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1. Introduction. Let S be an inverse semigroup with semilattice of idempotents E, and
let p be a congruence on S. Then p is said to be idempotent-determined[2], or 1.D. for short,
if (a,b) e p and a € E imply that b e E. If, further, p is a group congruence, then clearly p
is the minimum group congruence on S, and in this case S is said to be proper[8]. LetT = S/p.

Let p be an 1.D. congruence on S; the homomorphism p" will also be called .D.. Green
[2] has given the structure of S in terms of T, E, and certain mappings. In the case where T
is a group, that is when S is proper, two structure theorems for S have been given. One, due
to the present author [5], bears some resemblance to Green’s result. The other, due to

McAlister [3], is extremely concrete and shows that S is isomorphic to a semigroup which
involves T acting by order-automorphisms on a poset containing a copy of E as an order-ideal.

The present paper is concerned with carrying out McAlister’s programme for the case
where p is an arbitrary I.D. congruence, so that S is now an arbitrary inverse semigroup;
with generalising the embedding theorems for proper inverse semigroups given in [5, 6];
and with expanding and slightly improving Green’s result, using ideas from[5].

It will be found that S can be embedded in a certain way in an inverse semigroup L = L(S)
arising from the action of T on a poset by partial order-isomorphisms whose domains and
ranges are order-ideals. This embedding is surjective exactly in the case where T is a group,
that is S is proper. Furthermore, L can be embedded in an inverse semigroup L arising from
a similar action of T on a semilattice. Thus S is embedded in L, a fact which overlaps with
some results due to Reilly[7].

It is also shown that .§ can be embedded in an inverse semigroup M, on which there is
defined an I.D. congruence p extending p, such that each p-class has a maximum element
under the natural partial order, and T = M/p. This is then used to yield a slight improvement
in Green'’s theory.

Finally, the L-semigroups definable over an inverse semigroup S are seen to form a
category with initial and terminal object.

2. The embedding of S in L. The notation and terminology of Clifford and Preston[1]
will be used, and the basic results on inverse semigroups contained therein assumed. Any
order-theoretic statement made about an inverse semigroup refers to the natural partial order.
The identity congruence will be denoted by i.

The first proposition generalises a result in[8] and is implicit in [2].

PROPOSITION 2.1. Let p be acongruenceonS. Thenpisl.D.ifandonlyifpn & = i.

Proof. Suppose that p is ID. and let (a,b)e p n 2. Now £ is a left congruence, so
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that (a™'a,a™'b)e p n #. Hence a 'beE, since p is LD. Now aa™! = bb~!, and so
b= aa"'b £ a;similarly,b < a. Hencepn & = i.

Conversely, suppose that p N % = i and let (e, x) € p where e = e2. Then (e, xx™ ) e p,
sothat(xx™', x)e p n . Hencex = xx~* € E, and therefore p is I.D.

For the remainder of the paper, p denotes an I.D. congruence on S. Following Proposition
2.1, S'is coordinatised by the map a — (aa™!, ap) (see[2]).

Let Z be a poset. A non-empty subset 4 of & is called an order-ideal of & if b e & and
b < ae Aimply that b e 4; and A is called a subsemilattice of & if given a, b € A their infimum
in%,denoted a A b, exists and isin A.

Let K, be the inverse subsemigroup of 4 consisting of those « € S5, whose domain A«
and range Va are order-ideals of £ ~, and where « is an order-isomorphism from A« onto Va.
We say that an inverse semigroup T acts suitably on & if there exists a homomorphism ¢ : T —
K,. In this case, for t € T, we write At for A(1¢) and V¢ for V(¢¢). If a e At, we let T act on
the left and write ¢.a or ta for (t¢).a. All other mappings will act on the right, as usual.

Recall that in £y, and soin Ky, « < Bifand onlyif (i) A« < A and (ii) f|Ax = a.

Of necessity we follow McAlister’s theory; the argument is refined or the theory generalised
at those points where the fact that T'is no longer necessarily a group comes into play.

Proceeding as in [3], therefore, let {D|ie I} be the set of P-classes of S and pick an
idempotent f; € D, for each ie I. Denote by H; the 5#-class containing f;, and let f; = f;p".
Further, for each i € J, pick representatives r;, of the #-classes contained in the £#-class of f;
with f; the representative of its class; denote this set of representatives by E;.

From now on we use ry, r,,, . . . to denote elements of E;, and h;, A, . . . to denote ele-
ments of H;, forsomeie I

Each element of S can be uniquely expressed in the form r;, *A;r;,, and the idempotents of
S are precisely the elements r;; 'r,,; they are all distinct.

Let ky, = ryp’, g; = hp" and G, = H,p*. By Proposition 2.1, G; ~ H; and for fixed i
the elements k;, are all distinct.

The following trivial result, and the one derived from it by applying p*, will be used below
without comment.

LeMMA 2.2. Leta = ri'hir;,. Thenaa™ = ri'ry,a 'a = ri'ry, andfiry, = ri.

Finally, foreachi,je I,let B;; = {k;|ri.'r;, £ fi}-

The next three technical lemmas which we quote are taken from [3], the second having
been slightly adapted. Their proofs in[3] can be carried over without difficulty.

LeEmmA 2.3. [3, Lemma 2.1.] ri,'ry, 2 rjlr;, if and only if Gik;, = Gk;k;, for some
k;. € B;;.

LemmA 2.4. [3, Lemma 2.2.] If k;,gk;, € G, for some k;, € B;; and k;, € B;;, then i = j
andk;, = f;. »

Lemma 2.5. [3, Lemma 2.3.] If k;, € B;; and k,,, € B;,, then G,k,.g k;, = G,k,, for some
knu € Bin'
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As in [3], therefore, it follows from Lemma 2.3 that the semilattice E is isomorphic to the
set @ = {(i, Gk )i € I, ky, € Eip*}, where (i, Giky,) 2 (J, Gjkj,) if and only if Gk, = Gikjky,
forsomek;, € B;;.

Let & = {(i, Gix)|ie I, xx™* = f;} under the ordering (i, G;x) = (J, G;y) if and only if

G,y = Gjzxforsomez e B;;. T acts on % by partial transformations as follows:

At ={(i,Gx)eZ|x"'x 2 t™1},
and, for (i, G;x) € At, t.(i, Gx) = (i, Gxt ™).

LEMMA 2.6. & is a poset, and ¥ is a subsemilattice and order-ideal of . T acts suitably
onZand¥% =TY. ForeachteT,¥ n (¥ n Ar) # 0.

Proof. Note that Lemmas 2.3, 2.4 and 2.5 hold. The argument given in [3] prior to
Lemma 2.4 there, adapted slightly by noting that f; € B;; and g; = g,f;, shows that = is a
well-defined relation on . The relevant parts of the proof of [3, Lemma 2.4], with a similar
small adaptation, show that = is reflexive, transitive and antisymmetric, and that % is a

subsemilattice and order-ideal of Z'.

Let (i,Gx)e%, where x 'x <t~ 't; then (xt™Y)(xt ™) ' =xt7ltx"t = xx"! = f.
Hence t.(i, G;x)e &. Suppose further that (j, G;y)e &, where (j, G;y) £ (i, G;x). Then
y = g;zx for some z € B;;, so that

yly=x"z7lggzx £ x7ix 27
Hence (j, G,;») € At, and therefore At is an order-ideal of Z. Moreover ¢.(i, Gx) = ¢.(j, G;y),
and t.(i, G;x) e At 'since (xt71) T lxe Tt L (1Y) L

Hence V¢ = At~!. On the other hand if (i, Giz) e At ™%, then zz™' = fand z7'z £ ™%,
Let w=1zt; then ww =zt 27 ' = zz7 ' = f, wlw <t and z=wt"'. Hence
(i, Gw) e Arand t.(i, Gw) = (i, G2),t (i, G;z) = (i, Gw).

Thus V¢ = At~ is an order-ideal, and ¢ is a partial order-isomorphism with domain At
and range V1, having inverse ¢!, If se T, it is easily shown that A(ts) = s '(Vs n At) =
A(t o 5), and clearly therefore T acts suitably on Z.

Let (i, Gx)e Z. Then (i, Gif)e ¥ n Ax~*, and x71.(i, G,f;) = (i, Gx). Thus & =
T%.

Let t €T, where t = k;,'gk;,, say. Then (i, Gk, )e ¥ n (¥ n At), since 1.(i, Gky,) =
(i, Giky,).

Suppose now that we are given a poset Z containing a subsemilattice and order-ideal #,
and an inverse semigroup 7, which together have the properties listed in the statement of
Lemma 2.6.

LeMMA 2.7. ForeachteT,¥ nt( nt (¥ n At™Y)) # 0.

Proof. By hypothesis there exists ae®¥ n At™! such that b =t "'ae®. Then be
Vi ! = At,and b = tt7'a =a. Henceae¥ nt(% nt™ (¥ n At™)).
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Define L = L(T, ¥, %) to be
{(@)|teTac¥ (@ nt™ (¥ At™Y))}
under the multiplication
(a, ©) (b, s) = (t(t"ta A b), ts).

By Lemma 2.7, for each t € T there exists (a, t) elL.
Whenever T is a group, that is whenever S is proper and p is the minimum group con-
gruence on S, then T"acts on & by order-automorphisms, and L = P(T, Z, %) as defined in[3].

LEMMA 2.8." Let ae%,teT. Then (a,t)eL if and only if (i) ae¥ nAt™" and
(i) t'aed.

Proof. This follows easily from the elementary observation that a e V¢ if and only if
aeAt™!,and thena = 1t~ 'a.

COROLLARY 2.9. Suppose(a,t)eLands 2 t. Then(a,s)e L.

Proof. Sinces™* = t™!, At™' < As™" and s™'a = t~'a. The result now follows from
Lemma 2.8.

THEOREM 2.10. L is aninverse semigroup. Ifn,: L — T is the second projection(a, t) — t,
then t, is an 1.D. surjective homomorphism.

Proof. Let(a, t), (b, s)e L. By Lemma 2.8, t"'ae® so that t 'a A b exists and is
in ¥. Since V¢! and As~! are order-ideals and ¢t 'ae Ve, t7la A beVt 1 n As™L.
Hence #(t7'a A b)e As™'t™! = A(ts)™!. Moreover t(t7'a A b) < tt7'a =aed, so that
t(t™'a A b)e®. Further,s™'t7"(t7'a A b) =5s7'(t7'a A b) £ 5 'be%, by Lemma 2.8.
By Lemma 2.8 again, therefore,

(a, t)(b,s) =(t(t"a A b), ts5) e L,

and L is closed under multiplication.
Let(c, r)e L. Itiseasily seen that

(a, ) [(, 5)(c, 1)] = [(a, £)(b, 5)] (c, 7)
ifand only if
t(t™'a A s(s™b A ©)) =ts(s"'(t"'a A b) A c);
that is, if and only if

t™la A s(sTib Ac)=s(s"Nt7'a A D) A c); Q@)

https://doi.org/10.1017/50017089500002445 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500002445

16 LIAM O’CARROLL

that is, if and only if
sTitTtaas(sTib Aac) =sTH(tTlaAb) A (2

Now the left hand side of (2) £ s™!(t7'a A ss™1b) = s™}(t"'a A b); and further, the
left hand side of (2) £ s7's(s™*0 A ¢) = s7'0 A ¢ £ c. Hence the left hand side of (2) =
the right hand side of (2). Applying s on the left, we deduce that the left hand side of (1) £
the right hand side of (1).

On the other hand, the right hand side of (1) £ s(s~'b A c); and further, the right hand
sideof (1) £ ss™(t 'a A b) =t 'a A b = t"'a. Hence the right hand side of (1) = the left
hand side of (1). Equality follows, so that the multiplication is associative.

It is easily seen that the set of idempotents & of L is given by & = {(a, t)|t = ¢*} and that
the elements of & commute. In fact, if (a, t) and (b, 5) € &, then

(a,t)(b,s) =(a A b, ts).

Some routine checking then shows that L is an inverse semigroup with (g, t) € L having
inverse (¢~'a, ™). Note that (a, t)(a, t)™! = (a, tt7?), so that if (a, )%(b, s) then a =b.
Clearly =, is a surjective homomorphism, and if further (a, t)r, = (b, s)m,, then ¢ =s.
Hence 7, is I.D., by Proposition 2.1.

ReMARK. Let (a,¢), (b, s)e&; then their product (@ A b,1s)e 8. Since s £ 1, it
follows from Corollary 2.9 and Theorem 2.10that (a A b, t) e 8.

Define the projection n,: & — % by (a,t)n, = a. Then n, is a homomorphism with
range {ac¥|aeAr for some reT}. If ¢ # s, then we may assume that s < ¢, and
(@A b, )y =(anAb,ts),.

Hence =7, is injective if and only if 7 has exactly one idempotent, that is if and only if
Tis a group. In this case, T acts by order-automorphisms on & and =, is surjective.

We now have the main theorem of this section, which describes how S is embedded in the
corresponding L.

As before, let S be an inverse semigroup with semilattice of idempotents E, and let p be
an I.D. congruence on S. Suppose that &, % and T are as defined prior to Lemma 2.6. Let
L = I(S), where L(S) = L(T, %, %), and define the map i : S — L as follows:

("i;l h; "iu)‘/’ = ((i’ G kiu), ki:‘ gi kiv)'

THEOREM 2.11.  is an injective homomorphism such that yn, = p*. For each ae ¥
there exists (a, t) € L with the following property:

(a,s)e Lands < timplythats = t: (3)

and S\ is the set of all such (a, t). Moreover, given ae %, then (a, s) € L if and only if there
exists(a, t) € SY witht £ s.
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Proof. The last paragraph of the proof of Lemma 2.6 shows that { indeed maps into
L. Theargument given prior to[3, Lemma 2.5] shows that y is injective, and clearly Y, = p".
Let

p=ri hirw, g =715 b1y,
be elements of S. Following the first part of the proof of [3, Lemma 2.5),

-1 -1 — .1
Tio TigVix Vix = Tmy Ty, fOrsome r,,€E,

where
FawTw hitr, = h,r,, forsome r,eE,h,eH,.
Further,
pq =r'h.r, forsome r,eE,h,eH,

Thus (1, G,k,.) s the first coordinate of (pq)y, and

(n, Goko) = (n, Gk k' 9" Ki).
Now
Ko e < ki kg = (kiy" 9, kio) ™" (ki 9 Ke),
so that
(n, G, k,.) = kiy* 9, ki, (n, G, kny) = PP“-{(": G;ky,) A (J, G; k;x)}.

As seen in the last paragraph of the proof of Lemma 2.6, (i, Gk,,) = (pp")~'(i, Gk.),
and it follows that (pq)y and pyr.qy have the same first coordinate. Their second coordinates
are also equal, so that { is a homomorphism.

Given a = (i, Gik;,) € ¥ therefore, take g; € G; and k; € E;p°. Letting ¢t = kj;'g .k,
it follows that (a, t) € SY. On the other hand, by Lemma 2.8, ((i, Gk,), t) € L if and only if
ki'ky, £ 171 and t7'(i, Giky,) = (i, Gk;,,) for some k,, € E;p'. The latter conditions hold
ifand onlyif k;;'k;, < tt~'and k;t = g'k,,, forsome g} e G,.

Let m = k;,'gik,,; then ((i, Giky), mye Sy. If m £ 1, then m = mm™'t = ki,'k,,t, so
that

giky, = kym =k,t; also kilk, =mm™' g u"t

Conversely, if k;,t = g} k;,, then mm~™'t = k' k,,t = k;'g.k;, = m, sothatm < t.
Suppose now that ((i, Gik,), m)e Sy, where m < m. Then m' =m'm 'm=
ki'k,m = m. Since to any (a,t)eL there corresponds (a,s)e Sy with s < ¢, this
suffices to complete the proof.
B
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COROLLARY 2.12. ) is surjective if and only if S is proper and p is the minimum group
congruence on S.

Proof. Suppose that \ is surjective, and let t, s € Twith ¢ £ 5. As noted prior to Lemma
2.8, (a,1)e L for some ae®¥. By Corollary 2.9, (a,s)e L. Since L = Sy by hypothesis, it
follows from Theorem 2.11 that ¢+ = s. Hence each element of T is maximal in 7, so that T
is a group. As noted in §1, this implies that S is proper and that p is necessarily the minimum
group congruence on .S,

The converse has been proved in[3].

Not every semigroup L(T, Z, %) is of the form L(S) for some inverse semigroup S.
However one can give necessary and sufficient conditions that this should be so.

Finally we note that [3, Theorem 2.7] has an obvious generalisation which we will not
state here.

3. Two other embedding theorems. We now generalise two embedding theorems for
proper inverse semigroups (see[5, 6]).

Let %, % and T have the properties listed in the statement of Lemma 2.6, and let L =
L(T, %,9). .

Define Z to be the set of (non-empty) order-ideals A of & such that 4 < #(% n Ar) for
someteT. ForeachaeZ,leta = {beZ|b < a}.

LemMa 3.1. (&, n) is a semilattice on which T acts suitably. The map j:aw— @ is an
order-isomorphic embedding of & in & which preserves the action of T, and & is a conditional
V-completion for .

Proof. Let s,teT. 1t is clear that % N At is a non-empty order-ideal and subsemi-
lattice of &

Since V¢ is an order-ideal of & and since ¢ is an order-isomorphism on A¢, it follows that
(% n At)is a subsemilattice and order-ideal of . Moreover, % n ¢(% n At) # O.

Letac Ae Z where 4 < (% n At),andb € B e &, where B < (W nAs). Letce
Yt nAt),de¥ 0 s(¥Y 0 As). Then a A cexistsin Z and liesin @  t(# ~ At); similarly
b A dexists in & and lies in & N s(% N As). Hence e = (a A ) A (b A d) exists in &
and lies in %, Since e is a common lower bound of g and b,ee A " B. Thus An B # O,
and it easily follows that A n Be Z.

For each teT, let At = {4 e Z|4 < At}; for example, t (% n At™*) e Ar. Clearly
At is an order-ideal of Z. For each 4 € At define ¢4 to be the set {talae A}. Then 14 is an
order-ideal of & and if re T is such that 4 = r(®%  Ar), then t4 < tr(® n A(tr)). Hence
tAe®, and t4 = At™'. On the other hand, if Be At™%, then t"'Be At and #~ !B = B.
Clearly, therefore, ¢ is an order-isomorphism with domain At and range V¢ = A¢r~!. Given
AeZ and seT, Ae A(rs) if and only if A < A(rs); that is, if and only if 4 = As and s4 <
As™! A At. Tteasily follows that T acts suitably on Z.
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Let ae & = T%. Then a = sb for some se T and be % n As. Hence a is an order-
ideal of & such that @ = s(% N As). Let teT. Then ae At if and only if a € A¢, and in
this case 7a= t.a.

The rest of the result follows from the proof of [6, Lemma 1.2].

Following Lemma 3.1, let 4 e, where 4 S t(@ N At) say. Then Ae V¢, so that
A = tBfor some Be At. Hence & = T, and it follows from Lemmas 2.6 and 3.1 that we
canform L= (T, &, ).

THEOREM 3.2. Themap k: (a, t) > (a, t) is an injective homomorphism from L into L.

Proof. Let(a,t)eL. ByLemma28,ae® n At *andt 'aed. Hence 2 eZ nAt™!?
andt '.ae&. Thusk mapsinto L and clearly it is injective.
Let(b, s)e L. Then

(t"'a A b)=1t-(t""a Ab)=1(t""a nB)':: Ht™'-anb),

and it follows that k is a homomorphism.

By Theorems 2.11 and 3.2, any inverse semigroup S can be embedded in an L(7, %, %)
andsoin (T, Z, Z). For results of a similar nature, see[7, Propositions 1.4 and 3.6].

Now let S be an inverse semigroup with semilattice of idempotents E, let p be an L.D.
congruence on S, and let T = S/p. Then a = p" is an isotone homomorphism onto 7. In
this case, following[4, Theorem 3], : s —> Esis an embedding of .S into the semigroup

M = {EX|there exists s’ € Ssuch that (0 # X < s'p},

where the operation on M is set multiplication, and f: EX+— s'p is a homomorphism from
M onto T with « = jB. Moreover, M is a partially ordered semigroup under inclusion and if
p = B B!, then each g-class has a maximum element,

Recall that EW = WE for any non-empty subset W of S.

THEOREM 3.3. M is an inverse semigroup, and inclusion is the natural partial order on M.
Moreover, pis1.D..

Proof. IfY < S,letY™' = {y~!|ye Y}. In[9], Scheinshowed that
C={EX|D# X< $; XX, X"'X<c E}

is an inverse semigroup under set multiplication, with ¥ e C having inverse Y ™! (see the
Note following Theorem 1 in[5]).

If Y e Mthen Y ! € M, and it follows that M is an inverse subsemigroup of C.

Suppose F = EX e M, where (] # X < sp forsome se S. If F = F?, then EX = EX2,
Applying p°, we deduce that Ep*.sp* = Ep".s?p". Hence sp" = s2p*, so that sp < FE since
pisI.D.. Therefore F < E.

Let Y,Ze M, where Y = YY~'Z. By the preceding paragraph YY~! € E, and EZ=
Z. Hence Y c Z.
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Conversely, if Y= Z, then Y= YY" 'Y < YY™'Z, while Y™'Z = Z7'Z < E; hence
YY 'Z = Y. Itfollows thatinclusion is the natural partial order.

If s S, then E.sp is the maximum element in its j-class, and (E.sp)p = {EW|O # W = sp}.
Suppose some EW in (E.sp)p is idempotent. Then, as shown above, W < E and so
sp € E,since pis.D.. Hencepisl.D..

Green [2] has shown that there exists a maximum LD. congruence on an inverse semi-
group. Clearly p is the maximum I.D. congruence on S if and only if p is the maximum I.D.
congruence on M. Asin[5], Sjis the set of V-irreducible elements of M.

Letae S. InM,aj = Ea < E.ap. Sinceinclusion is the natural partial order on M, by
Theorem 3.3, Ea = Ea.a"'E.ap = Eaa™!.ap.

The coordinatisation a+> (aa™?, ap) of S can be replaced by a+— (Eaa™!, ap), and as
seen above the latter has an interpretation in terms of set multiplication.

Let M(E) be the set of non-empty order-ideals of E under set multiplication. As seen in
[5], M(E)is a semilattice in which E is embedded by the map e — Ee.

Let H = E.ap. It follows from Theorem 3.3 that ¢,,: F++ HFH ~! is an endomorphism
of M(E). Ifbe S, then Eab(ab)™ = Eaa™' A (Ebb™Y)¢,,.

Hence in Green’s theory [2, third section] we can replace the endomorphism ¢(e, ¢) of E
by the endomorphism ¢, of M(E), where the latter depends on only one parameter. However,
it is extremely doubtful if a corresponding reaxiomatisation would present any real gain.

The above considerations generalise part of the theory of [5].

4. The category of L-semigroups over an inverse semigroup. In this final section we show
that the L-semigroups definable over an inverse semigroup S form a category with initial and
terminal object. Since the details are entirely straightforward, they are omitted.

Suppose p, and p, are I.D. congruences on S such that p, = p,. Fori = 1, 2, given the
I.D. congruence p, let ', %, and T be as defined prior to Lemma 2.6; put L, = L(T,, ¥, %)
and let ,: S — L, be the corresponding embedding.

There is induced a unique homomorphism #: T; — T, such that pin = pi. In turn n
defines a map pu: %, — Z, as follows: for (i, G;x) € &, (i, Gix)u = (i, (Gix)n). Then p has
the following properties:

(i) pisisotone, ¥, u < ¥, and p|¥, is a semilattice homomorphism; and
(ii) foreach r € T, and ae At, (At)u = A(tn)and (ta)u = tn.ap.
The maps n and pdefineamapa: L, - L, by

» e = (ap, 1),

and a is a homomorphism such that ;o = ,.

The semigroups L, together with the homomorphisms « form the objects and morphisms,
respectively, of a category, which we call the category of L-semigroups over S. It has an
initial object L, corresponding to the minimum I.D. congruence i, and a terminal object
L, corresponding to the maximum I.D. congruence 7 (see[2]).
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We note that in Lo, T = S and we can take & = & = E, where E is the semilattice of
idempotents of S. For teS, At = {ec Ele £t 't} and for e€At, t.e = tet™'. Then

= {(e, t)|e = ™'}, wherein Ly, (e, 1)(f, sg = (etft™1, 1s).

On the other hand, suppose, for i = 1, 2, we are given a poset &; having a subsemilattice
and order-ideal %, and an inverse semigroup T; having the properties listed in the statement
of Lemma 2.6 and let L; = L(T;, ¥, %,). Letn:T, — T, be a homomorphism and p: %, —
% , a map satisfying the properties (i) and (ii) above. Then the map «: L; — L, defined by
(a, 1) « = (ap, t)is a homomorphism. For an analogous characterisation of homomorphisms
between P-semigroups, see [3].
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