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THE CLASSIFICATION OF GROUPS WITH THE SMALL
SQUARING PROPERTY ON 3-SETS

P. LONGOBARDI AND M. MAJ

Let G be a group and k an integer greater than 1. We say that G has the square
property of Jb-sets and we write G £ DS(k) if \X2 | < JbJ for any subset X of G of
order ib. The groups in DS{2) are exactly the Dedekindgroups, as Freiman showed.
The class DS(3) has been recently studied by Berkovich, Freiman and Praeger. In
this paper we complete the classification of D5(3)-groups by characterising finite
2-groups of exponent 4 in £>S(3).

1. INTRODUCTION

Let G be a group and fc an integer greater than 1.

Following [1] we say that G has the square property of fc-sets and we write G £

DS{k) if |X 2 | < k2 for any subset X of G of order k.

The groups in DS(2) are exactly the Dedekind groups, as Freiman showed in [2].

The class DS(3) has been recently studied by Berkovich, Freiman and Praeger. They

came close to a classification of the finite Z)S(3)-groups. There was only one case left,

the case where G is a finite 2-group of exponent 4.

In this paper we complete the classification of £)5(3)-groups. We prove the follow-

ing:

THEOREM A. Let G be a Unite 2-group of exponent 4. Tien G £ D5(3) if and
only if one of the following holds:

(1) G is abeiian,
(2) Uj(G) = (x2/x £ G) has order 2,
(3) G = A(x), where A is abeiian, x2 £ A, a" = a"1 for every a £ A,

(4) G = D x (a, 6, c), where D is an elementary abeiian 2-group, \a\ = \b\ =
\c\ = 4, ab = a~\ [a, c] = [b, c] - 1, c2 = a2*2.

(5) G = D x (a, b, c, d), where D is an elementary abeiian 2-group, ab =
a~\ cb = c~\ cd = c~\ [a,c] = [a,d] = [b,d\ = l, \a\ = |6| = |c| =
\d\=A, c2 =d? =a2b2.

Theorem A together with the results of [1] gives the following:
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264 P. Longobardi and M. Maj [2]

THEOREM B. Let G be a. Unite group. Then G 6 £>5(3) if and only if G is
abelian, or G = A(x), where A is abelian, x2 £ A, a" = a"1, for any a £ A, or G is
a. 2-group of exponent 4 satisfying (2) or (4) or (5) of Theorem A.

It is not difficult to show that in fact Theorem B holds for any group (not necessarily

finite) as we prove in Section 3.

Our notation is the usual one (see for instance [4]).

If G is a finite 2-group we put

fli(G) = (xEG/ |x| = 2), U^G) = {x2/x e G).

2. FINITE 2-GROUPS OF EXPONENT 4 IN DS(3)

LEMMA 2 . 1 . Let G £ DS(3) be a finite 2-group of exponent 4. TAen G/Z(G)

has exponent 2. In particular G is nilpotent of class at most 2.

PROOF: We prove that x2 £ Z(G) for every x £ G. Write $(G) for the Fmttini

subgroup of G. Then it suffices to show that x2y = yx2 for every y £ G — $(G)
such that x$(G) ^ y$(G). Assume by contradiction that there exist x, y £ G with
y $ ( G ) ^ $ ( G ) , x2y^yx2 and x$(G) ^ y$(G). If \y\ = 2, then \x2y\ = 4 ; hence we
may assume, replacing y with x2y if necessary, that \y\ = 4 .

For any g £ G - (x2, y) consider the set X = {x2, y, g}. Then from |X2| < 9 it
follows that g £ CG{X2) U CG(2/) or g2 = y2 or g2 = 1 (from p2 = as2?/ or g2 = yx2

we get y £ $(<?), a contradiction).

In particular either (xy) = 1 or (xy) — y2 since [zy, z2] ^ 1 and [xy, y] ^ 1.
But (xy) = y2 implies xyxy = y2, y~lxy = x - 1 and x2y = yx2, a contradiction.
Therefore (xy) = 1; hence (x2, xy) = D4 and x2xy = x~xy has order 4. Thus,
as before, from x - 1 y ^ C Q ( S 2 ) U Ca(y) it follows that (x-1y) = y2, and hence
x~1yx~1y = y2, y~1x~1y = x and x2y = yz2 , again a contradiction. D

In the following G will always be a finite 2-group of exponent 4. We apply Lemma
2.1 to get the following useful result:

LEMMA 2 . 2 . Let G £ DS(3) and x, y be elements of G such that [x, y] ^ 1
and x2 7̂  y2 • Then for every g £ G we have g £ Ca{x) U Ca{y) or g2 = x2 or g2 = y2 .

PROOF: The result follows easily from |{x, y, g}2\ < 9, using the fact that G' ^

Z{G) and g2 £ Z(G). D

The following lemma gives some more precise information.

LEMMA 2 . 3 . Let G £ DS(3) and x, y be elements of G such that [x, y] ± 1
and x2 ^ y2. Assume (xy) = y2. Tien for every g E G we have g £ CG(X) or

g2 - x2 or g2 = y2 .
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PROOF: Let g e G. Then, by Lemma 2.2, g £ CG{x) U CG{y) or g2 = x2 or
g2 = y2 . Similarly from (xy) = y2 it follows, by Lemma 2.2, that g £ CG(X) U C G ( ^ I / )

or g2 = x2 oi g2 = y2. If g £ CG(2/) n Ca[xy), then p £ C G (x) . Hence 5 £ C G ( Z ) or
g2 = x2 or g2 = y2 , as required. D

Let G be a finite non-abelian group in DS(3) of exponent 4. If (x £ G/ |x| = 4 )

is a proper subgroup of G, then G is a Z)-group with the notation of [1]. Then, by the

results of [1], (3) of Theorem A holds.

Thus in the following we assume G — (x £ G/ \x\ — 4) .

First we remark:

LEMMA 2 . 4 . Let a, b £ G be such that a2 ^ b2, ab = a"1 , \a\ = 4. Tien (a)
is normal in G.

PROOF: First we prove that [a, g] £ {a2, b2, 1} for every g £ G. Let g £ G -
CG{O) . Then by Lemma 2.3 either g2 = a2 or g2 — b2 , and similarly either (ag) = a2

or (ag) = b2. Furthermore we have (ag) — a2g2[a, g]. If g2 = a2, then [a, g] —
{agf £ {a2, 62}. If g2 = b2, then [a, g] = (ag)2a2b2 and [a, g] = 62 if {agf = a2,
while [a, g] = a2 if (05)2 = 62. Now, if |6| = 2 then [a, g] is always in (o), and
(a) is normal in G, as required. If |6| = 4 and [a, g] = b2 for some g £ G, then
[a, bg] — a2b2 £ {1, a2, 62}, a contradiction. D

Now we study groups satisfying our conditions and with fii(G) % Z(G).

2 . 5 . Assume there exists g £ G witi |flr| = 2, p £ ^ ( G ) . Tien |Ui(G)| = 2
and (2j of Theorem A holds.

PROOF: Let g £ Z[G), with \g\ = 2. Then there exists a £ G, with |a| = 4,
ay ^ 5a, since G = (x E G/ \x\ = 4 ) . By Lemma 2.2 either (ag)2 = a2 or (ag)2 = 1.
From (ag) — a2 it follows that agag = a2 , whence ag = ga, a contradiction. Hence
(ag) = 1, and g~xag = a"1 . Thus by Lemma 2.4 we have (o) normal in G. Moreover
for every x £ G, |z| = 4, either a2 = z2 or x £ GG(O) by Lemma 2.3. There exists
b E G, with |6| = 4 and ab ^ 6a since a £ £(G) . Then 62 = a2 and |a6| = 4. If
[fe, <j] = 1 j then [a&, 5] ^ 1. Without loss of generality we may assume [6, g] ^ 1. Then,
arguing on b as previously on a, we get (6) normal in G and either x2 = 62 = a2 or
3 £ Ca(b) for every x £ G, |x| = 4.

Now assume by contradiction that there is an element x £ G, with x2 ^ a2 and
|x| = 4. Thus x £ G G ( « ) and x £ Ca(b). But then ox ^ GG(&) and |ax| = 4, hence
(ax) = 62 = a2 and x2 = 1, a contradiction. D

It will be shown later that groups satisfying (1) to (5) of Theorem A have the

property DS(3).

Now we assume fii(G) ^ Z(G). We start with two particular cases.
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CASE 2 . 6 . Let a,b £ G be such that \a\ = \b\ = 4, a2 ^ 62 and ab = a~
l.

Assume G = (a, b)(Ca(a) fl CG{b)) and that (3) does not hold. Then (4) of Theorem
A holds.

PROOF: First we remark that y2 £ (a2b2) for every y £ CG{a) n CG(b). In fact
let y £ CG(a) D Ca(b). Then yb £ Ca(a) and, by Lemma 2.3, either {ybf = a2 or
(yb)2 =b2. If (yb)2 = a2, then y2b2 = a2 and y2 = a2b2, while if y2b2 = (yb)2 = b2,
then y2 = 1.

Now we prove that CG(a) D CG(b) is abelian. Let 2/1,3/2 G C G W H CG(6 ) and, by
contradiction, assume [j/1} j/2] 7̂  1. Then |j/i| = |j/21 = 4, since fii(G) ^ Z(G). The
elements ai/i, 6yi do not permute, and (at/i)2 = a2j/2 ^ 62i/2 = (frj/i)2. Then Lemma
2.2 applies and y2 £ CG(ayi) U CG(by2) or y2 = (oyx)2 = a2y2 or y\ = (by{f = b2y\.
But 3/2 ^ CG(J / I ) and y\ = y2 , a contradiction. Therefore C G ( O ) D C G ( 6 ) is an abeh'an

group of exponent 4 and with l5i(CG(a) n CG(b)) = (a2b2). Thus CG(O) H C G ( 6 ) =
D x (c), where exp D = 2 and c2 = a2b2, and (4) of Theorem A holds. D

CASE 2 . 7 . Assume that there exist a, b, c, d £ G such that \a\ = \b\ = \c\ =
\d\ = 4, and

(1) (a,c) = (a)x{c),

(2) ah = a-1,<* = c-l,V?a>,<?,
(3) ad = a, bd = b, cd^c~1.

Then c2 = cP = a2b2 , and (5) of Theorem A holds.

PROOF: First we prove that c2 = cP - a2b2. From bd g CG(a), it follows that
either (bd)2 = a2 or (bd)2 = b2, by Lemma 2.3. If (bd)2 = b2 then we have d2 = 1
which is a contradiction. Then b2d? = a2 and d2 = a2b2. Similarly if c2 ^ d?, from
be i CG(c) U GG(d) it foUows, by Lemma 2.2, that either (6c)2 = c2 or (6c)2 = d2.
But (6c) = 62, and so either 62 — c2 or 62 = (i2 , a contradiction.

Therefore c2 = d2 = a2b2 .

Now write D = CG(a) D CG(c). Then we have D normal in G and \G/D\ <
4, since (a), (c) are normal in G by Lemma 2.4. Moreover G = D(b, d) because
6, d, bd i CG(a) n CG(c).

We prove that g2 £ {1, a2, 62, a262} for every g £ D. From that it follows that
one of g, ga, gca, gc has order 2 and D = £li(D){a, c): thus D = (a) X (c) X Y" where
Y ^ f2i(£>) ^ Z(G), and G has the required structure.

Assume by contradiction that there exists g £ D with g2 £ {1, a2, b2, a2b2}.

If g commutes with 6, then from bg $ GG(O) it follows by Lemma 2.3 that either
(bg)2 = b2g2 - a2 or b2g2 = (bg)2 = 62, a contradiction. Similarly if ^ € C G ( < 0 ,

 t n e n

from dg <£ CG(c) it follows that either cPg2 = (dg)2 = c2 or d?g2 = (dg)2 = 62, a
contradiction. Thus g £ CG(b) U CG(d). Now we have g2 ^ d? = c2. By Lemma 2.2,
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every element x £ G is either in CG(g) U CG(d) or is such that x2 — g2 or x2 = d2.
Then (c6)2 = g2 or (c6)2 = d2 . But (c6)2 = 62 and we get a contradiction. D

Now we can complete our characterisation of finite groups of exponent 4 in DS(3).

PROOF OF T H E O R E M A: Let G £ DS(3) be a finite 2-group of exponent 4.
Assume G non-abelian and |t5i(G)| > 2. Also suppose that (3) does not hold. Then
every element of order 2 is in the centre of G by Lemma 2.5. Moreover there is an
element x £ G with |x| = 4 and (x) is not normal in G, since G is not a Dedekind
group. Thus there exists y £ G of order 4 with y ^ NG((x)). If (xy)2 = y2 , then
y~*xy = x"1 and y £ NQ((X)) , a contradiction. Hence (xy) ^ y2 . Moreover |xy| = 4,
because xy ^ CG(X) . Therefore we have found two elements a, b £ G with a& ^ 6a,
a2 ^ 62, |a| = |&| = 4. By Lemma 2.2 we have either (a&)2 = a2 or (a&)2 = 62.
Without loss of generality we can assume (ab) = b2. Then &~1a& = a"1 , and (a) is
normal in G by Lemma 2.4. Moreover, for every g £ G — CG(&) we have either g2 = a2

or g2 =b2, by Lemma2.3. Write C = CG(a). Then C is normal in G and \G/C\ = 2.

Assume first C < Ca(b) U a'1 CG(b); then G = (a, b)(C ("I Ca(b)). Now 2.6 applies
and (4) holds. Then we can assume that there exists c £ C— (Ca(b) U a~1Co(b)) • Thus
|ac| > 2 and a2 ^ c2. We claim that cb = c" 1 . In fact from 6c ^ CG(a) it follows that
either (6c) = a2 or (6c) = 62 . If (6c) = b2 , then cb — c " 1 . Assume by contradiction
(6c)2 = a2. If 62 = c2 , then a2 = (6c)2 = &2c2[6, c], thus [6, c] = a2 = [6, a] and
[6, ac] = 1, a contradiction. If b2 ^ c2, then from [6, c] 7̂  1 it follows that either
(6c)2 = 62 or (6c)2 = c2 by Lemma 2.2. But (6c)2 = a2 and a2 ^ 62, c2 and we have a
contradiction. Therefore we get cb = c - 1 . Moreover, replacing c by ca if necessary, we
can assume c2 £ {1, a2, b2}. Then for every g £ G — CG(c) either g2 = b2 or g2 = c2

by Lemma 2.3.

Now we have G = C(b). If db = d~x for every d £ C, then C is abelian and
(3) holds. Assume that there exists d £ C such that db ^ d"1 . Then (d6)2 ^ 62

and (d6) = a2 since d& ^ CG(a). Similarly from d6 ^ CG(C) it follows that either
(d6)2 = c2 or (d&)2 = 62. But 62, c2 are different from a2. Hence d& £ CG(c) and
cd = c~x. Analogously we get that either d2 = c2 or d2 = 62 (since [c, d] ^ 1).

First assume cP = c2. Consider the elements ac, db. Then we have [ac, db] —
[a, 6] # 1, (ac)2 = a2c2 ± (db)2 = a2. Hence by Lemma 2.2 cd £ CG(ac) U CG(d6) or
(cd)2 = (ac)2 = a2c2 or (cd)2 = a2. But (cd)2 = d2, and then the only possibility is
[cd, db] — [d, 6] = 1. Now the elements a, b, c, d satisfy the hypothesis of 2.7 and (5)
holds.

Now assume d2 = 62. Then from a2 = (bdf = 62d2[d, 6] it follows that [d, 6] =
a2 = [a, 6]. Hence [ad, 6] = 1. Thus, with d' — ad, we have o6 = a" 1 , ac = a, ad = a,
cd — cd — c - 1 , bd = b and the elements a, b, c, d' satisfy the hypothesis of 2.7 and
again (5) holds.
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Conversely assume that one of (1), (2), (3), (4), (5) holds.

If (1) or (2) or (3) holds, trivially G E DS{3).

Now assume that (4) holds. Then fl^G) ^ Z(G) and Ui(G) = {1, a2, b2, c2}.

Furthermore every element x E G can be written in the form x = doPlPc"1, where
d E fti(G), a, 0, 7 = 0, 1 (mod 2). Then we have (aabc<)2 = aabc^aabc^ = b2c2^ E

{a2, b2} and (aac^)2 = c2 if and only if a = 0 (mod 2), 7 = 1 (mod 2). Hence if
x2 = c2, then x 6 Z(G). Now let X = {x, y, z} C G. If X D fti(G) ± 0, then
X n Z(G) ^ 0 and \X2\ < 9. Also \X2\ < 9 if \{x2, y2, z2}\ < 3. Now assume x2,

y2 , z2 pairwise different and not 1. Then an element of X, say x, is such that x2 = c2

and x E Z{G) by the previous remark. Thus X D Z(G) ^ 0 and |X2| < 9.

Now assume that G satisfies (5). Again we have Q.\(G) ^ Z(G) and Ui(G) =
{1, a2, b2, c2}. Moreover every element g of G can be written as g = faab^crds where
a, /3, 7, 6 = 0, 1 (mod 2). As before it is easy to see that g2 = a2 if and only if either
/3 = 1 (mod 2), 7 = 0 (mod 2), 6 = 1 (mod 2), that is, g E {fbd, fabd/f E fti(G)}
or 0 = 0 (mod 2), a = 1 (mod 2), 7 = 6 = 0 (mod 2), that is, g E {fa/f E fii(G)}.
However g2 = c2 or g2 = 1 if and only if a = f3 = 0 (mod 2). Hence the elements of
G whose square is a2 commute with the elements whose square is c2. Now it is easy
to verify that G E DS(3). D

From the results of [1] and from Theorem A it follows easily that if G is in JDS(3),

then G is abelian, or G = A(x) where A is an abelian subgroup of index 2 and
ax = a"1 for every a E A, or G is a 2-group of class less than or equal to 2, exponent
4, and with |Ui(G)| ^ 4 .

Hence any finite group in DS(3) is soluble. But groups in DS(k) for some k are
finite-by-abelian-by-finite, so then any group in DS(3) is soluble.

Also we remark that from Theorem A it follows that if G is a non-abelian finite
group in DS(3) then Z(G) has exponent at most 4, and has exponent 2 if (3) holds.

These will be our starting points in the next section.

3. ARBITRARY GROUPS IN DS(3)

We prove the following

THEOREM C. Let G be a group. Then G E DS{3) if and only if one of (1), (2),

(3), (4), (5) of Theorem A holds.

PROOF: Let G 6 DS(3). Then G is soluble and finite-by-abelian-by-finite, by an
unpublished result of P. Neumann ([6], see [3] for a proof).

Assume first that G is finitely generated. Then G is polycyclic and thus residually
finite, by a theorem of Hirsch (see for example [7, 5.4.17, p.149]). Suppose G is non-
abelian. Then there exists a normal subgroup N of G of finite index with G/N non-
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abelian. If for every x 6 G we have x2H G Z(G/H) for any H normal in G, H ^ N,
of finite index, then G is nilpotent of class 2 and z2 6 Z(G). In this case G is periodic.
For, if y is a torsion-free element of G, we have y2 G Z(G). Thus if M is normal in
G with G/M finite, M ^ JV and y 4 , y8 g M , we get t/2M G Z{G/M), G/M non-
abelian, i/2M of order different from 2, 4, a contradiction by the remarks at the end of
Section 2. Then G is a periodic finitely generated nilpotent group, so G is finite and
has the required structure.

Now assume that there exist JV normal in G of finite index and an element xN G
G/N with x2N <£ Z(G/N). Then G/N = A/N(xN) with a'N = a^N, and A/N
abelian and x2 G A by Theorem A. For every normal subgroup M ^ N of finite index
we have x2M $ Z{G/M), hence G/M = B/M(yM), B/M abelian, y2M G B/M,
b*M = 6~1M for every 6 G B. If either A£B,oi B ^A, from G/Af = A/M B/M,
with A/M, £ /M abelian of index 2, it follows that g2M G A/M n B/M < Z{G/M)
for every <7 G G, a contradiction.

Thus A = B, and zM = byM, for some 6 G 5 . Hence G/M = A/M(s;M) with
A/M abelian and aax G M for every a G A. This holds for any normal M of finite
index, M ^ N with the same element x. Then since G is residually finite we get
G — A(x), A abelian of index 2, ax = a"1 for every a G A, as required.

Now assume that G is an arbitrary group. Suppose G is non-abelian and |l$i(G)| >
2. Then there exists a finitely generated subgroup Y of G which is non-abelian and
with |l$i(Y")| > 2. First assume that G does not have a subgroup of type (4) nor (5).
Then for every finitely generated subgroup F ^ Y of G we have F = Ap (g), where AF
is abelian, g2 G AF and a3 = a"1 for every a G AF • Therefore every finitely generated
subgroup of G has an abelian subgroup of index at most 2. Then, using Proposition
1.K.2 of [5, p.55], it is easy to show that G has an abelian subgroup A of index 2
and G = A(x). Assume by contradiction that there exists a G A with a" ^ a"1,
az ^ a. Then for every finitely generated subgroup X ^ (a, x, F) we have X = B(y),
with B abelian of index 2 and bv = 6"1 for every b & B. If either B ^ X D A or
B ^ X n A, then B = X f l 4 and we have a £ B, x £ B and a; = cy, with c g B ;
then ax = acy = ay = a"1, a contradiction. Thus there exists z G B — (X fl A) and
we have z = dx with <f G A. Then 5 fl X D A ^ Ca{dx) n GG(d) < GG(z) and from
\X : B H X H A| ^ 4 we get |X : GG(z)| ^ 4. Furthermore there exists a G (A D X ) - £
and we have b' = b'1 = b, for every b e B DAnX; hence A f~l 5 D X has exponent
2 and is in Z(X). We have proved that X is a finite 2-group nilpotent of class 2
and exponent at most 4 and \X : CG(X)\ ^ 4. This holds for any X ^ (Y, a, x).
We get easily that A has exponent at most 4 and |G : GG(a;)| ^ 4. Hence we have
G = Z(G)F with F finite, F ^ (a, x) and Z(G) of exponent 2 by the remark at the
end of Section 2. Then G = T x F with .F finite and expT = 2. By Theorem A we
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have a contradiction. Then A = A\ LSC^x), with Ai = {a £ A/ax = a"1} a subgroup
of A, and A — A\ since G is not abelian. Therefore (3) holds.

Now assume that there exists a finite subgroup H of G satisfying (4) or (5) of
Theorem A. Then H is not abelian, |U1(JJ)| = 4 and H does not have the structure in
(3). Then any finitely generated subgroup of G containing H satisfies either (4) or (5).
It follows easily that |Ui(G)| = 4 and fi^G) < Z(G). First assume H = (a, 6, c, d),
\a\ = \b\ = \c\ = \d\ = 4, a" = a"1 , cb = c~\ cd = c~\ [a, c) = [a, d] = [6, d] = 1.
Then we have (o) and (c) normal in G. Write D = Ca(a) H CG(C). Then we have D
normal in G and G = D(b, d). Furthermore for any g 6 D, \g\ = 4, we have g2 = a?,
g2 = c2 or g2 = b2 = (ac)2. Then ag, cff or gac has order 2. Then D < ni(G)(a, c)
and G = Q,1(G)(a, b, c, d) = Y x (a, b, c, d) with Y of exponent 2. Therefore (5)
holds. Similarly if G ^ (a, b, c) and (a, 6, c) satisfies (4) of Theorem A, then we get
G = Y X (a, 6, c), with exp y = 2, and (4) holds. D
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