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THE CLASSIFICATION OF GROUPS WITH THE SMALL

SQUARING PROPERTY ON 3-SETS

P. LONGOBARDI AND M. MAJ

Let G be a group and k an integer greater than 1. We say that G has the square
property of k-sets and we write G € DS(k) if IX’| < k? for any subset X of G of
order k. The groups in D5(2) are exactly the Dedekind groups, as Freiman showed.
The class DS(3) has been recently studied by Berkovich, Freiman and Praeger. In
this paper we complete the classification of DS(3)-groups by characterising finite
2-groups of exponent 4 in DS(3).

1. INTRODUCTION

Let G be a group and k an integer greater than 1.

Following [1] we say that G has the square property of k-sets and we write G €
DS(k) if |X?| < k? for any subset X of G of order k.

The groups in DS(2) are exactly the Dedekind groups, as Freiman showed in {2].
The class DS(3) has been recently studied by Berkovich, Freiman and Praeger. They
came close to a classification of the finite DS(3)-groups. There was only one case left,

the case where G is a finite 2-group of exponent 4.

In this paper we complete the classification of D.S(3)-groups. We prove the follow-

ing:

THEOREM A. Let G be a finite 2-group of exponent 4. Then G € DS(3) if and
only if one of the following holds:

(1)
(2)
(3)
(4)

(5)

G is abelian,

U1(G) = (z*/z € G) has order 2,

G = A(z), where A is abelian, 2> € A, a®* = a™* forevery a € A,

G = D x (a, b, ¢}, where D is an elementary abelian 2-group, |a| = |}|
le| =4, a® =a™?, [a,c] =[b, c] =1, ® = a?b?.

G = D x (a, b, ¢, d), where D is an elementary abelian 2-group, ab =
et P =c, et =c o ] =[a,d] = [b,d] =1, la| = |b] = |¢|
|d| = 4, ¢ = &% = a?b?.

Theorem A together with the results of [1] gives the following:
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THEOREM B. Let G be a finite group. Then G € DS(3) if and only if G is
abelian, or G = A(z), where A is abelian, 2> € A, a® = a™!, for any a € A, or G is
a 2-group of exponent 4 satisfying (2) or (4) or (5) of Theorem A.

It is not difficult to show that in fact Theorem B holds for any group (not necessarily
finite) as we prove in Section 3.

Our notation is the usual one (see for instance [4]).

If G is a finite 2-group we put
M(G) =(z € G/|z| =2), UL(G)=(z*/z€G).

2. FINITE 2-GROUPS OF EXPONENT 4 IN DS(3)

LEMMA 2.1. Let G € DS(3) be a finite 2-group of exponent 4. Then G/Z(G)
has exponent 2. In particular G is nilpotent of class at most 2.

PRrOOF: We prove that z? € Z(G) for every z € G. Write &(G) for the Frattini
subgroup of G. Then it suffices to show that z?y = yz? for every y € G — ®(G)
such that z®(G) # y®(G). Assume by contradiction that there exist z, y € G with
y®(G) # ®(G), 2y # y=® and z®(G) # y®(G). If |y| = 2, then |z2y| = 4; hence we
may assume, replacing y with z?y if necessary, that |y| = 4.

For any g € G — (2%, y) consider the set X = {z?, y, g}. Then from lel <9it
follows that g € Cg(2?) UCqg(y) or g2 = y* or ¢g?> =1 (from g* = 2%y or g% = yz?
we get y € (@), a contradiction).

In particular either (zy)? = 1 or (zy)® = y? since [zy, %] # 1 and [zy, y] # 1.
But (:z:y)2 = y? implies zyzy = y%, y'zy = ¢! and z?y = yz?, a contradiction.
Therefore (zy)’ = 1; hence (z?, zy) = D; and z?zy = z~'y has order 4. Thus,
as before, from z7'y ¢ Cg(z?) U Cg(y) it follows that (:z)_ly)2 = y?, and hence

-1,.,-1

e lyz7ly = y?, y"lz7ly = z and 2’y = yz?, again a contradiction. a

In the following G will always be a finite 2-group of exponent 4. We apply Lemma
2.1 to get the following useful result:

LEMMA 2.2. Let G € DS(3) and z,y be elements of G such that [z,y] # 1
and z? # y®. Then for every g € G we have g € Cg(z)UCg(y) or g% = 22 or g% = y*.

PROOF: The result follows easily from |{z, y, g}*| <9, using the fact that G' <
Z(G) and ¢% € Z(G). 0

The following lemma gives some more precise information.

LEMMA 2.3. Let G € DS(3) and z,y be elements of G such that [z, y] # 1

and z* # y*. Assume (zy)? = y*>. Then for every g € G we have g € Cg(z) or
g2 =22 or g2 = 4.

https://doi.org/10.1017/50004972700011886 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700011886

i3] Groups with small squaring property 265

PROOF: Let g € G. Then, by Lemma 2.2, g € Cg(z) U Cg(y) or g°> = 2% or
g2 =y2. Similarly from (zy)® = y? it follows, by Lemma 2.2, that g € Cg(z)UCg(zy)
or g2 =z% or g =y?. If g € Cs(y) N Ce(zy), then g € Cg(z). Hence g € Cg(z) or

2

g% = z? or g% = y?, as required.

Let G be a finite non-abelian group in DS(3) of exponent 4. If (z € G/ |z| = 4)
is a proper subgroup of G, then G is a D-group with the notation of [1]. Then, by the
results of [1], (3) of Theorem A holds.

Thus in the following we assume G = (¢ € G/ |z| = 4).

First we remark:

LEMMA 2.4. Let a, b€ G be such that a®> # %, a® = a™!, |a| = 4. Then (a)
is normal in G.

PROOF: First we prove that [a, g] € {a2, b%,1} for every g € G. Let g € G —
Co(a). Then by Lemma 2.3 either g2 = a? or g2 = b?, and similarly either (ag)’ = a®
or (ag)? = b?. Furthermore we have (ag)’ = a%g?[e, g]. If ¢g? = a2, then [a, g] =
(ag)® € {a?, B*}. If g° = B2, then [a, g] = (ag)?a®b? and [a, g] = b? if (ag)’ = o2,
while [a, g] = a® if (ag)’ = b2. Now, if [b| = 2 then [a, g] is always in (a), and
(a) is normal in G, as required. If b = 4 and [a, g] = b for some g € G, then
[a, bg] = a?b? ¢ {1, a?, b?}, a contradiction. 0

Now we study groups satisfying our conditions and with ©,(G) € Z(G).

2.5. Assume there exists g € G with |g| = 2, g ¢ Z(G). Then |Uy(G)| = 2
and (2) of Theorem A holds.

ProoF: Let g ¢ Z(G), with |g| = 2. Then there exists a € G, with |a| = 4,
ag # ga, since G = (z € G/ |z| = 4). By Lemma 2.2 either (ag)? = a? or (ag)’ =1.
From (a.g)2 = a? it follows that agag = a?, whence ag = ga, a contradiction. Hence
(ag)® =1, and g 'ag = a~!. Thus by Lemma 2.4 we have {a) normal in G. Moreover
for every z € G, |z| = 4, either a? = 2? or z € Cg(a) by Lemma 2.3. There exists
b€ G, with || = 4 and ab # ba since a ¢ Z(G). Then b?> = a? and |ab] = 4. If
[5, g} =1, then [ab, g] # 1. Without loss of generality we may assume [b, g] # 1. Then,
arguing on b as previously on a, we get (b) normal in G and either z* = b = a? or
z € Cg(b) for every z € G, |¢| = 4.

Now assume by contradiction that there is an element z € G, with 22 # a? and
|z} = 4. Thus z € Cg(a) and z € Cg(b). But then az ¢ Cg(b) and |az| = 4, hence

(az)? = b = a? and 2? = 1, a contradiction. 1]

It will be shown later that groups satisfying (1) to (5) of Theorem A have the
property DS(3).
Now we assume §;(G) < Z(G). We start with two particular cases.
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CASE 2.6. Let a,b € G be such that |a| = |b| = 4, o # b and a® = a71.
Assume G = (a, b)(Cg(a) N Cg(b)) and that (3) does not hold. Then (4) of Theorem
A holds.

PROOF: First we remark that y? € (a?b?) for every y € Cg(a) N Cg(b). In fact
let y € Cg(a)N Cg(b). Then yb ¢ Cg(a) and, by Lemma 2.3, either (yb)* = a? or
(yb)® = B2. If (yb)® = a2, then y?b? = a® and y? = a2b?, while if y2b? = (yb)® = b?,
then 32 =1.

Now we prove that Cg(a) N Cg(b) is abelian. Let y;, y2 € Cg(a) N Cg(b) and, by
contradiction, assume [y1, y2] # 1. Then |y;| = |y2| = 4, since Q;(G) < Z(G). The
elements ayi, byy do not permute, and (ay)* = a?y? # b*y? = (by;)*. Then Lemma
2.2 applies and y; € Cg(ay1) U Ca(bys) or v = (ay)” = a?y? or y2 = (by1)? = b%2.
But y2 ¢ Ca(y1) and yZ = y?, a contradiction. Therefore Cg(a) N Cg(b) is an abelian
group of exponent 4 and with U;(Cgq(a) N Ce(b)) = (a®b?). Thus Cg(a) N Ce(b) =

D x (¢}, where exp D = 2 and ¢ = a?b?, and (4) of Theorem A holds. 0
Casg 2.7. Assume that there exist a, b, c,d € G such that |a| = |b] = |c| =
|d| = 4, and
(1) (e, ¢) = (a) x (¢},

Then c® = d® = a?b?, and (5) of Theorem A holds.

PROOF: First we prove that ¢ = d® = a?b%. From bd ¢ Cg(a), it follows that
cither (bd)? = a® or (bd)? = b?, by Lemma 2.3. If (bd)’ = b? then we have d? = 1
which is a contradiction. Then b?d? = a? and d? = @?b?. Similarly if ¢ # d?, from
be ¢ Ca(c)UCg(d) it follows, by Lemma 2.2, that either (bc)? = ¢? or (be)® = d2.
But (bc)® = b%, and so either 5% = ¢? or b? = d2, a contradiction.

Therefore c? = d? = a2b?.

Now write D = Cg(e) N Cg(c). Then we have D normal in G and [G/D} <
4, since (a), (c) are normal in G by Lemma 2.4. Moreover G = D(b, d) because
b, d, bd ¢ Cc(a) n Cg(c).

We prove that g2 € {1, a?, b?, a?b?} for every g € D. From that it follows that
one of g, ga, gca, gc has order 2 and D = Q,(D)(a, c): thus D = (a) X {¢) XY where
Y < (D) € Z(G), and G has the required structure.

Assume by contradiction that there exists g € D with g% ¢ {1, a?, b%, a?b?}.
If g commutes with b, then from bg ¢ Cg(a) it follows by Lemma 2.3 that either
(bg)* = b2g? = a? or b%g? = (bg)® = b?, a contradiction. Similarly if g € Cg(d), then
from dg ¢ Cg(c) it follows that either d?g? = (dg)’ = ¢? or d?g? = (dg)* = b?, a
contradiction. Thus g ¢ Cg(b) U Cg(d). Now we have g2 # d® = ¢2. By Lemma 2.2,
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every element = € G is either in Cg(g) U Cg(d) or is such that z? = g% or 2% = d*.
Then (cb)® = g% or (cb)® = d?. But (cb)® = b* and we get a contradiction. 0

Now we can complete our characterisation of finite groups of exponent 4 in DS(3).

PROOF OF THEOREM A: Let G € DS(3) be a finite 2-group of exponent 4.
Assume G non-abelian and |U;(G)| > 2. Also suppose that (3) does not hold. Then
every element of order 2 is in the centre of G by Lemma 2.5. Moreover there is an
element 2 € G with || = 4 and (z)} is not normal in G, since G is not a Dedekind
group. Thus there exists y € G of order 4 with y ¢ Ng({2)). I (zy)? = y?, then
y ey = 2! and y € Ng({z)), a contradiction. Hence (zy)* # y?. Moreover |zy| = 4,
because 2y ¢ Cg(z). Therefore we have found two elements a, b € G with ab # ba,
a® £ b, |a| = |b| = 4. By Lemma 2.2 we have either (ab)® = a? or (ab)’ = b2.
Without loss of generality we can assume (ab)® = b2. Then b~lab = o™, and (a) is
normal in G by Lemma 2.4. Moreover, for every g € G — Cg(a) we have either g% = a?
or g2 = b%, by Lemma 2.3. Write C = Cg(a). Then C is normalin G and |G/C| = 2.

Assume first C < Cg(b)Ua"'Cq(b); then G = (a, b)(C N Cg(b)). Now 2.6 applies
and (4) holds. Then we can assume that there exists ¢ € C—(Cg(b) Ua~'Cq(b)). Thus
lac| > 2 and a? # c?. We claim that ¢® = ¢!. In fact from bc ¢ Cg(a) it follows that
either (bc)® = a2 or (be)® = B2. If (bc)® = b2, then c® = ¢~!. Assume by contradiction
(be)? = a®. If b% = 2, then a® = (bc)® = b2c2[b, ¢|, thus [b, ] = a® = [b, a] and
[b, ac] = 1, a contradiction. If b? # ¢?, then from [b, ¢] # 1 it follows that either
(be)? = B2 or (bc)? = ¢? by Lemma 2.2. But (bc)? = a? and a? # b2, ¢ and we have a
contradiction. Therefore we get c¢® = ¢~1. Moreover, replacing ¢ by ca if necessary, we
can assume ¢® ¢ {1, a?, b2}. Then for every g € G — Cg(c) either g2 = b% or g% = ¢*
by Lemma 2.3.

Now we have G = C(b). If d®* = d™! for every d € C, then C is abelian and
(3) holds. Assume that there exists d € C such that d® # d~!. Then (db)® # ¥
and (db)® = a? since db ¢ Cg(a). Similarly from db ¢ CG(c) it follows that either
(db)? = ¢* or (db)® = b%. But b2, ¢? are different from a?. Hence db € Cg(c) and
¢? = ¢7!. Analogously we get that either d? = ¢? or d? = b* (since [c, d] # 1).

First assume d* = ¢?. Consider the elements ac, db. Then we have [ac, db] =
[a, b] #1, (ac)2 =a%c? # (db) = a?. Hence by Lemma 2.2 cd € Cg(ac) U Cg(db) or
(cd)? = (ac) = a?¢? or (cd)’ = o®. But (cd)® = d?, and then the omly possibility is
{cd, db] = [d, ] = 1. Now the elements a, b, c, d satisfy the hypothesis of 2.7 and (5)
holds.

Now assume d? = b?. Then from a? = (bd)’ = b2d?[d, b] it follows that [d b =
a? = [a, b]. Hence (ad, b] = 1. Thus, with d' = ad, we have a® = a™?, a® =a, ad =a,
ot =l =c 1 % = b and the elements a, b, ¢, d' satisfy the hypothesis of 2.7 and
again (5) holds.
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Conversely assume that one of (1), (2), (3), (4), (5) holds.

If (1) or (2) or (3) holds, trivially G € DS(3).

Now assume that (4) holds. Then ©,(G) < Z(G) and Uy(G) = {1, a2, ¥?, ¢?}.
Furthermore every element z € G can be written in the form z = da®bP¢”, where
de (@), a,8,7=0,1 (mod 2). Then we have (a"‘bc")2 = a®bc¥a%bcY = B?c? €
{a?, b%} and (a®c")® = ¢? if and only if @ = 0 (mod 2),¥ = 1 (mod 2). Hence if
z?2 = ¢, then z € Z(G). Now let X = {z,y,2z} C G. If X NQ(G) # 0, then
X NZ(G)#0 and |X?| <9. Also |X?| <9 if |{z?, ¥, 22}| < 3. Now assume z2,

y?, 2% pairwise different and not 1. Then an element of X, say z, is such that z? = ¢?

and z € Z(G) by the previous remark. Thus X N Z(G) # § and |X?| < 9.

Now assume that G satisfies (5). Again we have Q,(G) < Z(G) and Uy(G) =
{1, a?, b2, c?}. Moreover every element g of G can be written as g = fa®b?c7d® where
a,B,7,6§=0,1 (mod 2). As before it is easy to see that g> = a? if and only if either
B=1 (mod2), y=0 (mod2), § =1 (mod 2), that is, g € {fbd, fabd/f € Q:(G)}
or =0 (mod2), a=1 (mod2), vy=6 =0 (mod 2), that is, g € {fa/f € 0(G)}.
However g2 = c? or g =1 if and only if @ = 8 = 0 (mod 2). Hence the elements of

G whose square is a? commute with the elements whose square is ¢. Now it is easy

to verify that G € DS(3). 0

From the results of [1] and from Theorem A it follows easily that if G is in DS(3),
then G is abelian, or G = A(z) where A is an abelian subgroup of index 2 and
a® = e~ forevery a € A, or G is a 2-group of class less than or equal to 2, exponent
4, and with |U,(G)| £ 4.

Hence any finite group in DS(3) is soluble. But groups in DS(k) for some k are
finite-by-abelian-by-finite, so then any group in DS(3) is soluble.

Also we remark that from Theorem A it follows that if G is a non-abelian finite
group in DS(3) then Z(G) has exponent at most 4, and has exponent 2 if (3) holds.

These will be our starting points in the next section.

3. ARBITRARY GROUPS IN DS(3)

We prove the following

THEOREM C. Let G be a group. Then G € DS(3) if and only if one of (1), (2),
(3), (4), (5) of Theorem A holds.

PRrOOF: Let G € DS(3). Then G is soluble and finite-by-abelian-by-finite, by an
unpublished result of P. Neumann ([6], see [3] for a proof).

Assume first that G is finitely generated. Then G is polycyclic and thus residually

finite, by a theorem of Hirsch (see for example [7, 5.4.17, p.149]). Suppose G is non-
abelian. Then there exists a normal subgroup N of G of finite index with G/N non-
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abelian. If for every z € G we have ?H € Z(G/H) for any H normalin G, H <N,
of finite index, then G is nilpotent of class 2 and z? € Z(G). In this case G is periodic.
For, if y is a torsion-free element of G, we have y2 € Z(G). Thus if M is normal in
G with G/M finite, M < N and y*, y® ¢ M, we get ¥*M € Z(G/M), G/M non-
abelian, ¥ M of order different from 2, 4, a contradiction by the remarks at the end of
Section 2. Then G is a periodic finitely generated nilpotent group, so G is finite and
has the required structure.

Now assume that there exist N normal in G of finite index and an element zN ¢
G/N with 22N ¢ Z(G/N). Then G/N = A/N(zN) with a*N = a~*N, and A/N
abelian and 22 € A by Theorem A. For every normal subgroup M < NV of finite index
we have z?M ¢ Z(G/M), hence G/M = B/M({yM), B/M abelian, y?M € B/M,
bYM = b~ M for every b € B. If either AL B,or B< A, from G/M = A/M B/M,
with A/M, B/M abelian of index 2, it follows that g’M € A/M N B/M < Z(G/M)
for every g € G, a contradiction.

Thus A = B, and zM = byM , for some b € B. Hence G/M = A/M(zM) with
A/M abelian and aa® € M for every a € A. This holds for any normal M of finite
index, M < N with the same element . Then since G is residually finite we get
G = A(z), A abelian of index 2, a® = a™? for every a € A, as required.

Now assume that G is an arbitrary group. Suppose G is non-abelian and |U,(G)| >
2. Then there exists a finitely generated subgroup Y of G which is non-abelian and
with |U;(Y)| > 2. First assume that G does not have a subgroup of type (4) nor (5).
Then for every finitely generated subgroup F > Y of G we have F = Ap(g), where Ap
is abelian, g2 € Ar and a9 = a™! for every a € Ap. Therefore every finitely generated
subgroup of G has an abelian subgroup of index at most 2. Then, using Proposition
1.K.2 of [5, p.55], it is easy to show that G has an abelian subgroup A of index 2
and G = A(z). Assume by contradiction that there exists a € A with a® # a7?,
a® # a. Then for every finitely generated subgroup X 2> (a, z, F) we have X = B(y),
with B abelian of index 2 and ¥ = b~! for every b € B. If either B < XN A or
B>XNA,then B=XNA and we have a € B, z ¢ B and = = ¢y, with ¢ € B;
then a® = a® = @¥ = a™!, a contradiction. Thus there exists z € B — (X N A) and
we have z = dz with d € A. Then BN X N A < Cg(dz) N Cg(d) £ Cg(z) and from
IX: BNXNA|<4 weget |X : Ce(z)| < 4. Furthermore there exists s € (AN X)—B
and we have b* = b~! = b, for every b€ BN AN X; hence AN BN X has exponent
2 and is in Z(X). We have proved that X is a finite 2-group nilpotent of class 2
and exponent at most 4 and |X : Ce(z)| < 4. This holds for any X > (Y, q, z).
We get easily that A has exponent at most 4 and |G : Cg(z)] < 4. Hence we have
G = Z(G)F with F finite, F > (a, ) and Z(G) of exponent 2 by the remark at the
end of Section 2. Then G = T x F with F finite and expT = 2. By Theorem A we
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have a contradiction. Then 4 = A; UCy(z), with 4; = {a € A/a® = ¢!} a subgroup
of A, and A = A, since G is not abelian. Therefore (3) holds.

Now assume that there exists a finite subgroup H of G satisfying (4) or (5) of
Theorem A. Then H is not abelian, |U;(H)| = 4 and H does not have the structure in
(3). Then any finitely generated subgroup of G containing H satisfies either (4) or (5).
It follows easily that |U;(G)| = 4 and (G) < Z(G). First assume H = {(a, b, ¢, d},
la| = b =le|=|d| =4, a®> =a™?, P =¢!, ¢t =c!, [a,¢] = [a,d] = [b,d] = 1.
Then we have (@) and (c¢) normal in G. Write D = Cg(a) N Cg(c). Then we have D
normal in G and G = D(b, d). Furthermore for any g € D, |g| = 4, we have g% = a?,
g% = c? or g% = b2 = (ac)’. Then ag, cg or gac has order 2. Then D < 2:(G)(a, c)
and G = Q:(G){a, b,¢c,d) =Y x{a, b,c,d) with ¥ of exponent 2. Therefore (5)
holds. Similarly if G > (a, b, ¢} and (a, b, c) satisfies (4) of Theorem A, then we get
G =Y x{a, b, c), with expY = 2, and (4) holds. 0
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