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The onset and evolution of the dynamic stall vortex (DSV) are analysed by means of
large eddy simulations of an SD7003 aerofoil undergoing periodic plunging motion
in a transitional Reynolds number flow (Re = 6 × 104). Interactions between upstream
propagating Kelvin–Helmholtz instabilities and a shear layer formed at the leading edge
trigger flow separation. The former appear to be related to acoustic waves scattered
at the trailing edge due to initial vortex shedding. Two freestream Mach numbers
(M∞ = 0.1 and 0.4) are employed to examine the flow differences due to compressibility
variations. The existence of a common timing for the acoustic perturbations in both
flows suggests a possible Mach number invariance for the birth of the Kelvin–Helmholtz
instability. Increasing compressibility, however, induces earlier spanwise fluctuations,
higher flow three-dimensionality and a weaker and more diffuse DSV, which is formed
further downstream of the leading edge and has lower residency time. In order to better
characterize the onset of the DSV, two empirical criteria are assessed: the leading
edge suction parameter and the chord-normal shear layer height. Results demonstrate
a higher robustness of the latter with respect to Mach number variations. Modal
decomposition, performed with both the classical dynamic mode decomposition (DMD)
and its multi-resolution variant (mrDMD), highlights key trends and demonstrates the
capacity of the mrDMD to extract physically meaningful flow structures related to the
stall onset. Such detailed characterization of the shear layer can be used for a systematic
exploration of flow control strategies for unsteady aerofoils.
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1. Introduction

Extensive studies of aerofoils undergoing sinusoidal pitch motions have been carried out
by aeroelasticians and dynamic-stall researchers, specially aiming for flow conditions
of helicopter rotor flight (Carta 1979). However, a renewed interest in unsteady
low-Reynolds-number aerodynamics has emerged due to applications in small and micro
unmanned aerial vehicles (UAVs) and small wind turbines, some of which are inspired by
the demonstrated success of natural fliers (Shyy et al. 2007). Novel bio-inspired turbines,
for example, use the motion of a flapping foil to drive a generator, by which power is
typically extracted from the plunging motion (Young, Lai & Platzer 2014).

Another intriguing aspect of the low-Reynolds-number aerodynamics of plunging
motions was brought up recently by Gursul & Cleaver (2019). They found that in a periodic
plunging aerofoil, the leading edge vortex can affect thrust generation adversely, going
against what is commonly suggested in the literature of flapping wings. In addition to its
impact on flight stability and performance, the dynamic stall vortex (DSV) can also cause
fatigue problems due to the increased unsteady loads that lead to large torsional forces and
mechanical vibrations on the blade. These drawbacks offers scope for a myriad of flow
control studies focusing on the leading edge (Lombardi, Bowles & Corke 2013; Beahan
et al. 2014; Müller-Vahl et al. 2016; Ramos et al. 2019). In particular, Chandrasekhara
(2007) discusses that above a threshold level, the vorticity coalesces into a vortex whose
behaviour cannot be controlled. Hence understanding the flow physics near the leading
edge is crucial to the effectiveness of control strategies that mitigate the formation of the
DSV.

The main characteristics of dynamic stall are considered to be well established,
especially for deep stall conditions. However, the underlying mechanisms of flow
separation are still a topic of research. One of the reasons for this is the poor understanding
of the viscous effects in unsteady aerodynamics, because of not only the inherently
complex flow dynamics, but also the influence of multiple interrelated parameters such
as compressibility, transition and aerofoil geometry. Moreover, the amplitude, frequency
and type of aerofoil motion also play a key role on the onset of dynamic stall. Depending
on the preceding factors, the dynamic stall inception exhibits different phenomena such as
shear layer instabilities (Mulleners & Raffel 2012), transition to turbulence (Ekaterinaris &
Platzer 1998), laminar separation bubble bursting (Visbal 2014), shock-induced separation
(Bowles et al. 2012; Corke & Thomas 2015), boundary layer separation (Gupta & Ansell
2020) and aerofoil–vortex interactions (Jones & Cetiner 2021). For low Mach numbers,
when shock waves are absent, the onset mechanism of dynamic stall may involve a bubble
burst and its subsequent breakdown owing to strong adverse pressure gradients found
typically along the aerofoil leading edge (McAlister & Carr 1979; Doligalski, Smith &
Walker 1994; Lee & Gerontakos 2004). In a classical description of the phenomenon, a
leading edge vortex is formed after a boundary layer flow reversal that moves upwards
from the trailing edge to the leading edge over the aerofoil suction side.

With recent progress in numerical methods and the tremendous increase in
computational power, high-fidelity numerical simulations can be used as a predictive tool
in the design stage. In this sense, wall-resolved large eddy simulations (LES) are being
used increasingly to address the onset of dynamic stall at a broad range of Reynolds
numbers, providing essential information about the boundary layer dynamics, including its
separation. Motivated by micro air vehicle applications, the first investigations of dynamic
stall under a transitional flow regime using implicit large eddy simulations (ILES) were
presented by Visbal (2009, 2011) for a periodic plunging aerofoil. Visbal observed that
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at low Reynolds numbers (Re = O(104)), transition effects played a critical role in the
leading edge vortex dynamics and, in turn, in the aerodynamic coefficients, even when
the incipient separation and DSV formation were initially laminar. The leading edge
vortices were found to experience an abrupt breakdown into fine-scale turbulence due to
spanwise instabilities. This resulted in a subsequent vorticity cancellation that led to a rapid
reduction of the maximum values of phase-averaged vorticity. These investigations were
extended further to higher Reynolds numbers (Re = 2 × 105 and 5 × 105) for a constant
pitching rate motion by Visbal (2014), where it was found that the onset of dynamic stall
is characterized by the presence of a laminar separation bubble near the leading edge.

The present work seeks to elucidate the onset mechanisms of dynamic stall occurring on
a periodic plunging aerofoil, which is more closely related to the emulation of gust effects
or flapping wings. The present wall-resolved LES methodology (see discussion in § 2.1) is
able to resolve the flow features of the unsteady separation; such a level of understanding is
a prerequisite to the systematic exploration of flow control strategies for unsteady aerofoils.
To this end, the configuration from Visbal (2011) is employed here since it serves as a
starting point in terms of validation. However, different analyses are carried out in the
present work, which include a detailed inspection of the boundary layer characteristics, as
well as the onset and evolution of the DSV. Moreover, differences in phenomenology due
to Mach number variations are examined by considering the time variations of lift, drag
and pitching moment coefficients, including their connection with the instantaneous flow
field and instabilities that initiate the formation of the DSV, as discussed in § 3.1. A detailed
analysis of the physical processes related to the dynamic stall onset is provided in § 3.2.
Although different compressible regimes are studied, aspects of shock-induced separation
are not present in the flows of interest here since they would alter the underlying onset
mechanisms. For a comprehensive parametric study of compressibility effects on dynamic
stall, the reader is referred to Bowles (2012), Bowles et al. (2012), Corke & Thomas (2015),
Sangwan, Sengupta & Suchandra (2017) and Benton & Visbal (2020).

Given our interest in the DSV inception, the present analysis can benefit from the
incorporation of modern indicators of flow separation. Over several decades, researchers
recognized the paramount importance of the flow parameters at the leading edge as a
factor in the DSV initiation (Evans & Mort 1959; Ekaterinaris & Platzer 1998; Ramesh
et al. 2018). These parameters serve as indicators of massive flow separation, allowing
the construction of dynamic stall models (Ramesh et al. 2014; Eldredge & Jones 2019)
and the definition of control strategies for mitigation of the DSV (Chandrasekhara 2007;
Sedky, Lagor & Jones 2020). A particular flow parameter that gained popularity recently
is that from Ramesh et al. (2014), termed the leading edge suction parameter (LESP).
By calculating the first term, A0, of the Fourier series for the distribution of a vortex
sheet along the camber line using thin aerofoil theory, the previous authors observed that
the aerofoil can support a maximum amount of leading edge suction. When this limit
is exceeded, vorticity is released from the leading edge, giving rise to the dynamic stall
vortex.

For a specific aerofoil shape and flow Reynolds number, the LESP threshold has a
constant value, regardless of motion kinematics, as long as there is no trailing edge flow
separation. Under this assumption of attached flow, the instantaneous value of the LESP
can be calculated from unsteady aerofoil theory (Ramesh et al. 2014), which makes it
of particular interest for reduced-order modelling. However, since most occurrences of
dynamic stall exhibit some degree of trailing edge separation and flow reversal, researchers
are focused on better understanding the behaviour of this parameter (Narsipur et al. 2020;
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Hirato et al. 2021). In addition, different onset criteria and thoughts about the criticality of
the flow parameters have emerged in the literature. For instance, Deparday & Mulleners
(2019) observed that the critical values of the chord-normal shear layer height and the
aerofoil circulation were invariant with respect to the aerofoil motion, and thereby served
as better indicators of the dynamic stall onset. However, the effects of compressibility on
the applicability and reliability of these criteria were not assessed. In § 3.3, an assessment
of the LESP and chord-normal shear layer height criteria is presented to characterize onset
of the DSV for a periodic plunging aerofoil. Both indicators of DSV onset are evaluated
from the context of compressibility to verify their validity range.

Modal decomposition techniques are also applied in the context of dynamic stall to
offer a global perspective of the frequency dynamics in a spatially organized manner.
Eventually, these can provide suitable actuation parameters for flow control. The benefits
of the dynamic mode decomposition (DMD) (Schmid 2010; Tu et al. 2014) were shown
by Dunne, Schmid & McKeon (2016) for the identification of the time scales associated
with dynamic stall. Mohan, Gaitonde & Visbal (2016) combined the proper orthogonal
decomposition (POD) with DMD to identify transient energetic flow structures relevant to
dynamic stall. However, in their analysis, no attention was given to the inception of the
unsteady separation. Our work seeks to fill this gap. Hence DMD and its multi-resolution
variant (mrDMD) (Kutz, Fu & Brunton 2016) are used in § 3.4 to identify and characterize
the spatial structures that appear at specific frequencies during the onset of dynamic
stall, including compressibility effects. We show that there is considerable advantage in
applying the mrDMD due to the highly transient nature of the problem, where different
events have time scales that vary widely. This technique is able to represent the transient
or intermittent dynamics that the standard DMD fails to capture.

Other modal decomposition techniques have also been employed to investigate the
dynamic stall process. For instance, the empirical mode decomposition (EMD) was used
by Ansell & Mulleners (2020) to extract physically meaningful intrinsic mode functions,
and by Gupta & Ansell (2020) to identify the spectra of the velocity fluctuations near the
leading edge. Coleman et al. (2019) applied the parametric modal decomposition (PMD),
which provides globally optimized modes across the entire parameter space of a series of
experiments, and Melius, Cal & Mulleners (2016) applied POD to identify and quantify
relevant flow features related to the DSV. However, it is important to mention that one of
the main focuses of the present study is on dynamic stall onset, which is a phenomenon
occurring at a short temporal scale. Hence the mrDMD is the method of choice since it
is capable of extracting meaningful flow features at particular temporal windows. To the
authors’ knowledge, this is the first time that the mrDMD is applied in the context of
dynamic stall. Finally, after analysis of results from LES, empirical criteria for dynamic
stall onset and flow modal decomposition, the main conclusions are provided in § 4.

2. Methodology

2.1. Large eddy simulations
Large eddy simulations (LES) are performed to study dynamic stall onset, including
the effects of compressibility. This methodology is chosen based on extensive results
presented by Visbal and co-authors (Visbal 2011, 2014; Benton & Visbal 2018a,b, 2020;
Visbal & Garmann 2018). The compressible form of the Navier–Stokes equations is solved
in a non-inertial frame of reference using a curvilinear coordinate system. Wall-resolved
LES are carried out using O-type grids designed to capture accurately the dynamics of
viscous phenomena at the wall. The numerical scheme employed for spatial discretization
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is a sixth-order accurate compact scheme implemented on a staggered grid (Nagarajan,
Lele & Ferziger 2003). As discussed by Nagarajan et al. (2003), the staggered grid
arrangement outperforms the standard collocated one in terms of wavenumber resolution.
No explicit subgrid scale model is used in the simulations, but high-wavenumber filtering
is applied to the computed solution at prescribed time intervals to control numerical
instabilities. The sixth-order compact filter described by Lele (1992) is applied in the
calculations with proper treatment of wall boundaries as suggested in Visbal & Gaitonde
(2002). The transfer function associated with such filters has been shown to provide an
implicit approximate deconvolution based model (Mathew et al. 2003). Since a staggered
grid is employed, flow quantities are interpolated between grid nodes using a sixth-order
compact interpolation scheme (Nagarajan et al. 2003).

For time integration of the flow equations, an explicit third-order compact storage
Runge–Kutta scheme (Kennedy, Carpenter & Lewis 2000) is applied far from solid
boundaries, and an implicit modified second-order Beam–Warming scheme (Beam &
Warming 1978) is used in the near-wall region to overcome the time step restriction
typical of wall-resolved LES. Sponge layers and characteristic boundary conditions
based on Riemann invariants are applied along the far field boundaries, and adiabatic
no-slip boundary conditions are applied at solid boundaries. Flow periodicity is enforced
along the spanwise direction. The compressible equations are solved in non-dimensional
form, where length, velocity components, density, pressure and temperature are
non-dimensionalized by the aerofoil chord c, freestream speed of sound a∞, freestream
density ρ∞, ρ∞a2∞, and (γ − 1)T∞, respectively. Here, T is the temperature and γ is
the ratio of specific heats. More details regarding the numerical formulation are given in
Nagarajan et al. (2003). In a non-inertial Cartesian system attached to the aerofoil, the
equations are written as

∂ρ

∂t
+ div(ρu′) = 0, (2.1)

∂(ρu′)
∂t

+ div (ρu′u′ + pI − τ ′) = −ρẌ (2.2)

and
∂E
∂t

+ div[(E + p)u′ − τ ′ · u′ + q] = 0, (2.3)

where X = (0, h(t), 0) is the position of the non-inertial frame, and primed quantities
represent variables measured with respect to the moving frame of reference. The total
energy and the heat flux for a fluid obeying Fourier’s law are

E = p
γ − 1

+ 1
2
ρ(u′ · u′ + Ẋ · Ẋ ) (2.4)

and
q = − μ

Rea Pr
grad T, (2.5)

respectively. Finally, the viscous stress tensor is given by

τ ′ = 1
Rea

[
2μS′ − 2

3μ div u′I
]
, (2.6)

where
S′ = 1

2 (grad u′ + (grad u′)T) (2.7)
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is the strain rate tensor, and Rea = Re/M∞ is the Reynolds number based on the speed of
sound. Assuming the medium to be a calorically perfect gas, the set of equations is closed
by the equation of state

p = γ − 1
γ

ρT. (2.8)

It is worth mentioning that the code used in the present study has been validated previously
for dynamic stall simulations by Ramos et al. (2019).

2.2. Dynamic mode decomposition
Dynamic mode decomposition (DMD) (Schmid 2010; Tu et al. 2014) is a technique
that isolates the most dynamically significant modes containing low-rank flow structures
oscillating at a single frequency. The algorithm employed here builds upon the singular
value decomposition (SVD) of the snapshot data and computes a finite-dimensional
approximation of the infinite-dimensional Koopman operator (Tu et al. 2014).

In the algorithm, the dynamical system (which can be nonlinear) is reconstructed as a
linear best-fit (least-squares) approximation X ′ ≈ AX , with matrices X and X ′ ∈ Cm×n−1,
and we store the snapshots in columns as follows:

X =
⎡
⎣x1 x2 . . . xn−1

⎤
⎦ and X ′ =

⎡
⎣x2 x3 . . . xn

⎤
⎦ . (2.9a,b)

Here, xi, i = 1, 2, 3, . . . , n, represent the snapshots, m is the number of grid points,
and n is the total number of snapshots. Then the best-fit linear operator A and its
eigendecomposition are evaluated to extract the DMD modes Φ. The initial amplitudes
of the individual modes, bk, are computed such that the system can be approximated by

x(t) ≈
r∑

k=1

φk exp(ωkt) bk = Φ exp(Ωt) b, (2.10)

where ωk = ln(λk)/Δt and Ω is a diagonal matrix whose entries are the ωk values. The
full algorithm is described in more details in Appendix A. This classical DMD approach
has been used for analysing unsteady flow features in several applications, for example in
jets (Semeraro, Bellani & Lundell 2012), cavities (Seena & Sung 2011), wakes (Muld,
Efraimsson & Henningson 2012) and detonation waves (Massa, Kumar & Ravindran
2012), and also in dynamic stall (Dunne et al. 2016; Mohan et al. 2016), as mentioned
earlier. In this work, we also employ a recent variation of DMD labelled as multi-resolution
DMD (mrDMD).

2.3. Multi-resolution dynamic mode decomposition
This algorithm variant consists of a recursive computation of DMD to remove
low-frequency, or slowly varying, features from the collection of snapshots (Kutz et al.
2016). Its primary advantage stems from its ability to separate long-, medium- and
short-term trends in data. The resulting output, then, provides a means to better analyse
transient or intermittent dynamics that the normal DMD fails to capture. Furthermore, the
mrDMD is able to handle translational and rotational invariances of low-rank embeddings
that are often undermined by other SVD-based methods.
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In a wavelet-based manner, the time domain is divided into two segments recursively
to create multiple resolution levels until a desired termination. Since only the lowest
frequencies are removed from each bin, data can be sub-sampled to increase computational
efficiency. Denoting by L, J and ml the number of decomposition levels, temporal bins per
level, and modes extracted at each level l, respectively, the dynamical system is expressed
as

x(t) =
L∑

l=1

J∑
j=1

ml∑
k=1

f l,j(t)φ
(l,j)
k exp(ω

(l,j)
k t) b(l,j)

k . (2.11)

In the expansion above, f l,j(t) is an indicator term that acts as a sifting function for each
temporal bin and is defined as

f l,j(t) =
{

1, t ∈ [tj, tj+1],
0, elsewhere,

with j = 1, 2, . . . , J and J = 2(l−1). (2.12)

Artificial high-frequency oscillations may be introduced by the hard cutoff of the time
series in each sampling bin, but they are naturally filtered out by the lowest frequency
selection during the recursion. For a detailed description of the mrDMD algorithm, the
reader is referred to Kutz et al. (2016).

3. Results

Two different freestream Mach numbers are investigated in this work to assess
compressibility effects on deep dynamic stall of a periodic plunging aerofoil. Simulations
are performed for M∞ = 0.1 and 0.4, the former also being studied by Visbal (2011),
Mohan et al. (2016) and Ramos et al. (2019). Mesh refinement and domain extension
studies are discussed by the references previously cited, and in the present work we employ
the grid resolution used by Ramos et al. (2019), which has 480 × 350 × 96 (≈ 16 million)
points along a z/c = 0.4 span. An extensive literature (see, for instance, Visbal 2011;
Visbal & Garmann 2018; Benton & Visbal 2019, 2020) provides compelling evidence that
this spanwise extension is sufficient to capture accurately the aerodynamic loadings and
the relevant dynamics associated with the dynamic stall onset. The studied configuration
comprises an SD7003 aerofoil at α0 = 8◦ static angle of attack. The aerofoil trailing edge
is rounded with an arc of radius r/c = 0.0008 to facilitate the use of an O-mesh topology
and to keep metric terms smooth.

It is worth mentioning that in this work, we employ the numerical method and grid used
by Ramos et al. (2019) for the M∞ = 0.1 flow, whose results compare well with those
from Visbal (2011), in terms of both local flow structures and integrated loads. However,
in order to validate the results for M∞ = 0.4, a refined grid of size 576 × 444 × 120 (≈ 31
million points) was designed to have 25–40 % improvement in resolution on the suction
side, depending on the direction, after a localized distribution of points. Computations
showed an excellent agreement between the two grids, hence results will be shown only
for the smaller grid.

The aerofoil vertical displacement h(t) is specified as a function of non-dimensional
time t, reduced frequency k, and maximum plunge amplitude h0, as

h(t) = h0 sin(2kt). (3.1)

Here, the parameters are set as k = 0.25 and h0 = 0.5 to reproduce the deep stall flow
configuration studied by Visbal (2011) and Ramos et al. (2019). Although the numerical
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Figure 1. (a) Lift, (b) drag and (c) pitching moment coefficients, as functions of the effective angle of attack
for M∞ = 0.1 and 0.4. Dashed blue lines are phase-averaged results from Visbal (2011), and dashed red lines
are results for M∞ = 0.4 with a finer grid. Circle and cross symbols represent onset time based on LESP and
Δz criteria, respectively (see § 3.3).

formulation uses a non-dimensionalization of flow velocities and time scale by speed
of sound, the parameters in (3.1) are based on the freestream velocity, similar to the
previous references. The maximum plunging amplitude is normalized by the chord length
and the aerofoil undergoes a variation in effective angle of attack in the range −6◦ ≤
αeff ≤ 22◦.

For the present plunging aerofoil at M∞ = 0.1, Ramos et al. (2019) show that
discarding the first cycle is sufficient to remove transient features from the numerical
procedure, which assumes an initial uniform flow in the entire domain. We performed
the computation of another cycle for M∞ = 0.4 and observed similar changes in the
aerodynamic coefficients compared to those shown by Ramos et al. (2019). Hence results
are shown for the second cycle, and although cycle-to-cycle variations indeed occur,
we emphasize that the effort here is to focus on the onset of dynamic stall, where one
cycle should be sufficient to capture the main trends associated with the formation of
the DSV. Phase-averaged results of this case can be found in Visbal (2011) and Ramos
et al. (2019), and the effects of cycle-to-cycle variations are discussed by the latter
authors. It is also important to note that, differently from the previous references, here
we define the reference position for the phase angle φ = 0◦ at h(t) = 0 and not at the
topmost position h(t) = h0 = 0.5. Therefore, at φ = 0◦, the aerofoil is moving upwards
with maximum vertical velocity. The aerofoil reaches the top-most position at φ = 90◦
with zero vertical velocity, and then starts the descending motion. At φ = 180◦ it has the
maximum downward velocity, and at φ = 270◦ it reaches the bottom-most position. Then
it moves upwards and repeats the cycle.

3.1. General flow features
Figure 1 shows the lift (Cl), drag (Cd) and pitching moment (Cm) coefficients as functions
of the effective angle of attack for freestream Mach numbers M∞ = 0.1 and 0.4. The
dashed blue lines indicate the phase-averaged coefficients obtained by Visbal (2011) after
six cycles, for M∞ = 0.1. From this figure, good agreement is observed between the
present results and those from Visbal, despite the differences in the numerical methods,
computational grids and phase-averaging effects. At this point, it is important to reiterate
that our results display the aerodynamic loadings for a single cycle, and that they lie within
the cycle-to-cycle variations shown in Visbal’s work. The dashed red lines, in turn, stand
for the results obtained by one cycle of the M∞ = 0.4 flow with the finer grid. Differences
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Figure 2. Spanwise-averaged pressure coefficients at different flow instants for (a) M∞ = 0.1, and (b)
M∞ = 0.4; and (c) Cp over the aerofoil suction side. The evolution of the DSV can be seen in a movie
(supplementary movies are available at https://doi.org/10.1017/jfm.2022.165).

observed are due to the sensitivity of the flow to the initial conditions, as would occur due
to cycle-to-cycle variations. The phase angle φ is also shown in the plots for particular
instants of the motion, and the circle and cross symbols on the Cl and Cd plots mark the
dynamic stall onset time based on different criteria (further details are provided in § 3.3).
It is observed that compressibility acts on the sense to attenuate the aerodynamic loads in
the hysteresis loop while maintaining their maximum and minimum values, a trend that
was also observed by Sangwan et al. (2017) for a two-dimensional simulation of a pitching
aerofoil. Here, we observe that the largest changes in Cl and Cd occur when the effective
angle of attack is reduced from αeff ≈ 18◦ to 10◦, which corresponds to the time interval
when the aerofoil is ceasing its downstroke motion. At αeff = 8◦, the aerofoil is at the
bottom-most position for the downstroke.

These results, especially the accentuated decay of the coefficients during the post-stall
period with the increasing Mach number, can be understood better from figures 2 and 3.
The former exhibits the spanwise-averaged pressure coefficient (Cp) contours at different
flow instants for the two Mach numbers investigated (figures 2a,b) and its distribution
over the aerofoil suction side (figure 2c). The formation of the DSV is also shown in
grey shading using a flow entropy measure defined as ( p/p0)/(ρ/ρ0)

γ − 1, where p0 =
1/γ and ρ0 = 1 are reference values for pressure and density, respectively. This entropy
measure gives a better visual representation of the separated flow since it indicates the
regions where entropy is changing due to viscous effects. Figure 3 presents the full history
of pressure (Cp) and skin friction (Cf ) coefficients along the suction side of the aerofoil.

From figure 2, two observations can be drawn immediately. The first is that the suction
peak is reduced near the leading edge for the higher Mach number flow, as demonstrated in
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Figure 3. Comparison of (a,b) pressure and (c,d) skin friction coefficients for (a,c) M∞ = 0.1 and (b,d)
M∞ = 0.4. Auxiliary lines and markers are included to facilitate the comparison between the two flows and to
represent specific events as described in the text.

figure 2(c) for t = 4.5. This condition is accompanied by a weaker, more diffuse, pressure
core of the DSV. The second observation concerns the gestation period and residence time
for which the DSV remains over the aerofoil. Heuristic reasoning to explain the weakening
of the DSV strength with compressibility is provided by Chandrasekhara & Carr (1990).
They argue that for higher Mach numbers, the pressure gradient is reduced near the leading
edge due to the smaller curvature of the streamlines from the earlier flow separation. At this
condition, the net vorticity introduced is lower, which leads to a weaker vortex formation.
With respect to the second observation, figure 2 shows that the DSV residence time is
smaller for M∞ = 0.4, and that it is more spread at t = 6.5, spanning a larger region
over the aerofoil suction side. On the other hand, the DSV is relatively concentrated at
the mid-chord location for the lower Mach number case. At t = 7.5, the DSV is already
leaving the aerofoil surface for the higher Mach number flow, followed by a trailing edge
vortex.

The same conclusions can be drawn from the map of Cp over the aerofoil suction side,
depicted in figures 3(a,b). In this x/c–t diagram, the dark blue contours represent the
signature of the DSV over the aerofoil suction side followed by the formation of the trailing
edge vortex. We observe that the Cp contours are lighter for M∞ = 0.4 (see marker 4
in the figures), indicating the presence of a weaker pressure core. Moreover, with closer
inspection, it is possible to measure a delay of 17◦ in the phase angle between the formation
of the trailing edge vortex for the two Mach number flows, as indicated by the horizontal
black lines on marker 5. The solid and dashed horizontal lines show the initial formation
of the trailing edge vortex for the M∞ = 0.1 and 0.4 cases, respectively. While the trailing
edge vortex starts to form at φ = 213◦ for M∞ = 0.4, its appearance occurs at φ = 230◦
for M∞ = 0.1.
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Figure 4. Entropy contours showing the development of Kelvin–Helmholtz instabilities (here called the
primary instability stage) along the aerofoil suction side for (a) M∞ = 0.1, and (b) M∞ = 0.4.

The Cf plots in figures 3(c,d) present further information about the flow history over
the suction side of the aerofoil. At about 90◦ phase angle, an oscillatory pattern appears
close to the aerofoil trailing edge as shown by marker 1. These oscillations arise due to
initial shedding of von Kármán vortices from the aerofoil trailing edge, which exhibit a
higher frequency at the lower Mach number flow. This vortex shedding can be visualized
better in a movie (see supplementary movies). In the following moments, high-frequency
Cf variations can be observed spanning almost the entire chord (denoted by marker 2) in
the range 120◦ < φ < 130◦ for both flow conditions, but they are more pronounced for
the M∞ = 0.1 case. These fluctuations are due to Kelvin–Helmholtz instabilities forming
during the downstroke motion. Figure 4 shows this primary instability stage of the flow
at different instants using entropy contours. As is evident, initially the instabilities arise
closer to the trailing edge, but they develop rapidly along the entire suction side. They
appear to form at an earlier time for the lower Mach number and exhibit a more organized
and denser behaviour where flow structures display a higher wavenumber.

For both cases investigated, the formation of the dynamic stall vortex appears just after
the Kelvin–Helmholtz instabilities approach the leading edge, at phase angle φ ≈ 135◦,
shown by marker 3 in figure 3. In the same figure, the travelling signature of the DSV
is shown by the negative Cf values shown in blue contours along the aerofoil chord for
intermediate phase angles φ. Auxiliary black lines are included to facilitate the comparison
of the mean velocity at which the DSV is being transported for each compressible regime.
The lines represent an approximate path of the DSV when moving, considering the centre
of the blue region. The solid line corresponds to the DSV signature of the M∞ = 0.1 flow,
while the dashed line refers to the M∞ = 0.4 case. They are repeated in both subplots to
facilitate the comparison of their slopes, and show that the DSV is being advected faster in
the higher Mach number flow. The weaker signature of friction coefficient for M∞ = 0.4
is also noticeable compared to that for M∞ = 0.1.

The skin friction maps in figure 3 also display the presence of a flow reversal at earlier
times that progressively advances over the aerofoil suction side from the trailing edge
towards the leading edge as φ increases. This region appears for φ ≤ 120◦ in light blue
contours, below markers 1, 2 and 3. The time (here also visualized as a function of the
plunge cycle angle φ) in which the flow reversal initiates does not appear to change under
the distinct compressible regimes investigated. The main differences in Cf between the
two flows start after the beginning of the primary instabilities (marker 2), which are more
sparse for the higher Mach number flow. As mentioned before, the transport of the DSV
over the suction side is faster for M∞ = 0.4, and its signature is more diffuse. Moreover,
the point where the development of the DSV occurs changes from approximately x/c =
0.1 for M∞ = 0.1 to x/c = 0.2 for M∞ = 0.4 (see different positions of marker 3).
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Figure 5. Spanwise-averaged z-vorticity field near the leading edge (x/c ≤ 0.25) revealing the sudden
boundary layer separation for (a) M∞ = 0.1, and (b) M∞ = 0.4. Dashed and solid lines represent the
boundaries for which u = 0 and v = 0, respectively, indicating flow regions where velocity components change
direction.

This behaviour can be understood better through an inspection of the boundary layer
forming over the aerofoil suction side.

3.2. Onset of dynamic stall
Figure 5 shows the spanwise-averaged z-vorticity contours in a short time window that
marks the moment of formation of the DSV. As can be seen from the figure, Δt = 0.3
based on the freestream velocity, which corresponds to nearly 2.4 % of the plunging cycle
period. Unlike for steady separation, in dynamic stall the outer flow continues to follow
the aerofoil contour despite the presence of flow reversal. As a consequence, a local shear
layer forms between the displaced leading edge boundary layer and the reversed fluid layer
that is, at a later stage, subjected to inflectional instabilities. This leads to the generation
and growth of coherent structures that can be visualized in figure 5 and in a movie (see
supplementary movies). In the figure, auxiliary lines are plotted to indicate regions where
u- and v-velocity components change direction, from which we identify the presence of
flow reversal and the shear layer over the leading edge.

In previous work by van Dommelen & Shen (1980), it is speculated that the onset of
the unsteady separation phenomenon is an inviscid process, independent of the Reynolds
number. This characteristic is attributed to the fact that the initial flow reversal near the
surface, which is triggered by a strong adverse pressure gradient, is later governed by
inertial effects on the zero-vorticity line. Along this line, formed as the fluid approaches
the separation region, the convective terms dominate the viscous effects, justifying the
inviscid assumption. Under the influence of the increasing adverse pressure gradient, the
local reversed flow begins to accelerate rapidly upstream near the leading edge region,
generating an intense shear. Because of the presence of the solid surface, fluid is propelled
away from the wall. Meanwhile, the vorticity conservation yields an outward distortion
of the zero-vorticity line, destabilizing the local vorticity distribution and resulting in the
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Figure 6. Local Mach number contours near the leading edge (x/c ≤ 0.25) for (a) M∞ = 0.1, and (b)
M∞ = 0.4. White dashed lines represent the zero-vorticity lines, and solid red lines represent regions of sonic
flow.

formation of a large vortical structure. The development of this vortex and its induced
secondary separation leads to its ejection from the surface.

The process described above is visualized in figure 6 and in a movie (see supplementary
movies), where the local Mach number is plotted along with the zero-vorticity lines during
the dynamic stall onset. In this figure, a straight line measuring 0.06c in length is plotted
normal to the aerofoil surface, from which tangential and normal velocity components are
computed to describe the evolution of the local velocity field. The placement of these lines
is chosen in order to highlight similar behaviour of the velocity field at t = 4.4, but since
separation occurs at different chord positions depending on the freestream Mach number,
they are placed at different distances from the aerofoil leading edge for each flow. The
values x/c = 0.11 and 0.15 are chosen for M∞ = 0.1 and M∞ = 0.4, respectively. We
stress that these values are meant not to indicate the precise location of the separation,
but only to help to illustrate the van Dommelen and Shen model. With that clarification,
figure 7 shows the profiles of tangential (ut) and normal (un) velocity components in blue
and red, respectively. The corresponding vectors are also displayed in the figure. The tail
of each vector is placed at the respective normal distance where its velocity components
are shown.

In figure 6, the flow continues to accelerate up to a point further downstream of the
leading edge where it encounters the reversed flow accelerating along the inner layer in
the opposite direction. This acceleration is also evident in the increment of the tangential
velocity between the first and second columns in figure 7. In this region, a mutual
interaction is apparent between the outer flow and the flow inside the zero-vorticity line
to form a low-pressure core (not shown). At M∞ = 0.4, the strong acceleration of the
reversed flow is sufficient to achieve sonic speeds along the zero-vorticity lines (red
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Figure 7. Tangential (ut, blue) and normal (un, red) velocity profiles for (a) M∞ = 0.1, and (b) M∞ = 0.4.

lines in figure 6 represent regions of M = 1). The flow, however, is decelerated almost
isentropically, and no shock waves are observed despite the sonic flow regions. The strong
shear accompanied by the low pressure on the aft portion of the separation region results
in the flow reversal being ejected away from the surface, as shown by the velocity vectors
in the third and fourth columns of figure 7. The interaction of the ejected flow with the
outer flow creates a vortical structure that intensifies the instabilities in the region. The
dynamics observed in figures 5 and 6 appear to agree well with the overall concept of the
van Dommelen and Shen model, which provides the description of the flow up to the early
stages of separation.

As observed from the previous figures, the onset of the DSV appears further downstream
from the leading edge with an increase in Mach number, as was also reported by
Chandrasekhara & Carr (1990) and Benton & Visbal (2020) for pitching aerofoils. In their
work, compressibility caused the leading edge separation to occur at an earlier time and,
consequently, at a lower effective angle of attack. Therefore, the separation for higher
Mach number flows would experience a less pronounced curvature of the streamlines
and a weaker pressure gradient. However, this earlier separation is not observed in our
simulations at Re = 6 × 104, suggesting that the pressure gradient reduction may not be
a direct consequence of the lower effective angle of attack. It is important to mention
that the observations from the previous authors are for higher Reynolds numbers than that
considered in the present work.

For the present periodic plunging motion, the leading edge separation seems to be
related to the primary instabilities developing at the trailing edge region and, later,
spanning the entire aerofoil suction side as shown in figure 4. These instabilities approach
the leading edge and interact with the secondary instability presented in figures 5 and
6. Notice that the term ‘secondary instability’ does not refer to the jargon commonly
used in classical stability analysis. This term is used here only to differentiate the leading
edge instability from the Kelvin–Helmholtz one. In particular, we notice from figure 4
that the primary instabilities reach further upstream for the M∞ = 0.1 case. On the other
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(×10−4)

Figure 8. Pressure gradient contours (blue and red) in the streamwise ξ direction and contours of entropy
(transparent shading) for (a) M∞ = 0.1,and (b) M∞ = 0.4, at t = 4.25.

hand, for M∞ = 0.4, a wider favourable pressure gradient region along the leading edge
causes the formation of secondary instabilities to be shifted downstream over the aerofoil
suction side and slightly delayed in time (see the first two columns of figure 5). This is
illustrated in figure 8, which shows the instantaneous covariant derivative of pressure along
the aerofoil. The variable ξ = ξ(x, y) is the curvilinear coordinate of the O-mesh topology,
which goes along the aerofoil profile, and dξ/|dξ | is introduced to remove the influence of
the mesh orientation of the covariant derivative. The basis of the curvilinear system is also
normalized to yield a scale in physical units. As discussed in the literature (Li et al. 2019),
compressibility has a stabilizing effect that delays the laminar to turbulence transition in
free shear flows. Here, the mechanism appears to be similar, although the plunging motion
together with the surface presence lead to a more complex flow.

Given the importance of the pressure gradient on the dynamic stall onset, we display the
pressure gradient history along the ξ direction over the aerofoil suction side in figure 9.
The saturation level is kept high to call attention to the features marked in the figure. As
can be confirmed from the movie (see supplementary movies), von Kármán vortices are
shed from the aerofoil trailing edge before the primary instability stage. These vortices
induce flow fluctuations that are scattered by the trailing edge generating acoustic waves
that propagate upstream. These waves are perceived as the white ribbons in marker 3. The
traces of the acoustic waves start at φ ≈ 60◦ and can be observed up to φ ≈ 120◦. The
black arrows are tangent to their traces, and it is possible to conclude that for the M∞ = 0.4
flow, the acoustic waves propagate upstream at a lower speed than for M∞ = 0.1 due to
the Doppler effect. Moreover, the larger thicknesses of the ribbons reflect the fact that the
frequency at which the acoustic waves are generated is lower for M∞ = 0.4. The arrows
also show the path taken by a particular wave that coincides with the inception of the
Kelvin–Helmholtz instabilities for each flow (the latter being represented by marker 2).
The black circles in both subplots are positioned in the same spatio-temporal coordinates,
emphasizing that the mechanism that creates the primary instability originates from the
trailing edge at the same time for the two compressible regimes. However, since the
upstream propagation speed of the acoustic wave is lower for the higher Mach number,
the perturbation takes longer to reach x/c = 0.65, where the Kelvin–Helmholtz instability
starts. This chord location appears to be the same for both flows and is represented
by the vertical dashed line in each subplot. In the region of marker 2, we observe the
Kelvin–Helmholtz instabilities that, analogously to what happens with the acoustic waves,
display a lower frequency for M∞ = 0.4.

Shih, Lourenco & Krothapalli (1995) pointed out that although a flow reversal extends
from the trailing edge over the aerofoil suction side, there was insufficient time for this flow
to reach the leading edge region. Therefore, they postulated that the flow reversal near
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Figure 9. History of pressure gradient in the ξ direction over the aerofoil suction side for (a) M∞ = 0.1,
and (b) M∞ = 0.4. Panel (c) shows the pressure gradients computed along the horizontal green line, which
corresponds to t = 4.25.

the leading edge and the eventual initiation of the unsteady separation were essentially
local phenomena. The trailing edge, in turn, was considered responsible for influencing
the separation indirectly, through the increase of global circulation around the aerofoil
by shedding counter-rotating vorticity into the wake. In our compressible simulations,
the importance of the trailing edge lies in what appears to be the acoustic triggering of
Kelvin–Helmholtz instabilities, but it is unclear whether the trailing edge is of secondary
importance to the onset of the DSV. The Kelvin–Helmholtz instabilities occur due to shear,
but our results suggest that the trailing edge acoustics might act as an initial disturbance
that triggers the formation of such instabilities. Moreover, at marker 1 in figure 9, we see
that the onset of the DSV occurs at nearly the same time for the two regimes, as do the
acoustic waves that possibly trigger the primary instability. Since these latter propagate
at different speeds, this means that the acoustic disturbance does not influence directly
the dynamic stall onset. On the other hand, separation occurs only when the primary
instability reaches the leading edge region, and the trailing edge seems to be important
in the generation of this primary instability. Other studies (Benton & Visbal 2020) have
shown that the turbulent separation from the trailing edge can play an important role in
the dynamic stall onset depending on the flow configuration. However, such trailing edge
separation is not present in our results.

In order to better assess the differences in pressure gradient between the two flows,
we plot the values of the ξ pressure gradient component over the horizontal green line
displayed in figure 9, which corresponds to t = 4.25. The time instant is the same as
that shown in figure 8, which displayed a wider region of favourable pressure gradient
along the leading edge for M∞ = 0.4. This more extensive region of favourable pressure
gradient delays the formation of secondary instabilities in the higher Mach number case.
From the figure, we can see that the adverse pressure gradient region (positive values) is
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(a) (b) M∞ = 0.4M∞ = 0.1

Figure 10. Iso-surfaces of q-criterion coloured by x-momentum for (a) M∞ = 0.1, and (b) M∞ = 0.4,
computed at t = 4.4.

shifted downstream from the leading edge at higher Mach number. We also notice that
the magnitudes of the pressure gradient fluctuations are higher for the M∞ = 0.1 case.
In addition, high frequency oscillations and a strong peak appear close to the leading
edge for M∞ = 0.1. These are related to the beginning of the destabilization of the local
vorticity distribution described by the van Dommelen and Shen model. Finally, this plot
provides another interesting observation about the wavelengths of the Kelvin–Helmholtz
instabilities: for the higher Mach number case, longer wavelengths are observed near the
trailing edge region (say x/c > 0.6), while shorter ones can be seen around the mid-chord.
For the lower Mach number flow, on the other hand, the wavelengths appear to be more
uniform. Since our results are presented in terms of spanwise-averaged quantities, this fact
possibly indicates a higher three-dimensionality of the flow structures close to the trailing
edge for M∞ = 0.4.

In a recent work by Benton & Visbal (2020), simulations of a static NACA 0012
at 8◦ angle of attack and Re = 106 showed the presence of a wider spectrum of
three-dimensional (oblique) modes in the transition process at the leading edge as
compressibility was increased. Based on their observations, we investigate the presence
of three-dimensional disturbances in the flow for the current plunging aerofoil. Results are
shown in figure 10, where iso-surfaces of q-criterion Q = 1/2(‖Ω‖2 − ‖S‖2), coloured
by x-momentum, are plotted over the aerofoil suction side. The figure is presented for
t = 4.4, which corresponds to a moment before the ejection of the first leading edge
vortex (see third column of figure 6). Results show that the higher Mach number flow is
more three-dimensional along the entire aerofoil suction side. Given the quicker breakup
of spanwise coherence of Kelvin–Helmholtz instabilities for M∞ = 0.4, it could be that
non-normality plays an important role in this case. Even the leading edge vortices related to
the secondary instability mechanism display spanwise modes at this higher Mach number.
On the other hand, the rolls of the M∞ = 0.1 flow are mostly two-dimensional, except
close to the trailing edge where transition sets in.

3.3. Analysis of empirical criteria for dynamic stall onset
As discussed by Ramesh et al. (2014), the LESP A0 can be used to indicate the onset of
the DSV, which occurs when the maximum value of this parameter is achieved. According
to Deparday & Mulleners (2019), the LESP can be computed directly from numerical or
experimental data as

A0 = sgn[cos(λ− α)]

√
2
π

‖SLE‖|cos(λ− α)|. (3.2)

In (3.2), α is the effective angle of attack, and λ is the angle formed between the incoming
flow and the leading edge suction vector SLE. This vector is determined by integrating
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(a) (b)

λ

Figure 11. Schematic of the relevant parameters used in the calculation of (a) the LESP, and (b) an entropy
measure showing the evaluation of the chord-normal shear layer height.
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Figure 12. (a) LESP, and (b) chord normal shear layer height, for the aerofoil in periodic motion at
M∞ = 0.1 and 0.4.

the pressure signals along the first 10 % of the aerofoil chord. Hence SLE gives the net
force from the surface pressure integration. Here, the sign function is included to yield
a continuous result when cos(λ− α) goes from positive to negative, and vice versa.
A schematic representation of the terms used to evaluate A0 according to Deparday &
Mulleners (2019) is presented in figure 11(a). In this figure, the 10 % frontal portion of the
aerofoil chord is coloured blue, and the chord line is shown by a dashed line.

The temporal evolution of the LESP for the periodic aerofoil motion is shown in
figure 12(a) for the two Mach numbers investigated. Relevant values of the phase angle
φ are marked in the figure, and the green and purple dots are the LESP thresholds, plotted
along with their respective coordinates (t, A0). The green dots represent the first local
maxima found in A0, while the purple dots show the global maximum. According to the
previous references, the global maximum should indicate the instant of the DSV onset.
However, we find here that the first local maximum provides a better estimate for the
onset. Deparday & Mulleners (2019) show that after the onset of the DSV, the LESP is
susceptible to fluctuations from the separated flow. Moreover, the secondary instabilities
develop downstream 10 % of the chord in the present flows. These characteristics
could impact on the calculation of the LESP, since they may lead to new maximum
values. Hence the green dots will be used to provide the time instant of dynamic stall
onset.

Comparing the blue and red lines from figure 12, which correspond to the values of A0
for Mach numbers M∞ = 0.1 and M∞ = 0.4, respectively, we notice that the maximum
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suction is reduced as compressibility increases. This is a consequence of the weaker
low-pressure core formed close to the leading edge during the onset of dynamic stall,
as shown in figure 2, which influences directly the magnitude of the suction vector.
Despite this observation, the dynamic stall onset occurs almost at the same time for both
Mach numbers.

The applicability and reliability of the LESP hinge upon a prior knowledge of the
critical thresholds of the leading edge suction as a function of the parameters of
the aerofoil motion. However, the dependency of this suction on the kinematics and
flow compressibility impairs its usage as a universal dynamic stall onset indicator for
several realistic flow applications. With the aim of overcoming this limitation, the shear
layer height criterion proposed by Deparday & Mulleners (2019) was shown to be a
more precise, motion-independent, indicator, although not easily accessible outside of a
laboratory environment. In this previous reference, the shear layer height was evaluated
through an averaged location of clockwise rotating shear layer vortices identified using
an Eulerian vortex criterion from the individual snapshots of the velocity field. Here,
as we know the values of all conserved variables from the numerical simulation, it is
possible to estimate the chord normal shear layer height, Δz, in a simpler manner. We
compute contours of an entropy measure and select a small threshold (0.05 in this case) as
a limit for the viscous region. A representation of the procedure is shown in figure 11(b),
where the blue region indicates the portion of the fluid within the limit where entropy
values change above the 0.05 threshold. Then uniformly distributed chord-normal lines
are drawn, and the distances from the aerofoil surface to the entropy contour boundary
are measured. These lines are represented in figure 11(b) in yellow, and their distances
are non-dimensionalized by the aerofoil chord. Here, 100 lines are used in the analysis,
but only a few appear in the figure for better visualization. If a given chord-normal line
intersects the limiting entropy level more than once – for instance, in the rightmost yellow
line in the figure – then a separate distance is computed for each intersection, and all such
distances are subsequently averaged out to obtain Δz.

The temporal evolution of Δz for the two Mach number flows is shown in figure 12(b).
From this figure, we see that during the lifetime of the dynamic stall vortex, the shear
layer height exhibits a high-frequency oscillatory behaviour. This is a consequence of
locally non-convex topological spaces formed when the flow is highly separated, causing
the normal lines to have multiple intersections. This noise, however, does not degrade the
capability of the method in finding the critical shear layer height since it is obtained by
the intersection of two linear fits. According to Deparday & Mulleners (2019), these fits
are comprised of the primary instability stage displayed by the dark grey line in figure 12,
and the vortex formation stage represented by the first slope crossing this line. To draw
the linear fits, a time window 3 ≤ t ≤ 4 is used for the dark grey line, while for the vortex
formation stage, the windows 4.5 ≤ t ≤ 6 and 4.5 ≤ t ≤ 5 are used for M∞ = 0.1 and
0.4, respectively. For our simulations, the instant of formation of the DSV is marked by
the intersection of the green with the grey dashed lines shown in figure 12(b).

The threshold value based on the shear layer height Δz ≈ 0.02 remains the same for
both Mach numbers. According to Deparday & Mulleners (2019), this critical value of
Δz is invariant with respect to the kinematics. For the present periodical motion, in the
absence of shock waves, we find that it is also invariant to the freestream Mach number.
Further analysis should be conducted to verify if shock-induced separation would alter this
threshold. Figure 12 indicates that at the time instant shown in the abscissa of the first local
maximum value of the LESP, a reasonable match is obtained with that computed by the
critical shear layer height. However, when the global maximum value of the LESP is used,
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it indicates a more advanced stage characterized by the roll-up of the shear layer into a
large-scale DSV as the onset point. Despite the small time lapse between results from the
two different methods, both answers are reasonable and consistent with the skin friction
maps of figure 3.

At this point, it is important to mention that to the present date there is no consistent
definition of ‘stall onset’ in the literature. For example, McCroskey (1981) defines it as the
regime where maximum lift is produced; Mulleners & Raffel (2012), on the other hand,
consider the point when the DSV detaches from the aerofoil surface. Here, we do not infer
a precise moment to the stall onset, but instead consider a range of possible values starting
from the time that the secondary instabilities initiate near the leading edge to that when
the DSV detaches. Some studies (see Deparday & Mulleners 2019; Narsipur et al. 2020)
reported that the LESP reaches its critical value well after the onset of instabilities near the
leading edge. From the perspective of an effective control strategy, it is important to predict
the stall onset before the DSV formation (Chandrasekhara 2007). Overall, our results for
LESP and Δz criteria agree reasonably well with the features seen in figures 5 and 6 (where
the secondary instabilities are shown), in the sense that the critical values lie inside or close
to this time interval. With increasing Mach number, however, both criteria indicate that the
onset occurs earlier in time. This is consistent with the observations from Chandrasekhara
& Carr (1990), who reported that increasing Mach number makes the DSV form at a
lower effective angle of attack and further downstream from the leading edge. However,
our simulations may not share this trend depending on how one defines the stall onset. By
inspection of either figure 5 or figure 6, it is possible to see that the instabilities appear
sooner for the Mach 0.1 case, but the detachment of the leading edge vortex comes after
that for Mach 0.4. Hence it is possible to conclude that both criteria are more closely
related to the definition of stall onset as being the time when the DSV detaches from the
aerofoil surface, which could be detrimental potentially to the effectiveness of dynamic
stall control.

3.4. Modal analysis
Modal decomposition is now performed using the flow snapshots to identify the relevant
flow dynamics related to stall onset in terms of low-rank features. As noted earlier,
several different types of such decompositions exist, each with its own benefits and
shortcomings. Typically, these approaches assemble snapshots in time and extract modes
and corresponding eigenvalues, whose interpretation depends on the underlying theory.
The benefits of applying modal decomposition in general, and DMD in particular, to
examine dynamic stall may be found in Dunne et al. (2016), Mohan et al. (2016) and Ramos
(2019). For DMD, the modes and corresponding eigenvalues obtained in the manner
of §§ 2.2 and 2.3, and Appendix A, represent a decomposition into coherent structures,
each associated with a magnitude, growth or decay rate and characterized by a specific
frequency.

The transient nature of the current problem, where some phenomena such as stall onset
are relatively rapid and dominant in a short time range of the imposed period, motivates
the need for special care in the interpretation of the results. Indeed, as shown in this
section, application of the original DMD as in the cited references is problematic for the
current dataset; this motivates the adoption of the relatively more recent multi-resolution
variant (mrDMD), whose properties are more suited to datasets where the condition of a
zero-mean second-order stochastic process is not appropriate.
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Mode 72
St = 2.37247

Mode 194
St = 4.18742

Mode 102
St = 5.34065

Mode 79
St = 6.38883

Mode 68
St = 3.13774

Mode 103
St = 3.96118

Mode 118
St = 4.69651

Mode 143
St = 6.66348

M∞ = 0.4

M∞ = 0.1

(a)

(b)

Figure 13. DMD modes for (a) M∞ = 0.1, and (b) M∞ = 0.4, for the periodic motion.

In the standard DMD algorithm, the resulting modes can be ranked by either mode
frequency or amplitude. Here, we chose to rank the modes in decreasing order by their
amplitudes bj from (2.10), with j being the index of the mode. A collection of 1024
snapshots of pressure coefficient is used to build the matrices X and X ′ (details of the
algorithm are provided in Appendix A) within a time period π/k, corresponding to a
full cycle of the aerofoil motion, where k � πfc/U∞ = 0.25 is the reduced frequency.
Analogously to the observation of Dunne et al. (2016) and Mohan et al. (2016), when
ranked by their amplitudes, the first modes exhibit frequencies that may be associated with
the harmonics of the imposed motion. Here, we leave the discussion of these harmonics
to Appendix B because, despite giving a global perspective about the effects of increasing
compressibility on dynamic stall, the harmonics by themselves do not elucidate the
underlying physics associated with the dynamic stall onset. To fill this gap, we search
for modes that emphasize the contribution to the dynamics near the leading edge.

Some selected modes are presented in figure 13 together with their respective
frequencies. The modes are arranged so that similar events can be compared for the two
Mach numbers. Here, we stress that the results obtained from the classical DMD approach
provide no guarantee that similar dynamical mechanisms are being compared. Indeed,
there is no a priori assumption that similar mechanisms should exist at the two Mach
numbers. Thus, by similar events, we mean that the spatial distributions of the modes
are comparable. Therefore, the rationale behind the selection of the DMD modes is the
presence of a spatial distribution that could be associated with the DSV onset. After
obtaining the DMD modes, we selected those whose spatial distributions are related to
the primary instability stage or to the separation process. However, since there are several
modes that fit these requirements, we select the one with similar spatial distribution and
frequency, but largest initial amplitude. We arrive at the four frequencies for each Mach
number in figure 13 by simply applying the above procedure starting from the lowest
frequency. Then the pairing frequencies between the two Mach number flows appear
naturally in the course of the process. Note that the growth rates of the modes are not
shown because they are not representative of a linear stability analysis in this case, and
saturation yields eigenvalues close to the unit circle.

The standard DMD algorithm essentially combines data from all snapshots; for example,
as shown in figure 13, all modes containing coherent structure information near the leading
edge also include the influence of the flow from post-stall stages. Coloured regions away
from the aerofoil surface in all subplots are a remnant indication of the passage of the DSV.
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�t: 3.9–4.3 (lvl 6, bin 11)
St = 8.8

�t: 4.3–4.7 (lvl 6, bin 12)
St = 7.0

�t: 4.5–4.6 (lvl 8, bin 47)
St = 20.9

�t: 4.5–4.6 (lvl 8, bin 47)
St = 40.7

�t: 3.9–4.3 (lvl 6, bin 11)
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�t: 4.3–4.7 (lvl 6, bin 12)
St = 6.7
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St = 20.2
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St = 40.7

M∞ = 0.4

M∞ = 0.1

(a)

(b)

Figure 14. DMD modes obtained from the mrDMD algorithm for (a) M∞ = 0.1, and (b) M∞ = 0.4, for the
periodic motion.

They arise from the fact that the extracted modes exist throughout the entire temporal
window analysed, which impairs the capacity of the algorithm to highlight events that
may be dominant only in a finite time window of the cycle. The signature of such events is
effectively spread out over the cycle and complicates the interpretation of the DMD modes.
This issue is also related to the inefficacy of SVD based approaches to extract low-rank
dynamics from data with translational and rotational invariance, as discussed in the work
of Kutz et al. (2016), where the mrDMD algorithm is proposed.

Despite these limitations, some useful observations can still be drawn from these modes.
For instance, the intense structures close to the aerofoil surface, especially around the
leading edge region, are shifted slightly downstream for the M∞ = 0.4 case. The results
also suggest that the frequencies of the structures associated with dynamic stall onset
between the two Mach number flows are similar and range from St ∼ 1 to St ∼ 40. In
figure 13, only a few modes are shown, so it does not cover all frequencies mentioned in
that range. Moreover, these values are not precise as they are derived from a nonlinear
collection of snapshots, and provide only a perception of the order of magnitude of the
frequencies at play during the dynamic stall onset. The persistence of the flow structures
and their corresponding frequencies across the compressible regimes investigated indicate
a possible correlation of mode shapes from a parametric modal decomposition perspective,
as reported by Coleman et al. (2019).

The limitations of the standard DMD are now lifted by applying the mrDMD algorithm
proposed by Kutz et al. (2016). Using the same procedure as before and the binning
technique of § 2.3, some of the most interesting modes are presented in figure 14. In the
multi-resolution approach, the modes are no longer ranked by their amplitude so that,
instead of showing the index of a given mode, it is more suitable to discuss the resolution
level and the bin where it resides. For clarity, the levels and bins are converted into
their equivalent time periods Δt and the modes are judiciously organized in the figure
so that the same period of time is assimilated between the two different Mach number
flows.

Comparing figures 13 and 14, it is evident that the multi-resolution variant has a better
capability to deal with the transient nature of dynamic stall and is able to extract clean
and physically interpretable modes. Starting from the leftmost column of figure 14, we
observe the structures that represent the Kelvin–Helmholtz instability formed along the
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aerofoil suction side. Note that the time period encompassed by this mode coincides
with the time window when the instability develops, as shown in figure 4 and also the
pressure gradient plot of figure 9. For the M∞ = 0.4 case, acoustic waves are also seen
propagating from the trailing edge due to a scattering mechanism, but these are not visible
for the M∞ = 0.1 case since the acoustic waves have a lower amplitude for this flow.
The spatial distribution of the modes is also different. While a quasi-continuous train of
Kelvin–Helmholtz disturbances appears as a wavepacket at M∞ = 0.1, the structures are
more sparsely distributed for M∞ = 0.4, being more concentrated at the mid-chord. This
is consistent with the observation of high frequency oscillations in the skin friction and
pressure gradient maps of figures 3 and 9, respectively. It is also interesting to note that
the frequencies between the two compressible cases are much alike, and this holds for all
subplots.

The modes depicted in the subsequent columns of figure 14 are associated with the
growth of the shear layer instabilities close to the leading edge and the separation process
that leads to the formation of the DSV. In the second column, the modes represent
the advection of vortical structures formed in the leading edge shear layer instability,
which coalesce afterwards to form the DSV. Finally, the last two columns refer to the
same time period and mark the separation process described earlier, in figures 5 and 6,
where nonlinear mechanisms govern the evolution of the flow. As indicated in figure 14,
the frequencies increase substantially at this stage, independently of the Mach number.
While the structures observed in the last two columns are more organized and compact
for M∞ = 0.1, those appearing in the M∞ = 0.4 flow are composed of a wider range
of spatial scales. This observation may reflect the higher three-dimensionality of the
M∞ = 0.4 flow, as shown in figure 10. As discussed before, the structures are also formed
downstream for the M∞ = 0.4 case and extend over a larger portion of the aerofoil
chord. For these DMD modes, one can also see that acoustic waves are generated by the
hydrodynamic fluctuations near the leading edge. These waves have higher wavenumbers
for the M∞ = 0.4 flow and may contribute to the earlier breakdown into three-dimensional
structures.

4. Conclusions

Large eddy simulations are performed to investigate the onset and evolution of dynamic
stall for an SD7003 aerofoil undergoing a periodic plunging motion. Simulations are
performed for freestream Mach numbers M∞ = 0.1 and 0.4 for a fixed-chord-based
Reynolds number Re = 6 × 104 to examine phenomenological variations due to
compressibility effects. Similar to previous observations reported for pitching aerofoils,
it is found that both the residence time and strength of the dynamic stall vortex (DSV)
decrease for the higher Mach number flow. Hence higher compressibility leads to lift and
drag reductions caused by the weakened DSV, which occurs when the aerofoil is ceasing
its downstroke motion. For the rest of the periodic motion, the aerodynamic coefficients
display similar features at both Mach numbers.

For the present configurations, the onset of dynamic stall is marked by two major
flow features: a train of Kelvin–Helmholtz instabilities, referred to here as the primary
instability stage, and a secondary instability stage due to the breakdown of vortical
structures along a shear layer formed at the leading edge. With respect to the primary
stage, acoustic waves are scattered from the trailing edge due to vortex shedding
apparently triggering the formation of Kelvin–Helmholtz instabilities. This mechanism
appears to be invariant to the freestream Mach number although it is observed that
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higher compressibility induces the flow to become more susceptible to three-dimensional
spanwise disturbances.

With respect to the secondary stage of instabilities, the mechanisms of flow separation
observed in the present plunging aerofoil display broad agreement with the van Dommelen
and Shen model for pitching aerofoils. In this case, complex dynamics are observed along
a shear layer formed at the leading edge. The evolution of this shear layer causes the flow to
eject vortical structures outwards from the surface. The flow dynamics are similar for both
Mach numbers analysed, despite the different positions where they occur near the leading
edge. These spatial variations are affected directly by the pressure gradient distributions
over the leading edge. For M∞ = 0.1, the pressure gradient becomes adverse sooner than
for M∞ = 0.4, and the pressure gradient fluctuations are stronger, causing the shear layer
to destabilize further upstream. We observe that the onset of dynamic stall is related to the
interaction of both primary and secondary instabilities that occur near the leading edge.

In order to better characterize the stall onset, two empirical indicators are investigated:
the leading edge suction parameter (LESP) and the critical chord-normal shear layer
height, Δz. The influence of compressibility on these stall indicators is also assessed.
It is observed that the maximum suction supported by the leading edge is reduced as
compressibility increases, revealing that the LESP is a function of not only the parameters
of the aerofoil motion but also the freestream Mach number. The Δz criterion, on the
other hand, appears to be almost invariant to the freestream Mach number. We also find
that although both criteria fit the observable moment when the DSV forms, they tend to
characterize the stall onset based on the point when the DSV detaches from the aerofoil
surface, and not when the secondary instabilities set in. From the perspective of dynamic
stall control, this fact reveals the need to create more conservative criteria to predict stall.
This is necessary since flow actuation should be applied prior to the formation of the DSV.

A decomposition of the pressure coefficient field into dynamic modes is also performed
to extract the low-rank spatial features from the datasets and their associated frequencies.
The detailed description of the boundary layer state with the modal support can help
the exploration of suitable actuation parameters for flow control. The standard DMD
algorithm is able to identify the modes associated with the periodic motion and its
harmonics; however, it fails to isolate the unsteady flow features that take place during
the onset of dynamic stall. This limitation arises from the fact that the extracted modes
exist throughout the entire temporal window analysed. The multi-resolution variant of
the algorithm (mrDMD), on the other hand, successfully extracts clean and physically
interpretable modes for all cases investigated herein.

Although the spatial distribution of the modes related to the dynamic stall onset may
vary with compressibility, their frequency contents are much alike. The mrDMD captures
the wavepacket structure of the Kelvin–Helmholtz instability and the modes associated to
the separation process that lead to the formation of the leading edge vortex. The effects
of increasing compressibility are also manifested in these modes. For instance, the sparser
distribution of Kelvin–Helmholtz instabilities, the larger size of the secondary separation
in the shear layer, and the displacement of the critical region further downstream of the
leading edge, which occur when the Mach number increases, are all represented therein.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.165.
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Appendix A. Dynamic mode decomposition algorithm

In this appendix, we provide more details about the DMD algorithm. It proceeds as
follows.

(1) The snapshots are stored columnwise in two separate matrices X and X ′ in Cm×n−1

such that

X =
⎡
⎣x1 x2 . . . xn−1

⎤
⎦ and X ′ =

⎡
⎣x2 x3 . . . xn

⎤
⎦ , (A1a,b)

where xi, for i = 1, 2, 3, . . . , n, represents the ith snapshot. Here, m is the number
of grid points, and n is the total number of snapshots.

(2) The SVD of X is computed to obtain a low-rank representation of the data as

X ≈ UΣV ∗, (A2)

where U ∈ Cm×r, Σ ∈ Cr×r, V ∈ Cn×r, and ∗ denotes the conjugate transpose.
Here, r is the rank of the reduced SVD approximation to X , which can be computed
using the recent hard-thresholding algorithm of Gavish & Donoho (2014). The
matrices U and V are named the left singular vectors and right singular vectors
of X , respectively, and Σ is a diagonal matrix containing the singular values.

(3) The best-fit linear operator A is computed to map X ′ ≈ AX through a pseudo-inverse
of the SVD approximation of X :

A = X ′VΣ−1U∗. (A3)

In practice, however, the operator A can be prohibitively large for the next step of
the algorithm, and a matrix similarity Ã = U∗AU , which defines a low-dimensional
approximation of the linear dynamical system x̃k+1 = Ãx̃k, is used instead. In this
sense, we have

Ã = U∗X ′VΣ−1. (A4)

(4) The eigendecomposition of Ã is computed as

ÃW = WΛ, (A5)

where W is the matrix containing the eigenvectors (stored columnwise), and Λ is a
diagonal matrix with the corresponding eigenvalues λk.
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(5) The eigendecomposition of the original system is reconstructed using either

Φ = UW (Projected) (A6)

or
Φ = X ′VΣ−1W (Exact). (A7)

Each eigenvector φk of Φ represents a DMD mode. These two distinct ways to
reconstruct the modes occur because Tu et al. (2014) showed that the exact modes
are the actual eigenvectors of matrix A, in contrast to the original definition of
Schmid (2010) for the projected modes. However, they tend to converge if X and
X ′ have the same column spaces.

(6) Finally, the initial amplitudes bk of each mode are found such that the solution is
approximated by

x(t) ≈
r∑

k=1

φk exp(ωkt) bk = Φ exp(Ωt) b. (A8)

Here, ωk = ln(λk)/Δt, and Ω is a diagonal matrix whose entries are the ωk values.
There exist different ways to evaluate the initial amplitude. By considering the first
snapshot at time t1 = 0, which gives x1 = Φb, one can evaluate

b = Φ†x1, (A9)

where † stands for the Moore–Penrose pseudo-inverse. Following Tu et al. (2014), it
is possible to use the principal component (POD) subspace to determine b through
less expensive computations as

b ≈ (WΛ)−1α1, (A10)

where α1 is obtained from the matrix product ΣV ∗ associated with the first
snapshot, i.e. x1 ≈ UΣV ∗ = Uα1. As proposed by Jovanović, Schmid & Nichols
(2014), another possibility to calculate b is given by

b = [(W ∗W ) ◦ (V andV ∗
and)]

−1diag(V andVΣ∗W ), (A11)

where, in this case, ∗ denotes the self-adjoint (Hermitian) operator while the overline
is the complex conjugate. The symbol ◦ represents elementwise multiplication, and
V and is the Vandermonde eigenvalue matrix.

Appendix B. Harmonics of the periodic motion

In this appendix, we demonstrate that when ranked by their amplitudes, the first modes
exhibit frequencies that may be associated with the harmonics of the imposed motion.
Similar observations were also made by Dunne et al. (2016) and Mohan et al. (2016).
Within a time period π/k, corresponding to a full cycle of the aerofoil motion, where
k � πfc/U∞ = 0.25 is the reduced frequency, we define the Strouhal number based
on the non-dimensional aerofoil chord (c = 1) as St � fc/U∞ = k/π ≈ 0.07958. This
non-dimensional frequency of the plunging motion matches that of the dominant (first)
dynamic mode, which is plotted in figure 15 along with the extracted frequencies from
DMD. In this figure, the modes corresponding to the harmonics of St = 0.07958 are
also included for both Mach numbers, and the saturation levels are kept the same for all
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St = 0.07976
Dominant dynamic mode

M∞ = 0.1

St = 0.16100
1st harmonic

St = 0.24347
2nd harmonic

St = 0.32548
3rd harmonic

St = 0.07953

M∞ = 0.4

St = 0.15940 St = 0.23987 St = 0.32030

(a)

(b)

Figure 15. DMD dominant mode and subharmonics for (a) M∞ = 0.1, and (b) M∞ = 0.4, for the periodic
motion.

subplots, ranging from −0.004 to 0.004. The DMD is computed here using snapshots of
the pressure coefficient.

Comparing the different Mach number solutions in figure 15, a striking resemblance
to the dominant dynamic mode and its harmonics is noted. This occurs because these
modes are related to the aerofoil kinematics, which is the same for both Mach numbers
investigated. Nevertheless, some characteristics of the higher Mach number flow are still
visible in these modes, such as the weaker DSV strength. For instance, the harmonics of
the M∞ = 0.4 flow have a slightly smaller area in blue, and the levels in these regions
are reduced when compared to the M∞ = 0.1 case. Inspection of the third harmonic for
both Mach numbers shows a weaker presence of the leading edge red structure for M∞ =
0.4; this indicates that the leading edge dynamics occurs with a different phase compared
to that of the M∞ = 0.1 case. Overall, at higher harmonics, the disparities caused by
the phase lag between the two flows become more accentuated. The cause of this phase
variation is the different gestation period and residency time of the DSV over the aerofoil
between the two Mach number flows.
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JOVANOVIĆ, M.R., SCHMID, P.J. & NICHOLS, J.W. 2014 Sparsity-promoting dynamic mode decomposition.
Phys. Fluids 26 (2), 024103.

KENNEDY, C.A., CARPENTER, M.H. & LEWIS, R.M. 2000 Low-storage, explicit Runge–Kutta schemes for
the compressible Navier–Stokes equations. Appl. Numer. Math. 35 (3), 177–219.

KUTZ, J.N., FU, X. & BRUNTON, S.L. 2016 Multiresolution dynamic mode decomposition. SIAM J. Appl.
Dyn. Syst. 15 (2), 713–735.

LEE, T. & GERONTAKOS, P. 2004 Investigation of flow over an oscillating airfoil. J. Fluid Mech. 512,
313–341.

LELE, S.K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1),
16–42.

LI, D., KOMPERDA, J., GHIASI, Z., PEYVAN, A. & MASHAYEK, F. 2019 Compressibility effects on the
transition to turbulence in a spatially developing plane free shear layer. Theor. Comput. Fluid Dyn. 33 (6),
577–602.

LOMBARDI, A.J., BOWLES, P.O. & CORKE, T.C. 2013 Closed-loop dynamic stall control using a plasma
actuator. AIAA J. 51 (5), 1130–1141.

MASSA, L., KUMAR, R. & RAVINDRAN, P. 2012 Dynamic mode decomposition analysis of detonation waves.
Phys. Fluids 24 (6), 066101.

MATHEW, J., LECHNER, R., FOYSI, H., SESTERHENN, J. & FRIEDRICH, R. 2003 An explicit filtering
method for large eddy simulation of compressible flows. Phys. Fluids 15 (8), 2279–2289.

MCALISTER, K.W. & CARR, L.W. 1979 Water tunnel visualizations of dynamic stall. Trans. ASME J. Fluids
Engng 101, 376–380.

MCCROSKEY, W.J. 1981 The phenomenon of dynamic stall. NASA Tech. Rep. TM-81264.
MELIUS, M., CAL, R.B. & MULLENERS, K. 2016 Dynamic stall of an experimental wind turbine blade.

Phys. Fluids 28 (3), 034103.
MÜLLER-VAHL, H.F., NAYERI, C.N., PASCHEREIT, C.O. & GREENBLATT, D. 2016 Dynamic stall control

via adaptive blowing. Renew. Energy 97, 47–64.

938 A24-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

16
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.165


Analysis of the onset and evolution of dynamic stall

MOHAN, A.T., GAITONDE, D.V. & VISBAL, M.R. 2016 Model reduction and analysis of deep dynamic stall
on a plunging airfoil. Comput. Fluids 129, 1–19.

MULD, T.W., EFRAIMSSON, G. & HENNINGSON, D.S. 2012 Flow structures around a high-speed train
extracted using proper orthogonal decomposition and dynamic mode decomposition. Comput. Fluids
57, 87–97.

MULLENERS, K. & RAFFEL, M. 2012 The onset of dynamic stall revisited. Exp. Fluids 52, 779–793.
NAGARAJAN, S., LELE, S.K. & FERZIGER, J.H. 2003 A robust high-order compact method for large eddy

simulation. J. Comput. Phys. 191 (2), 392–419.
NARSIPUR, S., HOSANGADI, P., GOPALARATHNAM, A. & EDWARDS, J.R. 2020 Variation of leading-edge

suction during stall for unsteady aerofoil motions. J. Fluid Mech. 900, A25.
RAMESH, K., GOPALARATHNAM, A., GRANLUND, K., OL, M.V. & EDWARDS, J.R. 2014 Discrete-vortex

method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex
shedding. J. Fluid Mech. 751, 500–538.

RAMESH, K., GRANLUND, K., OL, M.V., GOPALARATHNAM, A. & EDWARDS, J.R. 2018 Leading-edge
flow criticality as a governing factor in leading-edge vortex initiation in unsteady airfoil flows. Theor.
Comput. Fluid Dyn. 32 (2), 109–136.

RAMOS, B.L.O. 2019 High-fidelity simulation and flow control of a plunging airfoil under deep dynamic stall.
PhD thesis, University of Campinas.

RAMOS, B.L.O., WOLF, W.R., YEH, C. & TAIRA, K. 2019 Active flow control for drag reduction of a
plunging airfoil under deep dynamic stall. Phys. Rev. Fluids 4, 074603.

SANGWAN, J., SENGUPTA, T.K. & SUCHANDRA, P. 2017 Investigation of compressibility effects on dynamic
stall of pitching airfoil. Phys. Fluids 29 (7), 076104.

SCHMID, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.
656, 5–28.

SEDKY, G., LAGOR, F. & JONES, A.R. 2020 The unsteady aerodynamics of a transverse wing-gust encounter
with closed-loop pitch control. In AIAA SciTech Forum, AIAA Paper 2020-1056.

SEENA, A. & SUNG, H.J. 2011 Dynamic mode decomposition of turbulent cavity flows for self-sustained
oscillations. Intl J. Heat Fluid Flow 32 (6), 1098–1110.

SEMERARO, O., BELLANI, G. & LUNDELL, F. 2012 Analysis of time-resolved PIV measurements of a
confined turbulent jet using POD and Koopman modes. Exp. Fluids 53 (5), 1203–1220.

SHIH, C., LOURENCO, L.M. & KROTHAPALLI, A. 1995 Investigation of flow at leading and trailing edges of
pitching-up airfoil. AIAA J. 33 (8), 1369–1376.

SHYY, W., LIAN, Y., TANG, J., VIIERU, D. & LIU, H. 2007 Aerodynamics of Low Reynolds Number Flyers.
Cambridge University Press.

TU, J.H., ROWLEY, C.W., LUCHTENBURG, D.M., BRUNTON, S.L. & KUTZ, J.N. 2014 On dynamic mode
decomposition: theory and applications. J. Comput. Dyn. 1 (2), 391–421.

VISBAL, M.R. 2009 High-fidelity simulation of transitional flows past a plunging airfoil. AIAA J. 47 (11),
2685–2697.

VISBAL, M.R. 2011 Numerical investigation of deep dynamic stall of a plunging airfoil. AIAA J. 49 (10),
2152–2170.

VISBAL, M.R. 2014 Analysis of the onset of dynamic stall using high-fidelity large-eddy simulations. In 52nd
Aerospace Sciences Meeting.

VISBAL, M.R. & GAITONDE, D.V. 2002 On the use of higher-order finite-difference schemes on curvilinear
and deforming meshes. J. Comput. Phys. 181 (1), 155–185.

VISBAL, M.R. & GARMANN, D.J. 2018 Analysis of dynamic stall on a pitching airfoil using high-fidelity
large-eddy simulations. AIAA J. 56 (1), 46–63.

YOUNG, J., LAI, J.C.S. & PLATZER, M.F. 2014 A review of progress and challenges in flapping foil power
generation. Prog. Aerosp. Sci. 67, 2–28.

938 A24-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

16
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.165

	1 Introduction
	2 Methodology
	2.1 Large eddy simulations
	2.2 Dynamic mode decomposition
	2.3 Multi-resolution dynamic mode decomposition

	3 Results
	3.1 General flow features
	3.2 Onset of dynamic stall
	3.3 Analysis of empirical criteria for dynamic stall onset
	3.4 Modal analysis

	4 Conclusions
	Appendix A. Dynamic mode decomposition algorithm
	Appendix B. Harmonics of the periodic motion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


