic slopes
normalised with their corresponding values without rotation (i.e. at(1/Ro)/at(0)) as a
function of the rotation rate 1/Ro. In this way, we can compare the change of the vertical
profile for different Ra. We see in this log–log representation that the onset of the at
enhancement occurs at around 1/Ro∗

1 for all Ra. The increase of at for 1/Ro > 1/Ro∗
1

is stronger for larger Ra. This comes as a surprise, since the change in Nu seems rather
independent of Ra. Moreover, from figure 2, the Nu-reduction with Ra seems to be slightly
smaller for larger Ra. We note in this context that the local effective heat conductivity
is inversely proportional to the local vertical temperature gradient λeff = q/(�T/�z). In
particular, for larger Ra the slope increase can be well approximated using a power law
with a Ra-dependent exponent of the form at(1/Ro)/at(0) = Ka × (1/Ro)η(Ra), such that
all data collapse. The fitted exponents η are plotted as functions of Ra in the inset of
figure 9(b) on a semi-logarithmic plot.

We note that, in this representation, the data for η do not follow a straight line. In
particular, the decrease of η is stronger with decreasing Ra than a logarithmic function
would suggest. However, as can be seen in figure 9(a), the normalised slopes deviate from
the power law particularly strongly for small Ra and thus the uncertainty of η is also
large for these data points. However, a function η = 0.031 ln(Ra) − 0.45 represents the
data decently well (black line in the inset in figure 9b) and therefore all data at/at(0)

collapse onto a single master curve when plotted as a function of (1/Ro)η(Ra). At this
point, these findings are purely empirical, but they hopefully can be used to compare with
other measurements, DNS or theoretical models.

From measurements in the non-rotating system (Ahlers et al. 2014) we know that the
logarithmic slope of the vertical temperature profiles increases with increasing radial
distance from the centre line r/R. This is not surprising, since at least for the non-rotating
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Figure 9. (a) Normalised logarithmic slope at(1/Ro)/at(0) as a function of 1/Ro on a log–log plot for various
Ra. The dashed straight lines are power law fits of the form at/at(0) = 0.0086 × (1/Ro)η(Ra). Fits were done
to the data points with 1/Ro > 3. The vertical dashed lines mark 1/Ro∗

1 and 1/Ro∗
2. (b) The inset shows the

fitted η as a function of Ra on a semi-log plot. The black solid line is the function 0.031 ln(Ra) − 0.46, which
represents the data decently well. With this, the data plotted in (a) collapse onto a single master curve in (b).
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Figure 10. (a) Change of ab as a function of 1/Ro for four different radial locations and Ra = 4.9 × 1013. The
black dashed line is a fit of a power law at ∝ 1/Roε to all data for 1/Ro > 3, resulting in ε = 0.63. Thin dotted
vertical lines show 1/Ro∗

1 and 1/Ro∗
2. (b) The offset bb as a function of 1/Ro for different radial positions.

Symbols are as in (a).

case vertical fluid motion and hence vertical fluid transport close to the sidewall are
reduced. In figure 10(a) we show how ab changes with 1/Ro at different r/R. For small
rotation rates (1/Ro < 1/Ro∗

1), similar to the non-rotating case, the ab measured closest to
the radial centre (r/R = 0.73) have the smallest values and increase with radial distance.
It is interesting, however, that ab in this regime is not affected by a change of 1/Ro for
r/R = 0.98 and r/R = 0.96, very little for r/R = 0.93 but it changes increasingly for
r/R = 0.73. As a result, the ab for different radial distances are getting closer to each other
with increasing 1/Ro and finally, somewhere before 1/Ro∗

2, collapse on a single power law
curve of the form ab ∝ (1/Ro)0.63 (for Ra = 4.9 × 1013), so that ab is independent of the
radial location.
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A similar behaviour is observed for the offset bb shown in figure 10(b). Although the
data are more scattered, the values for different r/R differ for 1/Ro < 1/Ro∗

1, but are
getting closer for larger 1/Ro. This behaviour suggests that a radial symmetry, which is
broken by the LSC in the non-rotating case, is gradually being restored in the rotating
case. This is quite surprising. As we will discuss in the next section, close to the wall
(r/R = 0.98, 0.96 and 0.93) the temperature and velocity fields are dominated by the
BZF and one would expect to see a different average temperature field there and in the
radial bulk (r/R = 0.73). It might be that, due to Coriolis forces under rotation, mixing
in the horizontal direction is much more effective and thus faster compared to the vertical
transport of warm and cold fluid, or in other words, the eddy diffusion time scales in the
vertical direction are much smaller than those in horizontal direction. Therefore, vertical
temperature gradients increase and horizontal temperature gradients must decrease with
increasing rotation rates. Thus, even though the temperature and flow fields are different
in the BZF and the radial bulk, the time-averaged temperatures are surprisingly similar.

6. Temperature fluctuations

6.1. The full PDF of the temperature fluctuations
So far, we have looked at the time-averaged temperature at different positions as a function
of Ra and 1/Ro. In this section, we want to look at temperature fluctuations, as they provide
valuable information about the flow field and the specific heat transport mechanisms.
Therefore, we first consider the full PDF of the normalised temperature T̃ = (T − Tm)/�T
and will discuss some of its quantities later.

Figure 11 shows the temperature PDFs p(T̃) for heights z/H = 0.287 (bottom), 0.493
(midheight) and 0.75 (top) and four different rotation rates, measured close to the sidewall
at r/R = 0.98. For the non-rotating case the distribution is symmetric for the midheight
(green diamonds) with slightly larger tails than what would be expected for a Gaussian
distribution. The distributions for the temperature at the bottom and the top are skewed
in the way that at the bottom (top) warmer (colder) temperatures are measured more
often than for a Gaussian distribution. The deviation from the Gaussian originates from
the warm (cold) plumes that are rising (falling), which are not well mixed with the
turbulent fluid. In fact, it has been suggested by Wang, He & Tong (2019) that temperature
distributions close to the top and bottom plates can be represented by a superposition of a
Gaussian, which reflects fluctuations in the well-mixed turbulent bulk, and an exponential
distribution, which represents the contribution from thermal plumes. While we refrain
from a detailed analysis of our temperature measurements, we note that the distributions
for the non-rotating case are qualitatively consistent with such a superposition.

The temperature distribution clearly changes with increasing rotation rate, not just
in quantitative, but also in qualitative terms. At very slow rotation rates, p(T̃) actually
becomes less skewed and follows more a Gaussian distribution, as shown in figure 11(b).
This suggests that warm and cold plumes mix faster with the background fluid under very
slow rotation. Very warm and very cold plumes lose their heat faster under faster rotation
when they move from the bottom and top plates towards the thermistor positions at H/4
and 3H/4.

At faster rotation rates, the standard deviation increases as the maximum of the
distribution widens. At sufficiently fast rotation, in p(T̃) the peak splits into two peaks
denoting a bimodal temperature distribution (figure 11c). The two peaks move apart
from each other with increasing 1/Ro, see figure 11(d). We have already reported on
this observation in a previous publication, in which we explain this bimodal PDF as the
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Figure 11. Probability densities of the temperature p(T̃) measured at Ra = 4.9 × 1013 and radial location
r/R = 0.98. Different symbols mark the different heights z/H = 0.287 (red squares), z/H = 0.493 (green
diamonds) and z/H = 0.75 (blue bullets). The different panels are for inverse Rossby numbers 1/Ro = 0 (a),
1/Ro = 0.74 (b), 1/Ro = 3.06 (c) and 1/Ro = 7.37 (d). The solid lines in (a,b) represent single Gaussian fits.
The solid lines in (c,d) represent fits of bimodal Gaussians (6.1) to the data.

signature of the BZF that transports warm fluid from the bottom to the top close to the
sidewall at one side and cold fluid to the bottom at the opposite side, thus preventing
effective mixing between them (Zhang et al. 2020).

For a quantitative analysis we fit a superposition of two Gaussian functions of the form

p(T̃) = A√
2πσ 2

1

exp

(
−(T̃ − μ1)

2

2σ 2
1

)
+ 1 − A√

2πσ 2
2

exp

(
−(T̃ − μ2)

2

2σ 2
2

)
, (6.1)

to the data. Equation (6.1) has five independent parameters, the means μi, the standard
deviations σi (i = 1, 2) and a parameter A ≤ 1, which determines the relative ratio of the
amplitudes of the two peaks. From now on we follow the convention that the index 1 refers
to the colder mode, such that it is always μ1 < μ2.

By fitting (6.1) to the data, we can describe the PDF by the parameters A, μi and σi and
we can investigate how these parameters change with increasing rotation rates.

We show in figure 12(a) μ1 and μ2 as functions of 1/Ro at different vertical positions.
We see that for small rotation rates (1/Ro � 1/Ro∗

1) all μ1,2 are nearly independent of 1/Ro
and μ1 (open symbols) is for any height rather close to μ2 (closed symbols). In particular,
for measurements at midheight, the data points are on top of each other, indicating that
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Figure 12. (a) Fitted expectation values μ1 (open symbols) and μ2 (closed symbols) for vertical locations
z/H = 0.287 (red squares), z/H = 0.493 (green diamonds), z/H = 0.75 (blue circles) as functions of 1/Ro. (b)
Relative distance of the two peaks d as defined in (6.2). Vertical dashed lines mark 1/Ro∗

1 and 1/Ro∗
2. Data

were acquired at Ra = 4.9 × 1013 (E2e) and at radial position r/R = 0.98.

no bimodal Gaussian is present. As we have mentioned above, the temperature PDFs
measured at the top and the bottom half of the cell are skewed. This skewness is detected
when fitting (6.2) to the data and hence we get slightly different values for μ1 and μ2.
This is not the case for measurements at midheight, where warm and cold plumes are
sufficiently mixed. In the regime of small rotation rates, it even seems as if the difference
between μ1 and μ2 decreases slightly for the top and bottom parts with increasing 1/Ro.

When the rotation rates exceed 1/Ro∗
1, for the measurements at midheight, two clearly

distinguishable peaks occur, (i.e. a bimodal distribution) resulting in a decreasing μ1 and
an increasing μ2. For measurements at the top and bottom, however, only one of the μ1,2
changes in this regime. These are a decrease of μ1 for the cold top and an increase of μ2
for the warm bottom. This observation is quite significant. It suggests that, for example,
at the bottom, the pumping of warm fluid from the bottom inside the BZF starts to play
a role, while mixing is still small so that the cold flow from the top is not being heated
up very strongly. In fact, in this regime, the red open squares (μ1 at the top) and the blue
solid circles (μ2 at the bottom) approach each other, meaning that the cold areas at the
bottom become a bit colder while the warm areas at the top become a bit warmer due to
the relative strong pumping inside the BZF.

This changes at 1/Ro∗
2. Now the warm fluid at the top part (μ2 – blue solid circles)

also cools down and the cold fluid at the bottom (μ1 – red open squares) heats up. While
there is still a vertical transport of fluid inside the BZF, the size of the BZF decreases
with increasing rotation rate (see Zhang et al. 2020). Therefore the cold down (warm up)
flow inside the BZF gets heated (cooled) from the bulk, where the temperature gradient
increases. This observation is in accordance with the temperature gradient measurements
presented in figure 10(a). There, the gradients in the bulk and close to the sidewall, i.e. in
the BZF converge for rotation rates 1/Ro∗

1 < 1/Ro < 1/Ro∗
2.

It is also insightful to plot the temperature difference between the warm and the cold
areas in the BZF. For this, we look at the relative distance between the two peaks as
suggested in Holzmann & Vollmer (2008)

d = |μ1 − μ2|
2
√

σ1σ2
. (6.2)
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Figure 13. Probability density distribution of the reduced temperature (T − Tm)/�T at height z/H = 0.49
and Ra = 4.9 × 1013 (run E2e) for radial distances from the centre line r/R = 0.98 (a) and r/R = 0.73 (b) and
for three different 1/Ro.

We note that d tells us something about how well (small d) or badly (large d) warm
and cold fluid is mixed. We plot in figure 12(b) d as a function of 1/Ro for measurements
at the top, the middle and the bottom parts of the cell. In this representation, we see, in
particular for the midheight of the cell (green diamonds), a bifurcation-like behaviour of
d at 1/Ro ≈ 1/Ro∗

1, which we interpret as the onset of the BZF. The PDF consists only of
a single peak for smaller 1/Ro – thus d ≈ 0 – and at 1/Ro∗

1 the PDF splits into a bimodal
distribution, with warm fluid being pumped inside the BZF from the bottom to the top and
cold fluid being pumped from the top to the bottom, causing d to sharply increase. The
increase of d continues for larger 1/Ro. This implies that, in this regime, the lateral mixing
is small compared to the heat transport by vertical pumping from the top and bottom. For
the largest 1/Ro, however, we see a decrease of d for just a single point, which we believe
is real and not just an outlier. We know (Zhang et al. 2020) that the width of the BZF layer
shrinks with ∝ (1/Ro)−0.66 and thus thermal diffusion starts to thermally couple the bulk
with the BZF, which is expected to lead to a reduced d at sufficiently large rotation rates.

The behaviour of d for the top (blue circles) and bottom (red squares) is for small 1/Ro
qualitatively similar and for larger 1/Ro also quantitatively similar. Just as we discussed
above, for small rotation rates (1/Ro < 1/Ro∗

1) at heights H/4 and 3H/4, d is finite due
to the skewness of the PDF. This fact is captured when naively fitting two Gaussian (i.e.
(6.1)) to the PDF.

The qualitative changes of p(T̃) are restricted to a thin region close to the sidewall (the
BZF). This is shown in figure 13, where p(T̃) is plotted as measured at r/R = 0.98 (a)
and at r/R = 0.73 (b) for different 1/Ro and at midheight of the cell. We see that the
change from a uni-modal to a bimodal distribution with increasing 1/Ro is clearly seen
at r/R = 0.98, but not for r/R = 0.73. There, p(T̃) seems to be unaffected by rotation in
the observed 1/Ro-range. Up to large 1/Ro p(T̃) follows a stretched exponential, which
is in accordance with previous findings for the temperature fluctuations in the bulk (e.g.
Castaing et al. 1989; Ching 1991; Niemela et al. 2000). An exponential fit of the function
e−c|x|β yields β = 1.34 ± 0.03, i.e. the decrease is somewhere in between an exponential
(β = 1) and a Gaussian (β = 2).

It is somehow unfortunate that we cannot resolve the BZF sufficiently well in space and
therefore cannot plot a detailed radial profile of it, e.g. d(r/R). We nevertheless plot in
figure 14 data points d for the four available thermistors for different 1/Ro (solid symbols)
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Figure 14. Peak-to-peak distance at midheight d as defined in (6.2) as a function of the radial position. Filled
symbols are data measured for Ra = 4.9 × 1013. Open symbols show estimates for the width of the BZF δBZF
according to Zhang et al. (2020). Dashed lines are guides to the eyes.

and add estimates for the width of the BZF (δBZF) from numerical simulations (Zhang et al.
2020, 2021) as open symbols. These estimates are δBZF = 3.55 × Ra−0.08 × (1/Ro)−0.66.
The dashed lines in figure 14 are convenient functions as a guide to the eye to better
illustrate the estimated radial profile of d. We note that the δBZF are in accordance with
our observation.

6.2. Amplitude of temperature fluctuations
Above, we have already analysed average temperatures (§ 5) and the locations of the peak
of the PDF. Now, we want to look at the standard deviations of the temperature, defined as

σ(z, r) =
√

〈[T(t, z, r) − 〈T(t, z, r)〉t]2〉t

�T
. (6.3)

Here, 〈. . . 〉t denotes the average over time. Please note that in this way we have already
normalised the temperature fluctuations by the temperature difference �T .

Before we discuss the rotating case, let us again quickly recapitulate what is known for
the non-rotating case.

At a given position and for sufficiently large Ra, σ decreases with increasing Ra,
according to σ ∝ Ra−α , as has been observed e.g. by Castaing et al. (1989), Niemela
et al. (2000), Daya & Ecke (2002) and Grossmann & Lohse (2004). This decrease is due
to stronger mixing as the turbulence intensity increases. The exponent α does slightly
depend on the radial position in the flow. In fact we measure α = 0.101 for r/R = 0.73
and α = 0.084 for r/R = 0.98 for measurements at midheight (z = H/2). These values
are comparable with other values found in the literature.

Furthermore, the temperature fluctuations depend strongly on the vertical coordinate
and are largest when measured close to the top and bottom plate and decrease towards the
vertical centre. Similar to the time-averaged temperature, also the temperature fluctuations
can be modelled as a logarithmic function of z/H, as reported by He et al. (2014).

The data analysis in this subsection has so far dealt with temperature fluctuations and
how they depend on Ra and their radial and vertical locations. We now want to focus on
how the fluctuations are influenced by rotation.
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Figure 15. (a) Temperature fluctuations σ as a function of 1/Ro measured at r/R = 0.93 and z/H = 0.493
for different Ra (see legend). At this radial position, we expect the BZF to occur. (b) The same measurements
normalised with the fluctuations without rotation σ(1/Ro = 0). (c) Normalised fluctuations taken at midheight
z/H = 0.493 but at r/R = 0.73, i.e. where no BZF is expected. (d) Normalised temperature fluctuations as a
function of vertical coordinate at r/R = 0.98, Ra = 2.5 × 1013 and different 1/Ro (see legend) on a semi-log
plot. Data were normalised with σ0.5 = σ(z/H = 0.5) for better visualisation. These measurements are for the
bottom half of the cell. (e) Similar data for the fluctuations in the top half of the cell.

For this we show in figure 15(a–c) temperature fluctuations at midheight of the cell
at two different radial distances and for different Ra. Let us first focus on figure 15(a),
where σ is plotted as a function of 1/Ro, for different Ra. One sees that, at very small
rotation, σ is larger for smaller Ra, just as discussed above for the non-rotating case.
For low rotations rates, σ increases monotonically until it reaches a maximum, beyond
which the temperature fluctuations decrease again with increasing 1/Ro. The rotation rate
at which σ reaches its maximum depends on Ra and is smallest for the smallest Ra; in our
observed Ra range the maximum for the smallest Ra (≈ 7.7 × 109) is reached at 1/Ro ≈ 4.

For a better comparison of the effect of Ra on σ we normalised for each Ra σ(1/Ro) by
σ(0) without rotation and plot the result in figure 15(b). We see that the data normalised
in this way collapse rather well for 1/Ro < 2, but start to deviate for larger 1/Ro. In this
normalised plot, one also sees that the relative increase in σ is in fact larger for larger
Ra. The data plotted here are acquired where the BZF occurs for sufficiently large 1/Ro
(� 1/Ro∗

1). While for the non-rotating case larger Ra leads to a better mixing of warm
and cold fluid, this fact is not very relevant inside the BZF, as it is less influenced by
the turbulent flow in the radial bulk. In this regard, it is important to note that no sharp
transition is observed in these plots. Instead, σ increases rather smoothly until it reaches its
maximum. This is all the more surprising since we have seen already in figure 12(b) that
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the distance between the maxima in the bimodal PDF increases quite abruptly at 1/Ro∗
1.

One would guess that the distance between the peaks of the PDF d contributes heavily to
the measured temperature fluctuations. While this might nevertheless be the case, the plots
here suggests that the PDF widens significantly before it splits into a bimodal distribution,
i.e. before the BZF occurs.

For comparison, in figure 15(c) we also plot the normalised fluctuations as measured
at r/R = 0.73, outside the BZF in the radial bulk. The difference to the measurements
in the BZF are clear, particularly for larger Ra. The fluctuations there are drastically
reduced. Instead of a continuous increase with increasing 1/Ro, σ/σ0 barely changes
with 1/Ro up to ≈ 1/Ro∗

1, but then even decreases for the largest Ra with increasing
1/Ro. The Ra-dependency for larger 1/Ro is reversed compared to what was observed at
r/R = 0.93. That is the smallest σ/σ0 is for the largest Ra. For the smallest Ra, we still see
a maximum close to 1/Ro∗

2, which even has very similar values of σ/σ0 as measured for
r/R = 0.93. Why are measurements at r/R = 0.73 and r/R = 0.93 so different for large
Ra but similar for small Ra? The answer is simple. The size of the BZF also depends on
∝ Raγ with an exponent of γ ≈ −0.08 according to Zhang et al. (2021). Based on this
estimate, at 1/Ro ≈ 1/Ro∗

2 the BZF reaches for Ra = 7.7 × 109 still up to r/R = 0.71 and
the thermistor still measures the BZF. This is also the case for Ra = 2.1 × 1010, where
1 − δBZF ≈ 0.73r/R. For the third smallest Ra, the thermistor at r/R = 0.73 is outside but
very close to where the BZF occurs, and one would expect the thermistor to still measure
the thermal signature of the BZF, albeit with a smaller amplitude.

We see for Ra = 8.4 × 1012 and Ra = 4.9 × 1013 an increase of σ/σ0 for 8 < 1/Ro,
when measured at r/R = 0.73. Further investigations are necessary to interpret this
increase; however, it might be related to coherent vertical vortex structures, such as Ekman
vortices in which warm and cold fluid is transported from the boundaries deep into the bulk
areas.

After we have discussed fluctuations at midheight of the cell, we briefly want to discuss
how the vertical temperature fluctuation profile changes with increasing rotation rate.
In figure 15(d,e) we therefore plot the temperature fluctuations against a logarithmically
scaled z-axis. Measurements were taken inside the BZF at r/R = 0.98. The fluctuations
are normalised with the fluctuations at midheight σ0 to indicate the relative change as
a function of the vertical position. Without rotation, fluctuations at the bottom and the
top are significantly larger than the midheight fluctuations and, with increasing 1/Ro,
the relative temperature fluctuations close to the top and bottom boundaries decrease, in
other words the slope ∂(σ (z)/σ (0.5))/∂z decreases. Please recall that this is different to
the logarithmic slope of the time-averaged temperature profiles discussed in § 5, which
increases for increasing 1/Ro. Here, however, fluctuations at the bottom (top) are just as
large as at midheight, since they mainly originate from the warm and cold structures within
the BZF.

6.3. Skewness γ1(T̃)

In § 6.1 we have seen that the symmetry of p(T̃) changes with increasing rotation when the
measurements are not taken exactly at midheight. The symmetry is in fact a measure of the
cause for the temperature fluctuations as shown for example by Wang et al. (2019). When
the fluctuations are predominantly caused by the turbulent background a nearly symmetric
Gaussian PDF is expected. The presence of warm and cold plumes near the bottom and top
causes the PDF to be skewed. Therefore the skewness is a good measure for the existence
of thermal plumes, and how well they are mixed with the turbulent interior.
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Figure 16. (a) Skewness γ1 as function of 1/Ro for r/R = 0.98 and Ra = 4.9 × 1013. Red squares z/H =
0.287, green diamonds: z/H = 0.493, blue spheres z/H = 0.75. Thin dot-dashed lines indicate 1/Ro∗

1 and
1/Ro∗

2. (b,c) Examples of the temperature PDF 1/Ro = 0.12 (b) and 1/Ro = 9.8 (c) for vertical locations
z/H = 0.287 (red squares) and z/H = 0.75 (blue bullets).

For a quantification of these effects, we measure the skewness γ1 defined as

γ1 = 1
N

N∑
i

[(
Ti − μ

σ

)3
]

, (6.4)

as a function of 1/Ro. Figure 16 shows the change of γ1 with increasing rotation rate
measured at vertical positions z ≈ H/4 (red squares), H/2 (green diamonds) and 3H/4
(blue bullets) at a radial position r/R = 0.98 where the BZF occurs. The trend of reduced
skewness with increasing 1/Ro, as we have observed already in figure 11, is clearly visible
here. For small rotation rates, the skewness has different signs for the bottom and the top
due to the presence of the warm and cold plumes that skew the PDF to warmer and colder
temperatures. Only for the four smallest rotation rates is γ1 unaffected by the rotation of
the cylinder. Already for 0.2 � 1/Ro the absolute values |γ1| start to decrease significantly
with increasing 1/Ro and reach values close to zero at around 1/Ro ≈ 1/Ro∗

2.
The start of the decrease does not correlate with the occurrence of the BZF at 1/Ro∗

1 as
observed by the sudden increase in d shown in figure 12. There is a small jump visible for
the bottom data (red squares) at 1/Ro∗

1, but this might be just an outlier of two points close
by. No such step is observed for the data taken at the upper part of the cell (3H/4, blue
bullets). While one needs to be careful in interpreting these data, one can clearly say that
the signature of the thermal plumes that exist next to a turbulent background is reduced
with increasing rotation rates, even before the BZF occurs.

The reduced skewness is in accordance with a better lateral heat exchange, which also
leads to a more homogeneous time-averaged temperature (figure 5). That is, because of a
slower vertical transport, a relatively better lateral diffusion and, therefore, a reduction of
the most extreme temperatures, resulting in a more symmetric PDF.

As discussed above, it seems as though the change in γ1 does not strongly correlate with
the onset of the BZF at 1/Ro∗

1. We therefore also look at measurements at r/R = 0.73,
i.e. outside the BZF. These measurements are shown in figure 17. It is unfortunate that we
do have a functional thermistor at the upper part of the cell at z/H = 0.75, but not at the
corresponding position at z/H = 0.25. We therefore consider a thermistor at z/H = 0.144
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Figure 17. (a) Skewness γ1 as function of 1/Ro for r/R = 0.73 and Ra = 4.9 × 1013. Red squares: z/H =
0.144, green diamonds: z/H = 0.493, blue spheres: z/H = 0.75. Note that we do not have a thermistor at
z/H = 0.25 for r/R = 0.73. Dot-dashed lines show 1/Ro∗

1 and 1/Ro∗
2, respectively. (b,c) Are examples of the

temperature PDF for 1/Ro = 0.12 (b) and 1/Ro = 9.80 (c) for vertical locations z/H = 0.144 (red squares)
and z/H = 0.75 (blue bullets).

which we expect to measure qualitatively similar features, as this is still sufficiently far
away from the bottom boundary layer.

We see in figure 17 that, similar to the measurements at r/R = 0.98, above a certain
1/Ro, also here γ1 decreases (increases) for measurements at z/H = 0.144 (z/H = 0.75)
with increasing rotation rate. The explanation for the decrease (increase) of γ1 here is
similar. The lateral mixing is enhanced compared to vertical pumping. While qualitatively
similar, there are quantitative differences. Most notably, and somehow surprisingly, we
see that |γ1| starts to decrease at higher rotation rates, beyond 1/Ro∗

1. Furthermore, γ1
does not decrease (increase) to nearly zero, but changes signs at around 1/Ro ≈ 2.5 or so.
While we cannot explain at this point where this change of sign comes from, we note that
a skewness close to zero is expected for a well-mixed system. A non-zero skewness hints
that a new pumping mechanism occurs next to the turbulent mixing. This might be related
to the formation of Ekman or Taylor vortices inside the bulk.

We also note that the data presented in figure 17 were acquired at Ra = 4.9 × 1013.
At this Ra we have seen in figure 15(c) that, for the three largest 1/Ro, the fluctuations
σ/σ0 increase again. The same measurements here show a decreased |γ1|. At this point,
we can only speculate about this change in the monotonic behaviour, but we note that the
Froude numbers for the points with the largest rotation rates are Fr = 0.32 (for 1/Ro =
9.8), Fr = 0.4 (for 1/Ro = 11.0) and Fr = 0.5 (for 1/Ro = 12.2), and hence the influence
of centrifugal forces on the flow field increases. Whether and in which way centrifugal
forces are responsible for the decrease of |γ1|, however, demands further investigation.

Since we have seen that the skewness is clearly a function of the vertical location, we
plot γ1 as a function of z/H in figure 18 for different 1/Ro. Without rotation (up triangles
in figure 18), γ1 shows maximal values close to z/H = 0.25 (a) and z/H = 0.75 (b). The
reason for this is the role of the large-scale circulation, which carries the plumes along and
which has an elliptical shape. Very close to the sidewall at the bottom and top, corner rolls
exist (Sun, Xi & Xia 2005) into which the warm and cold plumes usually do not enter. The
plumes that detach from the boundary layers and that are carried by the LSC thus ‘hit’ the
sidewall above (or below) these corner rolls. With increasing 1/Ro, |γ1| becomes smaller,
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Figure 18. Value of γ1 along the vertical axis z/H at r/R = 0.98 and Ra = 3.9 × 1014 for different 1/Ro (see
legend). The x-axis is scaled logarithmically for better visual appearance. (a,b) Show the same data, but the
vertical distance is measured from the bottom in (a) and measured from the top in (b). The dotted vertical line
marks the midheight z = H/2.

and the maxima and minima close to the top and bottom also disappear. Although in
figure 18 we only show seven different 1/Ro, maxima in |γ | only occur for 1/Ro < 1/Ro∗

1,
i.e. before the LSC is replaced by the BZF.

7. Summary and discussion

In this paper we present comprehensive heat flux and temperature measurements in
rotating turbulent thermal convection at very high Rayleigh numbers. We use nitrogen and
sulphur-hexafluoride at pressures between 1 bar and 19 bar in a two metre tall cylindrical
cell of aspect ratio Γ = 0.5, thus covering the Ra-range 7 × 109 < Ra < 8 × 1014. Due to
the slight dependency of the Prandtl number on the pressure, the Prandtl number increases
slightly from Pr = 0.69 at 1 bar (nitrogen) to 0.97 at 19 bar (SF6).

We apply slow and moderate rotations of the cylinder around its cylindrical axis, i.e.
parallel to gravity and measure characteristic quantities as a function of the rotation rate. In
contrast to similar measurements in fluids of larger Pr, we do not find any enhancement of
the Nusselt number under rotation. Instead, rotation barely influences the heat transport for
1/Ro � 1/Ro∗

1 = 0.8, but leads to a strong decrease for rotation rates 1/Ro � 1/Ro∗
2 = 4.

The decrease appears to follow ∝ (1/Ro)−0.43, but we note that the uncertainty of the
exponent is significant as the corresponding fit was done over less then a decade of 1/Ro
and a logarithmic function fits the data at least equally well. The reduced Nusselt number
Nu/Nu0 appears to only depend on 1/Ro, but is independent on Ra.

We have also investigated the temperature at different radial and vertical positions as a
function of 1/Ro. The resulting measurements need to be interpreted with reference to the
recently observed BZF that forms under sufficiently fast rotation in the narrow region close
to the lateral sidewall (Zhang et al. 2020). There, a periodic temperature structure occurs in
which warm fluid rises along one side, while cold fluid sinks on the opposite side, hence
the temperature fluctuations in this region are significantly larger than in the turbulent
bulk. Nevertheless, similar to the non-rotating case, also under rotation, the time-averaged
temperature at the sidewall can be well represented with a logarithmic dependency of the
vertical coordinate, even when the BZF is present. However, the logarithmic slope (at,b)
increases significantly for 1/Ro > 1/Ro∗

1.
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In addition, while without rotation a depends on the radial position (r/R) of the
relevant thermistors, when the BZF is present, a becomes independent of r/R, regardless
whether the measurement was conducted inside the BZF or inside the bulk region. That
is even more surprising as, in particular, the temperature fluctuations (as measured via the
standard deviation in time), show clear differences between the BZF (large fluctuations)
and the bulk regions (small fluctuations).

We also analyse the full PDFs of the temperature measurements. As reported before in
Zhang et al. (2020), the PDF is qualitatively very different in these states, and thus allows
us to clearly distinguish the BZF from the bulk region. While the PDF in the BZF turns
from a unimodal PDF at no or slow rotation into a bimodal distribution with two clearly
distinguishable maxima for faster rotation; the PDF in the bulk region remains nearly
unchanged and unimodal.

The onset of the BZF might not be a sharp one, although the change of certain
experimentally accessible properties show a rather sharp bifurcation when 1/Ro increases
beyond certain critical values. Although these values depend on which property is
considered, it is usually somewhere between 1/Ro∗

1 and 1/Ro∗
2. For example, a clear

change of the temperature field close to the sidewall can be seen when looking at the
distance between the two maxima of the bimodal temperature PDF. This distance starts
to increase at approximately 1/Ro∗

1. Similarly, the azimuthal drift of the temperature field
close to the sidewall changes direction from being prograde to retrograde at the same 1/Ro.

From this study we can state that, at 1/Ro∗
1, a flow state transition takes place. While the

flow self-organises into a LSC for smaller 1/Ro, the BZF exists for larger 1/Ro. However,
it is not so clear what happens at 1/Ro∗

2. From our measurements, it seems that, at
1/Ro∗

2, the BZF has reached its maximal amplitude, meaning the pumping of warm and
cold fluid from the top and bottom boundaries towards the other side causes the largest
azimuthal temperature variations. Furthermore, as the BZF also contributes significantly
to the vertical heat transport, Nu deceases rather quickly for larger 1/Ro since this pumping
also decreases.

To summarise, here we present a very comprehensive dataset about heat flux and
temperature measurements in rotating turbulent RBC that is essential to extrapolate the
insights from numerical data to larger Rayleigh numbers.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2020.1149.
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