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We investigate the dynamics of cohesive particles in homogeneous isotropic turbulence,
based on one-way coupled simulations that include Stokes drag, lubrication, cohesive and
direct contact forces. We observe a transient flocculation phase, followed by a statistically
steady equilibrium phase. We analyse the temporal evolution of floc size and shape due
to aggregation, breakage and deformation. Larger turbulent shear and weaker cohesive
forces yield smaller elongated flocs. Flocculation proceeds most rapidly when the fluid
and particle time scales are balanced and a suitably defined Stokes number is O(1). During
the transient stage, cohesive forces of intermediate strength produce flocs of the largest
size, as they are strong enough to cause aggregation, but not so strong as to pull the
floc into a compact shape. Small Stokes numbers and weak turbulence delay the onset
of the equilibrium stage. During equilibrium, stronger cohesive forces yield flocs of larger
size. The equilibrium floc size distribution exhibits a preferred size that depends on the
cohesive number. We observe that flocs are generally elongated by turbulent stresses
before breakage. Flocs of size close to the Kolmogorov length scale preferentially align
themselves with the intermediate strain direction and the vorticity vector. Flocs of smaller
size tend to align themselves with the extensional strain direction. More generally, flocs
are aligned with the strongest Lagrangian stretching direction. The Kolmogorov scale is
seen to limit floc growth. We propose a new flocculation model with a variable fractal
dimension that predicts the temporal evolution of the floc size and shape.
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1. Introduction

Individual cohesive particles suspended in liquid or gaseous fluid flows tend to form
larger aggregates, due to attractive inter-particle forces that cause the primary particles
to flocculate. This mechanism plays a dominant role in environmental processes such as
sediment erosion and transport in rivers and oceans, or soil erosion by wind (Winterwerp
2002; Guo & He 2011; Wang et al. 2013; Tarpley et al. 2019). In planetary astrophysics,
corresponding processes influence the coagulation of dust during the formation of
protoplanetary disks (Ormel, Spaans & Tielens 2007; Schäfer, Speith & Kley 2007; Ormel
et al. 2009, 2011). The emergence of large aggregates due to the flocculation of cohesive
primary particles is also highly relevant in the context of a wide range of industrial
processes, such as the ingestion of dust in gas turbine engines (Bons, Prenter & Whitaker
2017; Sacco et al. 2018), or the use of membrane separation technologies for wastewater
treatment and the production of potable water (Bratskaya et al. 2006; Leiknes 2009;
Moghaddam, Moghaddam & Arami 2010; Kang et al. 2012). Similarly, the operation of
certain types of medical equipment, for example dry powder inhalers (Yang, Wu & Adams
2013a, 2015; Tong et al. 2013, 2016), involves the formation of agglomerates or flocs. The
flocculation process is strongly affected by the turbulent nature of the underlying fluid flow.
Small-scale eddies modify the collision dynamics of the primary particles and hence the
growth rate of the flocs, while turbulent stresses can result in the deformation and breakup
of larger cohesive flocs. Hence the dynamic equilibrium between floc growth and breakup
is governed by a complex and delicate balance of hydrodynamic and inter-particle forces.

A host of experimental studies have provided considerable insight into key aspects
of the development of flocs in turbulent shear flows, such as their growth rate (Biggs
& Lant 2000; Yu et al. 2006; Xiao et al. 2010; Kuprenas, Tran & Strom 2018), the
equilibrium size distribution (Chaignon et al. 2002; Bouyer, Liné & Do-Quang 2004;
Rahmani, Dabros & Masliyah 2004; Lee, Hyeong & Cho 2020) and the transient shape
of the flocs (Maggi, Mietta & Winterwerp 2007; He et al. 2012; Guérin et al. 2017).
Based on the early pioneering work by Levich (1962), several of these investigations
have employed a population balance approach to formulate models for the temporal floc
evolution (Winterwerp 1998; Maggi et al. 2007; Son & Hsu 2008, 2009; Shin, Son &
Lee 2015). Alternative approaches based on the classical work by Smoluchowski (1918)
propose statistical collision equations (Ives & Bhole 1973; Yang et al. 2013b; Klassen
2017). Most of the above approaches do not incorporate detailed information on the
overall floc strength, which varies with the floc size and shape, and with the strength
of the bonds between the primary cohesive particles (Dizaji, Marshall & Grant 2019).
Moreno-Atanasio & Ghadiri (2006), on the other hand, consider the dependence of the
overall floc strength on the number and strength of the bonds within the floc. Nguyen
et al. (2014) and Gunkelmann, Ringl & Urbassek (2016) observe that loosely structured
agglomerates fragment more easily during collisions than densely packed ones.

In recent years, highly resolved numerical simulations have begun to provide a
promising new avenue for gaining insight into the interplay of hydrodynamic, inertial and
inter-particle forces during the growth, deformation and breakup of aggregates (Marshall
& Li 2014). The study by Zhao et al. (2020) focuses on a conceptually simple cellular
model flow in order to explore the competition between inertial, drag and cohesive
forces during the flocculation process. The authors find that floc growth proceeds most
rapidly if the fluid and particle time scales are in equilibrium, so that a suitably defined
Stokes number is of order unity. Based on simulations in a similar model flow, Ruan,
Chen & Li (2020) suggest a criterion for the breakup of aggregates. Dizaji et al. (2019)
investigate the dynamics, collision and fragmentation of flocs in shear flows, via two-way
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coupled simulations that account for the modification of the flow by the particles. They
demonstrate that the particle–fluid interaction induces vortex rings in the flow. Dizaji
& Marshall (2016) propose a novel stochastic vortex structure method, and proceed to
show that this numerical approach produces realistic collision rates in homogeneous
turbulence. For flocculation in turbulence, Dizaji & Marshall (2017) show that the
aggregation process influences the background turbulence only weakly. Quite recently,
Chen, Li & Marshall (2019) and Chen & Li (2020) conducted a detailed computational
study of cohesive particle aggregation in homogeneous isotropic turbulence, based
on two-way coupled direct numerical simulations combined with an adhesive discrete
element method. The simulations presented in Chen et al. (2019), which account for Stokes
drag, lubrication and adhesive contact forces, address the early stages of flocculation
before an equilibrium size distribution is reached. Upon the onset of flocculation, the
results demonstrate a time-dependent, exponential size distribution of the flocs for all
values of the cohesive force strength. Based on this observation, the authors develop
an effective agglomeration kernel for the population balance equation that successfully
reproduces the direct numerical simulation (DNS) results. In a follow-up study, Chen
& Li (2020) investigate the collision-induced breakup of agglomerates in homogeneous
isotropic turbulence. The authors are able to quantify the fraction of collisions that result in
breakage, which presents useful information for closing the population balance equation.
However, because the simulations focus on the early stages of flocculation before the
emergence of an equilibrium size distribution, and because they employ particles with
diameter approximately equal to the Kolmogorov scale, they do not allow the authors to
assess the role of the Kolmogorov length scale in limiting the floc size, a widely reported
experimental observation (Fettweis et al. 2006; Coufort et al. 2008; Braithwaite et al. 2012;
Kuprenas et al. 2018). Furthermore, the authors model the cohesive van der Waals force
as a ‘sticky force’ that acts only on contact. Several previous studies, on the other hand,
have indicated that this attractive force extends over a finite range even before the particles
come into contact, so that it can affect the probability that two close-by particles will
collide (Visser 1989; Israelachvili 1992; Wu, Ortiz & Jerolmack 2017; Vowinckel et al.
2019).

The present investigation aims to explore the interplay between floc aggregation,
deformation and breakup from inception all the way to the dynamic equilibrium
phase, with the goal of obtaining scaling laws for both of these qualitatively different
stages. Towards this end, we will employ a simulation approach that tracks dispersed
individual spherical particles of a given diameter in homogeneous isotropic turbulence.
The simulations are one-way coupled in the sense that the particles do not modify the
fluid flow, although particle–particle interactions are fully accounted for, and the grid
spacing employed for calculating the fluid motion is smaller than the particle diameter.
Sometimes this approach is referred to as ‘three-way coupled’. The simulations account
for inter-particle forces based on recently developed advanced collision models for viscous
flows (Biegert, Vowinckel & Meiburg 2017, and references therein), along with the
cohesive force model of Vowinckel et al. (2019). The homogeneous isotropic turbulence
is generated and maintained via the forcing method of Eswaran & Pope (1988). We will
employ these simulations in order to investigate the floc size and shape evolution, the floc
size distribution during the equilibrium stage, the orientation of the flocs with regard to the
principal directions of the Eulerian strain and the Lagrangian stretching, as well as the role
of the Kolmogorov length scale in limiting floc growth. Based on our findings, we then
propose a novel flocculation model that predicts the evolution of the floc size and shape
with time. To assess the performance of this new flocculation model, we will compare its
predictions to those obtained with existing models in the literature.
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The paper is structured along the following lines. Section 2 briefly reviews the governing
equations for the fluid flow and the particle motion, and it describes the computational
approach. It identifies the governing dimensionless parameters and quantifies the range
over which they will be varied in the present investigation. The properties of the turbulent
flow fields are described in § 3, and their statistically stationary and isotropic nature is
discussed. Starting from 10 000 randomly distributed individual particles, we then analyse
the temporal evolution of the floc size and shape as a result of aggregation, deformation
and breakage in § 4. Here, we will distinguish between the transient flocculation stage and
the equilibrium stage, and we will discuss the underlying physical mechanisms. We will
furthermore analyse the alignment of the flocs with regard to the principal strain directions
of the turbulent velocity field, and we will focus on how the Kolmogorov scale affects the
maximum floc size. Subsequently, we introduce the new flocculation model in § 5, and we
compare its predictions to those obtained from existing models. Section 6 summarizes the
main findings of the current investigation, and presents its key conclusions.

2. Governing equations and numerical method

2.1. Particle motion in homogeneous isotropic turbulence
We consider the one-way coupled motion of suspended cohesive particles in
three-dimensional, incompressible homogeneous isotropic turbulence. The motion of the
single-phase fluid with constant density ρf and kinematic viscosity ν is governed by

∇ · uf = 0, (2.1)

∂uf

∂t
+ (uf · ∇)uf = − 1

ρf
∇p + ν∇2uf + F tur, (2.2)

where u f = (uf , vf , wf )
T denotes the fluid velocity vector and p indicates the

hydrodynamic pressure. We employ the spectral approach of Eswaran & Pope (1988)
to obtain the forcing term F tur, which generates and maintains statistically stationary
turbulence, as implemented in Chouippe & Uhlmann (2015). Here, F tur is non-zero only
in the low-wavenumber band where the wavenumber vector |κ | < κf , with κf = 2.3κ0 and
κ0 = 2π/L0, with L0 denoting the length of the physical domain. The origin κ = 0 is not
forced. In addition to the cutoff wavenumber κf , the random forcing process is governed
by the dimensionless parameter Ds = σ 2T0L4

0/ν
3, where σ 2 and T0 indicate the variance

and the time scale of the random process, respectively. Regarding the details of evaluating
F tur from κf and Ds, we refer the reader to the original work by Eswaran & Pope (1988).

We approximate each primary suspended particle i as a sphere moving with translational
velocity up,i = (up,i, vp,i, wp,i)

T and angular velocity ωp,i. These are obtained from the
linear and angular momentum equations

mp
dup,i

dt
= F d,i +

N∑
j=1,j /= i

(F con,ij + F lub,ij + F coh,ij)

︸ ︷︷ ︸
F c,i

, (2.3)

Ip
dωp,i

dt
=

N∑
j=1,j /= i

(T con,ij + T lub,ij)

︸ ︷︷ ︸
T c,i

, (2.4)
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Physical parameters
Particle diameter Dp 5 μm
Particle density ρp 2.65 × 103–5.0 × 104 kg m−3

Number of particles N 1.0 × 104

Volume fraction of particles φp 2.68 × 10−3

Hamaker constant AH 1.0 × 10−20–3.0 × 10−18 J
Fluid density ρf 1.0 × 103 kg m−3

Dynamic viscosity μ 1.0 × 10−3–2.5 × 10−3 Pa s
Shear rate G 3.7 × 103–9.5 × 104 s−1

Kolmogorov length scale η 3.25–16.5 μm

Non-dimensional parameters
Particle diameter D̃p 8.0 × 10−3

Density ratio ρ̃s 2.65–50
Turbulence Reynolds number Re 2.0 × 103–5.0 × 103

Turbulent forcing parameter Ds 1.0 × 104–1.0 × 107

Cohesive number Co 4.0 × 10−10–1.2 × 10−7

Shear rate G̃ 0.29–7.4
Stokes number St 0.02–1.92

Table 1. Non-dimensionalization employed in the present work: the characteristic values for length, velocity
and density are L0 = 125Dp = 6.25 × 10−4 m, U0 = 8 m s−1 and ρf = 1000 kg m−3, respectively.

where the primary particle i moves in response to the Stokes drag force F d,i =
−3πDpμ(up,i − uf ,i), and the particle–particle interaction force F c,i. Buoyancy is not
considered here, so that we can investigate the effects of particle inertia in isolation. We
only consider primary particles that are larger than 2 μm (cf. table 1), so that a suitably
defined Péclet number measuring the relative importance of hydrodynamic and Brownian
forces is sufficiently large for their Brownian motion to be negligible (Partheniades 2009;
Biegert et al. 2017; Chen et al. 2019; Vowinckel et al. 2019). Here, up,i indicates the particle
velocity evaluated at the particle centre, uf ,i = ∑Ni

1 (φi,kuf ,k) represents the fluid velocity
averaged over the volume of particle i, where Ni denotes the number of Eulerian grid cells
covered by particle i, uf ,k is the fluid velocity at the centre of the grid cell k and φi,k is the
volume fraction of the particle i in the grid cell k. We remark that the above implies that the
diameter Dp of the primary particle should be larger than the grid spacing h. This avoids
the need for interpolating the fluid velocity within one grid cell, which would be required
if Dp < h (Chen et al. 2019). Also, mp denotes the particle mass, μ the dynamic viscosity
of the fluid and N the total number of particles in the flow. We assume all particles to have
the same diameter Dp and density ρp. The parameter F c,i accounts for the direct contact
force F con,ij in both the normal and tangential directions, as well as for short-range normal
and tangential forces due to lubrication F lub,ij and cohesion F coh,ij, where the subscript
ij indicates the interaction between particles i and j. Also, Ip = πρpD5

p/60 denotes the
moment of inertia of the particle and T c,i represents the torque due to particle–particle
interactions, where we distinguish between direct contact torque T con,ij and lubrication
torque T lub,ij. Within a large floc, we account for all of the individual binary particle
interactions.

The lubrication force F lub,ij is accounted for based on Cox & Brenner (1967) as
implemented in Zhao et al. (2020). We note that, although the present study is limited
to monodisperse particles, polydisperse particle–particle interactions can be taken into
account by an effective radius Reff = RpRq/(Rp + Rq), where Rp and Rq are the radii
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of two interacting spheres. Following Biegert et al. (2017), the collision force F con,ij
is represented by a nonlinear spring–dashpot model in the normal direction, while the
tangential component is modelled by a linear spring–dashpot model capped by the
Coulomb friction law to account for zero-slip rolling or sliding of particles. We note
that the tangential component of the contact force depends on the surface roughness,
a prescribed restitution coefficient edry = 0.97 and a friction coefficient efri = 0.15 are
implemented to yield adaptively calibration for every collision as described by Biegert
et al. (2017). The cohesive force F coh,ij, which reflects the combined influence of the
attractive van der Waals force and the repulsive electrostatic force, is based on the work
of Vowinckel et al. (2019), where additional details and validation results are provided.
The model assumes a parabolic force profile, distributed over a thin shell surrounding
each primary particle. Hence, the cohesive force between primary particles extends over
a finite range, so that it is felt by the particles even before they come into direct contact.
We consider two primary particles to be part of the same floc when their surface distance
is smaller than half the range of the cohesive force, as implemented in Zhao et al. (2020).
We remark that, based on (2.3) and (2.4), the configuration of the primary particles within
a floc can change with time in response to fluid forces, since the cohesive bonds are not
rigid. Specifically, the contact points on the surface of the primary particles are not fixed,
so that the primary particles can rotate individually within a floc.

2.2. Non-dimensionalization
In order to render the above governing equations dimensionless, we consider primary
particles with diameter Dp = 5 μm, which represents a typical value for clay or fine silt.
The cubic computational domain has an edge length L0 = 125Dp = 6.25 × 10−4 m. As
time scale of the random turbulent forcing process we select T0 = 7.81 × 10−5 s. By
choosing L0, T0 and ρf = 1000 kg m−3 as the characteristic length, time and density
scales, we obtain the characteristic velocity scale U0 = L0/T0 = 8 m s−1, which is similar
to values employed in previous investigations (Chen et al. 2019; Chen & Li 2020). We
employ L0 and U0 to define the turbulence Reynolds number Re = L0U0ρf /μ.

The dimensionless continuity and momentum conservation equations can then be
expressed as

∇̃ · ũf = 0, (2.5)

∂ũf

∂ t̃
+ (ũf · ∇̃)ũf = −∇̃p̃ + 1

Re
∇̃2ũf + F̃ tur , (2.6)

while the dimensionless equations of motion for the primary cohesive particles take the
form

m̃p
dũp,i

dt̃
= −3πD̃p(ũp,i − ũf ,i)

Re︸ ︷︷ ︸
F̃ d,i

+
N∑

j=1,j /= i

(F̃ con,ij + F̃ lub,ij + F̃ coh,ij), (2.7)

Ĩp
dω̃p,i

dt̃
=

N∑
j=1,j /= i

(T̃ con,ij + T̃ lub,ij). (2.8)

Here, dimensionless quantities are denoted by a tilde. The dimensionless particle mass
is defined as m̃p = πD̃3

pρ̃s/6, the moment of inertia Ĩp = πρ̃sD̃5
p/60 and the density ratio
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ρ̃s = ρp/ρf . The dimensionless direct contact and lubrication forces, F̃ con,ij and F̃ lub,ij, are
accounted for based on Zhao et al. (2020), while the dimensionless cohesive force F̃ coh,ij
is defined as

F̃ coh,ij =

⎧⎪⎨
⎪⎩−4Co

ζ̃ 2
n,ij − h̃coζ̃n,ij

h̃2
co

n, ζ̃min < ζ̃n,ij � h̃co,

0, otherwise.
(2.9)

Here, ζ̃min = 0.0015D̃p and h̃co = 0.05D̃p represent the surface roughness of the particles
and the range of the cohesive force, respectively. Also, n represents the outward-pointing
normal on the particle surface, while ζ̃n,ij is the normal surface distance between particles i
and j. The cohesive number Co indicates the ratio of the maximum cohesive force ‖F coh,ij‖
at ζ̃n,ij = h̃co/2 to the characteristic inertial force

Co = max(‖F coh,ij‖)
U2

0L2
0ρf

= AHDp

16hcoζ0

1
U2

0L2
0ρf

, (2.10)

where the Hamaker constant AH is a function of the particle and fluid properties, and
the characteristic distance ζ0 = 0.00025Dp. Vowinckel et al. (2019) provide representative
values of various physicochemical parameters such as AH , salt concentration and grain
size of the primary particles for common natural systems. The present numerical
approach for simulating the dynamics of cohesive sediment has been employed to predict
the flocculation in simple vortical flow fields, and it was successfully validated with
experimental data in our earlier work (Zhao et al. 2020).

To summarize, the simulations require as direct input parameters the turbulence
Reynolds number Re, the characteristic parameter of the random turbulent forcing process
Ds, the dimensionless particle diameter D̃p, the total number of particles N, the density
ratio ρ̃s and the cohesive number Co. As we will discuss below, Re and Ds can equivalently
be expressed by the shear rate G of the turbulence, cf. (3.1), and the Stokes number St
defined by (4.1). A list of the relevant dimensionless parameters is provided in table 1. We
remark that due to computational limitations the simulations consider Kolmogorov scales
that are somewhat smaller than typical field values, and turbulent shear rates that are larger
than field values. Hence, the ratio of the Kolmogorov length scale to the primary particle
size takes values up to 3.3 in the simulations, as compared with values up to O(10) under
typical field conditions. For convenience, the tilde symbol will be omitted henceforth.

3. Simulation of single-phase turbulence

3.1. Computational set-up
The triply periodic computational domain Ω has a dimensionless size of Lx × Ly ×
Lz = 1 × 1 × 1, with the number of grid cells Nx × Ny × Nz = 128 × 128 × 128. This
relatively modest number of grid points enables us to conduct the simulations over
sufficiently long times for the flocculation and break-up processes to reach an equilibrium
state (Tran, Kuprenas & Strom 2018), and it is in line with the earlier study of Chen et al.
(2019). As mentioned above, we set the diameter Dp of the primary particles moderately
larger than the grid size h = Lx/Nx, at a constant value Dp/h = 1.024.

Before introducing the particles into the flow, we simulate the single-phase turbulence
until it reaches a statistically stationary state. Table 2 gives an overview of the
physical parameters for the simulations conducted within the present investigation.
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Case Re Ds Reλ η urms G

Tur1 5.0 × 103 1.0 × 104 9.72 2.64 × 10−2 1.2 × 10−2 0.29
Tur2 2.0 × 103 5.5 × 104 16.05 1.83 × 10−2 5.56 × 10−2 1.49
Tur3 3.0 × 103 5.1 × 104 16.97 1.8 × 10−2 3.88 × 10−2 1.03
Tur4 4.0 × 103 5.05 × 104 17.25 1.79 × 10−2 2.94 × 10−2 0.78
Tur5 5.0 × 103 5.0 × 104 15.21 1.8 × 10−2 2.2 × 10−2 0.62
Tur6 5.0 × 103 1.0 × 105 21.83 1.48 × 10−2 3.2 × 10−2 0.91
Tur7 5.0 × 103 1.0 × 106 34.65 8.6 × 10−3 6.88 × 10−2 2.7
Tur8 5.0 × 103 1.0 × 107 50.34 5.2 × 10−3 1.38 × 10−1 7.4

Table 2. Physical parameters of the single-phase turbulence simulations. As input parameters we specify the
fluid Reynolds number Re = L0U0/ν and the characteristic parameter of the random turbulent forcing process
Ds = σ 2T0L4

0Re3. The simulation then yields the Taylor Reynolds number Reλ = λurmsRe, the Kolmogorov
scale η, the average root-mean-square velocity urms and the shear rate G = 1/(Re η2). All of these output
quantities are obtained by averaging over space and time, after a statistically stationary state has evolved.

Here, the Kolmogorov length scale and the root-mean-square velocity are defined
as η = 1/(Re3ε)1/4 and urms = (2k/3)1/2, respectively, where ε and k denote the
domain-averaged dissipation rate and kinetic energy of the fluctuations. The Taylor
Reynolds number Reλ = λurmsRe of the turbulence is based on the Taylor microscale
λ = √

15 urms/(Re ε)1/2. To provide a more complete quantitative description of the fluid
shear, we define the vorticity fluctuation amplitude

G = 1
Re η2 , (3.1)

which can also be regarded as the turbulent shear rate. For additional details with regard
to these quantities, we refer the reader to Pope (2001).

3.2. Turbulence properties for different Reλ
One key goal of the present investigation is to study the flocculation of primary particles
whose diameter Dp is smaller than the Kolmogorov length scale η. Since the particle
diameter needs to be larger than the grid spacing, and the number of grid points is limited,
suitable values of η require a relatively low Reλ. On the other hand, it is known that for
Reλ ≤ O(50) the turbulence may not be fully developed and isotropic (Mansour & Wray
1994). Hence this section presents a more detailed discussion of the turbulence properties
for Reλ ≤ O(50).

Figure 1 shows the time-dependent evolution of the box-averaged Kolmogorov length
η, the root-mean-square velocity urms, the Taylor Reynolds number Reλ and the shear rate
G for cases Tur1 and Tur8, which have time-averaged Taylor Reynolds numbers of 9.72
and 50.34, respectively. Both cases are seen to reach statistically stationary states. We note
that while case Tur8 results in η/h = 0.6656, Chouippe & Uhlmann (2015) demonstrated
the validity of the current turbulent forcing approach even when the Kolmogorov length
is smaller than the grid spacing. Snapshots of the vorticity modulus in a slice of the
computational domain are shown in figure 2. They exhibit the intermittent multiscale
patterns featuring eddies of different size along with thin filaments that are typical for
turbulence.

Figure 3 shows the temporal evolution of the domain-averaged magnitude of the velocity
components 〈|uf |〉Ω , 〈|vf |〉Ω and 〈|wf |〉Ω . During the statistically stationary state the three
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Figure 1. Temporal evolution of box-averaged turbulence properties for cases Tur1 and Tur8 in table 2: (a)
Kolmogorov length scale η; (b) root-mean-square velocity urms; (c) Taylor Reynolds number Reλ; and (d) shear
rate G. A statistically stationary state is seen to evolve for all quantities.
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Figure 2. Representative snapshots of the vorticity modulus normalized by the vorticity fluctuation
amplitude G, shown in the plane z = 0.5. (a) Case Tur1 and (b) case Tur8.

components are seen to oscillate around similar average values for both Tur1 and Tur8,
which indicates that the flow is isotropic to a good approximation.

We define the instantaneous kinetic energy components in Fourier space, E11(κ), E22(κ)

and E33(κ), as

∫ ∞

0
E11(κ) dκ =

〈uf · uf

2

〉
Ω

, (3.2a)
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Figure 3. Temporal evolution of box-averaged magnitude of the fluid velocity components: (a) case Tur1 and
(b) case Tur8. The flow is seen to be isotropic to a good approximation.
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Figure 4. Time-averaged one-dimensional energy spectra. The vertical dashed lines indicate the respective
cutoff wavenumber of the turbulence forcing scheme, κf η = 2.3(2π/Lx)η. (a) Case Tur1 and (b) case Tur8.
The spectra confirm that the statistically stationary flow fields are approximately isotropic.

∫ ∞

0
E22(κ) dκ =

〈vf · vf

2

〉
Ω

, (3.2b)∫ ∞

0
E33(κ) dκ =

〈wf · wf

2

〉
Ω

, (3.2c)

where κ = |κ | denotes the wavenumber. Figure 4 shows the time-averaged one-dimensional
energy spectra. Only the wavenumbers below the cutoff wavenumber (κf , shown as vertical
dashed lines in figure 4) are forced. The shapes of the energy spectra are in qualitative
agreement with those obtained by Chouippe & Uhlmann (2015, p. 10) for higher values
of Reλ ≈ 60. We conclude that the present forcing scheme yields statistically steady flow
fields that are approximately isotropic for the current range of Reλ-values.

4. Flocculation of cohesive particles

4.1. One-way coupling
Once the single-phase turbulence reaches the statistically stationary regime, N = 10 000
identical cohesive particles with diameter Dp = 0.008 are randomly distributed throughout
the domain, resulting in a particle volume fraction φp = 0.268 %. Initially all particles are
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at rest and separated by a distance larger than the cohesive range hco. To improve the
statistics, we carry out repeated simulations for different random initial conditions, as
the simulation results are statistically independent of the initial particle placement. The
simulations to be discussed in the following are one-way coupled, so that the particles do
not modify the background turbulence. Bosse, Kleiser & Meiburg (2006) find that particle
loading can modify the turbulence statistics even for volume fractions as low as 10−5,
so that we expect two-way coupling effects to have an impact on the flocculation process
even in moderately dilute flows. In addition, even for globally dilute flows the local volume
fraction inside a floc will be O(1), so that the one-way coupled assumption generally will
not hold inside a floc. However, fully two-way coupled simulations for sufficiently many
particles to obtain reliable statistical information, and for sufficiently long times to explore
the balance between aggregation and breakup during the equilibrium stage, are not feasible
on currently available supercomputers. Our assumption of one-way coupling hence limits
the volume and mass fractions that we can reasonably consider. On the other hand, the
current simulations and their comparisons to experimental observations are useful in
that they help address the question as to which aspects of flocculation are governed by
a one-way coupled dynamics, and which other aspects require a fully two-way coupled
dynamics. As we will see below, for the range of physical parameters listed in table 1,
even one-way coupled simulations are able to reproduce several experimentally observed
statistical features of flocculation dynamics.

We adopt a multiscale time-stepping approach in which the fluid motion is calculated
with a time step �t based on the criterion that the Courant–Friedrichs–Lewy number
CFL ≤ 0.5. The particle motion, on the other hand, is evaluated with a much smaller
time step �tp = �t/15. Since the computational approach maintains a contact duration of
Tc = 10�t = 150�tp (Biegert et al. 2017), each particle collision is effectively resolved by
150 substeps, at the price of a marginal increase in the computational cost. The dynamics
of the primary particles is characterized by the Kolmogorov-scale Stokes number

St = ρs

18

D2
p

η2 Reη, (4.1)

where the Kolmogorov Reynolds number Reη = ηurms Re. Since the particle diameter Dp
is constant throughout the present investigation, St depends on the density ratio ρs and the
fluid properties. A particle with a small Stokes number tends to follow the fluid motion,
while the dynamics of a particle with a large Stokes number is dominated by its inertia, so
that it tends to continue along its initial direction of motion.

Table 3 summarizes the physical parameters of the simulations that we conducted.
Following our analysis from § 2.2 and the examples given in Appendix A of Vowinckel
et al. (2019), these values correspond to primary silica particles with a grain size of fine
to medium silt in ocean water. In the following, we will investigate how the flocculation
dynamics is influenced by the cohesive number Co, the Stokes number St and the shear
rate G. We remark that the density ratio ρs and the size ratio η/Dp are implicitly accounted
for by St and G.

4.2. Flocculation and equilibrium stages
When the surface distance between two particles is smaller than half the range of the
cohesive force, hco/2, we consider these particles to be part of the same floc. Hence,
in terms of a physical force balance breakage occurs when the net force pulling the
particles apart is sufficiently strong to overcome the maximum of the cohesive force
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Case Turbulent flow η/Dp ρs St Co G

Flo1 Tur1 3.30 2.65 0.02 4.0 × 10−10 0.29
Flo2 Tur1 3.30 2.65 0.02 6.0 × 10−9 0.29
Flo3 Tur1 3.30 2.65 0.02 3.0 × 10−8 0.29
Flo4 Tur1 3.30 2.65 0.02 6.0 × 10−8 0.29
Flo5 Tur1 3.30 2.65 0.02 1.2 × 10−7 0.29
Flo6 Tur2 2.28 2.65 0.06 1.2 × 10−7 1.49
Flo7 Tur3 2.25 2.65 0.06 1.2 × 10−7 1.03
Flo8 Tur4 2.24 2.65 0.06 1.2 × 10−7 0.78
Flo9 Tur5 2.25 2.65 0.06 1.2 × 10−7 0.62
Flo10 Tur6 1.85 2.65 0.10 1.2 × 10−7 0.91
Flo11 Tur6 1.85 10 0.38 1.2 × 10−7 0.91
Flo12 Tur6 1.85 20 0.77 1.2 × 10−7 0.91
Flo13 Tur6 1.85 50 1.92 1.2 × 10−7 0.91
Flo14 Tur7 1.08 2.65 0.38 1.2 × 10−7 2.7
Flo15 Tur8 0.65 2.65 1.25 1.2 × 10−7 7.4

Table 3. Physical parameters of the flocculation simulations. We separately investigate (bold) the influence of
the cohesive number Co (based on Flo1–5), the shear rate G (Flo6–9) and the Stokes number St (Flo10–13).
The effects of ρs and η/Dp are implicitly accounted for by St and G.

holding the particles together. An individual particle is considered to be the smallest
possible floc. Figure 5(a) shows the evolution of the number of flocs Nf (t) with time
for the representative case Flo9, with Co = 1.2 × 10−7, St = 0.06, G = 0.62, ρs = 2.65
and η/Dp = 2.25. As a result of flocculation, Nf decreases rapidly with time from its
initial value of 10 000, before levelling off around a constant value Nf ,eq that reflects a
stable equilibrium between aggregation and breakage. This tendency of Nf is consistent
with our previous observation of flocculation in steady cellular flow fields (Zhao et al.
2020). Consequently, we can identify two pronounced stages of the flow, viz. an initial
flocculation stage and a subsequent equilibrium stage. We define the end of the flocculation
stage, i.e. the onset of the equilibrium stage, as the time teq when Nf first equals Nf ,eq.
Figure 5(b) shows separately the number of flocs with Np = 1, 2, 3 and more than three
primary particles. While the number of flocs with two or three particles initially grows
quickly, they soon reach a peak and subsequently decline, as more flocs of larger sizes
form. Toward the end of the flocculation stage, a stable equilibrium of the different floc
sizes begins to emerge, although the distribution of flocs with different numbers of primary
particles is still changing slowly.

In order to gain insight into the dynamics of floc growth and breakage, we keep track of
the evolution of three different types of flocs over a suitably specified time interval �T: (a)
those flocs that maintain their identity, i.e. they consist of the same primary particles at the
start and the end of the time interval; (b) those that add additional primary particles while
keeping all of their original ones; and (c) all others, i.e. all those who have undergone a
breakage event during the time interval. We denote the fractions of these respective groups
as θid = Nf ,id/Nf , θad = Nf ,ad/Nf , and θbr = Nf ,br/Nf . It follows that

θid + θad + θbr = 1. (4.2)

We found that a value of �T = 3 is suitable for obtaining insight into the dynamics of
the flocculation process, as it allows most of the flocs to maintain their identity during the
time interval, while smaller but still significant numbers undergo primary particle addition
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Figure 5. (a) Temporal evolution of the number of flocs Nf . The vertical dashed line divides the simulation
into the flocculation and equilibrium stages. (b) Number of flocs containing Np primary particles. The number
of flocs with a single particle rapidly decreases from its initial value of Nf = 10 000. The numbers of flocs
with two or three particles initially grow and subsequently decay, as increasingly many flocs with three or more
particles form. (c) Temporal evolution of the fraction of flocs that maintain their identity (θid), add primary
particles (θad) or undergo breakage (θbr) over the time interval �T = 3. All results are for case Flo9 with
Co = 1.2 × 10−7, St = 0.06, G = 0.62, ρs = 2.65, η/Dp = 2.25.

or breakage. Figure 5(c) shows the evolution of θid, θad and θbr for case Flo9. After an
initial transient stage, all three fractions reach statistically steady states. Interestingly, even
during the equilibrium stage when Nf ≈ const., we observe that θad /= θbr. This reflects
events such as when one floc breaks into three smaller parts, two of which then merge
with other flocs. Here, the total number of flocs remains unchanged at three, in spite of
only one break-up but two particle addition events.

4.3. Evolution of floc size and shape
While the number of primary particles in a floc, Np, provides a rough measure of its
size, flocs with identical values of Np can have very different shapes. In order to capture
this effect, we define the characteristic diameter Df of the floc, also known as the Feret
diameter, as

Df = 2max(‖xp,i − xc‖) + Dp, 1 � i � Np, (4.3)
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Figure 6. Temporal evolution of the characteristic diameter Df and the fractal dimension nf of a typical floc
that maintains its identity over the time interval considered. Three instants are marked by vertical dashed lines,
and the corresponding floc shapes are shown. In response to the fluid forces acting on it, the floc first changes
from a slightly elongated to a more compact shape, and subsequently to a more strongly elongated one. The floc
with seven primary particles is taken from case Flo10 with governing parameters Co = 1.2 × 10−7, St = 0.1,
G = 0.91.

as well as its gyration diameter Dg (Chen et al. 2019),

Dg =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

√√√√ 1
Np

Np∑
i=1

‖xp,i − xc‖2, Np > 2,

√
1.6Dp, Np = 2,

Dp, Np = 1.

(4.4)

Here, xp,i denotes the position of the centre of primary particle i, and the floc’s centre of

mass is evaluated as xc = ∑Np
i=1 xp,i/Np. While the characteristic diameter Df more closely

represents the true spatial extent of the floc, the gyration diameter Dg also accounts for the
irregularity of the floc shape.

Following Khelifa & Hill (2006a,b), we then calculate the fractal dimension nf of the
floc

nf = log Np

log
Df

Dp

, (4.5)

as a measure of its compactness. A dense, nearly spherical floc has nf ≈ 3, while for
a linear floc nf ≈ 1. When Np = 1 and Df /Dp = 1, the above definition of the fractal
dimension does not yield a finite value, and we set nf = 1. In this way, the definition of the
fractal dimension is continuous between Np = 1 and Np = 2. It is important to note that
this differs from previous studies, which usually set nf = 3 for this case (Khelifa & Hill
2006a,b; Maggi et al. 2007; Son & Hsu 2009).

For a typical floc with Np = 7 that maintains its identity, figure 6 shows the evolution
of Df and nf over time. During the time interval 200 � t � 210, hydrodynamic forces
deform the floc so that it becomes more compact, which reduces Df and increases nf .
Later on, near t ≈ 240, the floc is being stretched, which modifies Df and nf in the opposite
directions.
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Figure 7. Temporal evolution of various floc size measures for different turbulent shear rates G, with Co =
1.2 × 10−7, St = 0.06, ρs = 2.65 and 2.24 � η/Dp � 2.28 (cases Flo6–9). (a) Average number of primary
particles per floc N̄p. (b) Average characteristic floc diameter D̄f . (c) Average floc gyration diameter D̄g. (d)
Average fractal dimension n̄f ,lar of flocs with three or more primary particles. Larger turbulent shear results in
smaller flocs, with fewer primary particles and more elongated shapes.

Figure 7 shows the evolution with time of the various floc size measures, for cases
Flo6–9 in table 3 with different turbulent shear rates G. The other parameters are kept
approximately constant at Co = 1.2 × 10−7, St = 0.06, ρs = 2.65, and 2.24 � η/Dp �
2.28. As can be seen from figure 7(a), a smaller shear rate results in a longer transient
phase before the average number of primary particles per floc N̄p = N/Nf reaches
an equilibrium. A smaller value of G furthermore gives rise to an equilibrium stage
characterized by fewer flocs with more primary particles, since the weaker hydrodynamic
stresses cannot break up the flocs as easily. Figures 7(a) and 7(b) indicate that both
the average characteristic diameter D̄f and the average gyration diameter D̄g increase
for smaller G. This is consistent with previous observations by other authors in both
laboratory experiments (He et al. 2012; Guérin et al. 2017) and river estuaries (Manning
& Dyer 2002; Manning, Langston & Jonas 2010). Both D̄g and D̄f remain smaller than the
Kolmogorov length scale 0.0179 � η � 0.0183 for all cases. Since flocs with one or two
primary particles have a constant fractal dimension nf = 1, we evaluate the average fractal
dimension n̄f ,lar from only those flocs with three or more particles. Figure 7(d) shows
that n̄f ,lar increases for smaller shear rates, which demonstrates that for weaker turbulence
the floc shape tends to be more compact. This finding is consistent with experimental
observations by He et al. (2012), whereas previous numerical work by Chen et al. (2019)
reports a constant value n̄f ,lar = 1.64.

Figure 8 discusses the floc growth during the very early flow stages, as a function of
the turbulent shear rate G. As seen in figure 8(a), the evolution of D̄f (t) can be closely
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Figure 8. Early-stage flocculation rate for different turbulent shear rates G, with Co = 1.2 × 10−7, St = 0.06,
ρs = 2.65 and η/Dp ≈ 2.26 (cases Flo6–9). (a) The early-stage simulation results for D̄f (t) can be accurately
fitted by an exponential relation, as shown for the representative case Flo6 with G = 1.49. (b) The flocculation
rate d(D̄f )/dt obtained from the exponential fits of D̄f (t). Initially flocs grow fastest in strong turbulence.
Subsequently their growth rate decays, as the equilibrium stage is reached more rapidly for strong turbulence.

approximated by an exponential function of the form

D̄f = b1(eb2t − 1) + Dp, (4.6)

where b1 and b2 represent fitting coefficients. Based on corresponding fits for different
values of G, figure 8(b) displays the time-dependent floc growth rate dD̄f /dt for different
G. Consistent with the experimental observations by He et al. (2012), we find stronger
shear to cause more rapid flocculation for t < 5. After this early stage the trends reverse,
which reflects the fact that the equilibrium stage is reached faster for stronger turbulence.
This agrees with the experimental findings by Braithwaite et al. (2012), who also reported
the equilibrium stage to emerge more quickly for stronger turbulence, due to more frequent
floc collisions. We remark that the evolution of N̄p (not shown) exhibits corresponding
trends.

Figure 9 presents corresponding floc size results for different Stokes numbers, obtained
from cases Flo10–13 in table 3. These simulations all employ the same turbulent flow Tur6,
so that they have constant parameter values Co = 1.2 × 10−7, G = 0.91 and η/Dp = 1.85.
The value of St is varied by changing the density ratio ρs. Figures 9(a) and 9(b) indicate
that the equilibrium values of both N̄p and D̄f increase for smaller St. This reflects the
fact that cohesive forces become more dominant for smaller St, due to the lower drag
force and the shorter particle response time. By again employing exponential fits for the
early stages, we obtain the floc growth rate dD̄f /dt for different St-values, as shown in
figure 9(c). Initially flocs with intermediate Stokes numbers of O(1) are seen to grow most
rapidly, consistent with our earlier findings for two-dimensional cellular flows (Zhao et al.
2020). This trend changes for t > 20, due to the later onset of the equilibrium stage for
small Stokes numbers. The time evolution of the average fractal dimension n̄f ,lar of flocs
with three or more primary particles is shown in figure 9(d). It demonstrates that smaller
Stokes numbers result in more compact flocs.

Figure 10 analyses the influence of the cohesive number Co by comparing cases Flo1–5
in table 3. The other parameters are held constant at St = 0.02, G = 0.29, ρs = 2.65
and η/Dp = 3.30. We note that due to the small values of St and G, the emergence
of an equilibrium stage takes longer in these simulations. In fact, for case Flo5 with
Co = 1.2 × 10−7, an equilibrium had not yet formed by t = 20 000, when the simulation
terminated. Nevertheless, the simulations demonstrate the tendency of higher Co to result
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Figure 9. Temporal evolution of various floc size measures, for different Stokes number values St, with Co =
1.2 × 10−7, G = 0.91 and η/Dp = 1.85 (cases Flo10–13). (a) Average number of primary particles per floc N̄p;
(b) average characteristic floc diameter D̄f ; (c) early-stage flocculation rate d(D̄f )/dt obtained from exponential
fits of D̄f (t); and (d) average fractal dimension n̄f ,lar of flocs with three or more primary particles. During
the equilibrium stage, the number of primary particles per floc, the characteristic floc diameter and the fractal
dimension all increase for smaller Stokes numbers. Initially, flocs with St ≈ O(1) exhibit the fastest growth.

in larger values of N̄p during all phases of the flow, cf. figure 10(a). Interestingly, however,
we observe that during the transient flow stages the flocs for Co = 6 × 10−8 have larger
average diameters D̄f and D̄g than those for Co = 1.2 × 10−7, even though they contain
fewer primary particles, cf. figures 10(b) and 10(c). The explanation for this finding is
given by figure 10(d), which indicates that for Co = 1.2 × 10−7 the flocs have a higher
average fractal dimension n̄f and are more compact than those for Co = 6 × 10−8, which
can be deformed more easily by turbulent stresses.

In summary, as a general trend we observe that during the equilibrium stages weaker
turbulence, lower Stokes numbers and higher cohesive numbers result in larger and more
compact flocs.

4.4. Floc size distribution during the equilibrium stage
In order to discuss the floc size distribution during the equilibrium stage, we sort the flocs
into bins of width �(Df /Dp) = 0.7. Figure 11(a) shows that for all values of the turbulent
shear G the size distribution peaks at the smallest flocs and then decreases exponentially
with the floc size. The decay rate is largest for the strongest turbulence, confirming our
earlier observation that strong turbulence breaks up large flocs and reduces the average
floc size, cf. figure 7. This finding is consistent with the experimental observations by

921 A17-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

48
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.487


K. Zhao and others

0
0.008

0.008

0.016

0.024

0.032

0.040

0

10

20

30

40

50

60

0.8

1.2

1.6

2.0

2.4

0.010

0.012

0.014

0.016

0.018

0.020

5000 10 000 15 000 20 000

t
0 5000 10 000 15 000 20 000

0 5000 10 000 15 000 20 000 0 5000 10 000 15 000 20 000

t

D–g

D–f

n–f

N–p

Co = 4.0 × 10–10

Co = 6.0 × 10–9

Co = 3.0 × 10–8

Co = 6.0 × 10–8

Co = 1.2 × 10–7

(a) (b)

(c) (d )

Figure 10. Temporal evolution of various floc size measures for different values of the cohesive number
Co, with St = 0.02, G = 0.29, ρs = 2.65 and η/Dp = 3.30 (cases Flo1–5). (a) Average number of primary
particles per floc N̄p; (b) average characteristic floc diameter D̄f ; (c) average floc gyration diameter D̄g; and
(d) average fractal dimension of flocs n̄f . Note that case Flo5 with Co = 1.2 × 10−7 has not yet reached the
equilibrium stage by the end of the simulation. For higher Co-values, the equilibrium stage is characterized by
larger flocs with more primary particles. During the transient stages, however, intermediate Co-values can give
rise to flocs that are more elongated and hence larger than those at higher Co-values, in spite of having fewer
primary particles.

Braithwaite et al. (2012) in an energetic tidal channel. Corresponding results for different
St-values display a similar trend (not shown).

Figure 11(b) shows the size distributions for different values of the cohesive number.
For larger values of Co, we find that the peak of the distribution decreases and shifts to
larger flocs, while the exponential decay rate with increasing floc size is reduced.

4.5. Change in floc microstructure
In the following, we analyse the deformation in time of those flocs that maintain their
identity over the time interval �T , by keeping track of their characteristic diameter Df .
Accordingly, we distinguish between those flocs within the fraction θid whose value of Df
increases or stays constant during �T , θid,gro, and those whose diameter decreases, θid,shr

θid = θid,gro + θid,shr. (4.7)

Equations (4.2) and (4.7) thus yield

θbr + θid,gro + θid,shr + θad = 1. (4.8)

For the choice of �T = 3, figure 12(a) displays the evolution of these fractions for the
representative case Flo6. Interestingly, we find that θid,gro is consistently much larger than
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Figure 11. Floc size distribution during the equilibrium stage, obtained by sorting all flocs into bins of constant
width �(Df /Dp) = 0.7. (a) Results for different shear rates G, with Co = 1.2 × 10−7 and St = 0.06, during the
time interval 1000 � t � 4000 (cases Flo6–9). (b) Results for different cohesive numbers Co, with St = 0.02
and G = 0.29, for the time interval 15 000 � t � 19 000 (cases Flo1–4).

θid,shr, which indicates that of those flocs who maintain their identity during �T , many
more see their value of Df increase than decrease. Hence, it is much more common for
these flocs to deform from a compact shape to an elongated one than vice versa. This
consistent difference between θid,gro and θid,shr can be maintained only if the elongated
flocs eventually break. As a general trend, turbulent stresses thus stretch cohesive flocs
before eventually breaking them. This confirms earlier numerical results by Nguyen et al.
(2014) and Gunkelmann et al. (2016), who employed conceptually simpler models with
‘sticky’ cohesive particles and observed that compact flocs have greater strength than
elongated ones.

The influence of the shear rate G on the fractions θid,gro and θid,shr during equilibrium
is displayed in figures 12(b) and 12(c), respectively. For larger values of G, the fraction
θid,gro grows, while θid,shr is reduced, which reflects the fact that more intense turbulence
tends to elongate the cohesive flocs more strongly. Figures 13(a) and 13(b) indicate that
larger St-values also promote the stretching of those flocs that maintain their integrity,
as they increase θid,gro and reduce θid,shr. Figures 14(a) and 14(b) show that smaller
Co-values result in the elongation of those flocs that maintain their identity, whereas
stronger cohesive forces prompt the flocs to assume a more compact shape.

4.5.1. Orientation of elongated flocs
We now investigate the alignment of the elongated flocs with the principal strain directions
of the turbulent velocity field. Towards this end, we define an Eulerian fluid velocity
difference tensor A for each floc at time t as

A(m, n) = uf ,c(n) − uf ,j(n)

xc(m) − xp,j(m)
, (4.9)

where m, n = 1, 2, 3 represent the x-, y- and z-components, respectively, of the tensor and
vectors. Also, xc = (xc, yc, zc)

T denotes the location of the floc’s centre of mass, and the

fluid velocity averaged over the volume of the floc is written as uf ,c = ∑Np
1 (uf ,i)/Np.

The location and fluid velocity at the centre of the primary particle j that is located
the farthest away from the floc’s centre of mass are denoted as xp,j = (xp,j, yp,j, zp,j)

T

and uf ,j = (uf ,j, vf ,jwf ,j)
T. The orientation of the floc is defined as xf = xp,j − xc.
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Figure 12. Evolution of the floc number fractions displaying different behaviors. (a) Of those flocs that
maintain their identity during �T , many more are being stretched than shrink, resulting in θid,gro 
 θid,shr
(case Flo6 with G = 1.49). (b) The fraction θid,gro that is being stretched increases for more intense turbulence.
(c) The fraction θid,shr that shrinks decreases for stronger turbulence. For (b,c) the colour coding of the curves
is identical, and the other parameter values are Co = 1.2 × 10−7 and St = 0.06 (cases Flo6–9).
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Figure 13. Evolution of floc number fractions for different values of St. (a) Of those flocs that maintain their
identity during �T , the fraction θid,gro that is stretched increases with St. (b) The fraction θid,shr whose diameter
Df decreases is reduced for larger St. The other parameter values are Co = 1.2 × 10−7 and G = 0.91 (cases
Flo10–13).

Especially for large flocs, xc and xp,j can be multiple grid spacings apart from each other.
We remark that A is defined by sampling the velocity difference at points separated along a
line, and it thus represents a simplified approach for considering the influence of the fluid
velocity gradients on the whole floc, compared with employing the full coarse-grained
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Figure 14. Evolution of floc number fractions for different values of Co. (a) Of those flocs that maintain their
identity during �T , the fraction θid,gro that is stretched increases for weaker cohesive forces. (b) The fraction
θid,shr whose diameter Df decreases is reduced for weaker cohesive forces. The other parameter values are
St = 0.02 and G = 0.29 (cases Flo1–5).

velocity gradient tensor (Pumir, Bodenschatz & Xu 2013). Hence, A differs from the
standard, locally evaluated fluid velocity gradient tensor (Ashurst et al. 1987; Pumir &
Wilkinson 2011; Voth & Soldati 2017).

We decompose this Eulerian velocity difference tensor A = S + Q into the symmetric
velocity difference tensor S = ST, which is similar but not identical to the strain
rate tensor, and the anti-symmetric tensor Q = −QT. The three eigenvalues rm of the
velocity difference tensor S are ordered as r1 > r2 > r3. We remark that the intermediate
eigenvalue r2 is automatically zero, by nature of the definition of S. With the three
eigenvalues we associate three corresponding orthonormal eigenvectors em

Sem = rmem. (4.10)

We define a modified vorticity vector ω = ωeω based on the anti-symmetric tensor Q, with
magnitude ω and unit direction vector eω (Pumir & Wilkinson 2011).

We furthermore define a modified deformation gradient tensor B that characterizes the
Lagrangian deformation experienced by a fluid element extending from the floc’s centre
of mass to its primary particle j, over the time interval from t to (t + �t), as

B(m, n) = xc(m) − xp,j(m)

[xc(n) + �tuf ,c(n)] − [xp,j(n) + �tuf ,j(n)]
. (4.11)

This modified deformation gradient tensor B provides a Lagrangian description of the
fluid stretching (Parsa et al. 2011; Ni, Ouellette & Voth 2014). It differs from the standard
locally evaluated deformation gradient tensor, for the same reasons mentioned earlier for
the Eulerian velocity difference tensor A.

The Lagrangian stretching tensor C = BBT , obtained from the two symmetric inner
products of B with itself, is similar but not identical to the left Cauchy–Green strain tensor
commonly used to define stretching in a Lagrangian basis (Chadwick 2012). The three
eigenvalues of the Lagrangian stretching tensor C are ordered as rL1 > rL2 > rL3, and the
three corresponding orthonormal eigenvectors are eLm

CeLm = rLmeLm. (4.12)

In the following, we investigate the alignment of xf and eω with em and eLm, respectively.
We focus on those elongated flocs with nf � 1.2 and Np � 2, and firstly analyse their

alignment with the eigendirections em of the Eulerian velocity difference tensor and the
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Figure 15. Floc alignment with the principal directions of the symmetric Eulerian velocity difference tensor
for the representative case Flo9. Results include both the flocculation and the equilibrium stages, for all
elongated flocs with nf � 1.2 and Np,local � 2. The upper two frames show the alignment of the floc orientation
xf with the eigendirections em of the symmetric Eulerian velocity difference tensor, and with the vorticity
vector eω: (a) small flocs with Df /η < 0.8 and (b) medium-size flocs with 0.8 � Df /η � 1.2. Small flocs are
preferentially aligned with the extensional strain direction, while medium-size flocs tend to align themselves
with the intermediate strain direction. The lower two frames show the alignment with the eigendirections eLm
of the Lagrangian deformation tensor: (c) the floc orientation xf and (d) the vorticity vector eω. Both the flocs
and the vorticity vector tend to be aligned with the strongest Lagrangian stretching direction.

vorticity vector eω in terms of the magnitude of the angle α between them. We divide the
elongated flocs into three different groups, according to the ratio of their characteristic
diameter Df and the Kolmogorov length scale η. The alignment of small flocs with
Df /η < 0.8 and medium-size flocs with 0.8 � Df /η � 1.2 is indicated in figures 15(a)
and 15(b), respectively. The alignment of large flocs with Df /η > 1.2 is not shown. The
results indicate that the modified vorticity vector eω is always aligned with the intermediate
eigenvector e2, which is consistent with the previous finding by Ashurst et al. (1987).
We observe that medium-size flocs are strongly aligned with the intermediate eigenvector
e2 and the vorticity vector eω, as shown in figure 15(b). This result is consistent with
previous findings for microscopic axisymmetric rod-like particles in turbulence by Pumir
& Wilkinson (2011), who noticed that the vortex stretching term Aω promotes, and the
viscous term ∇2ω/Re opposes, the alignment of xf with eω. In contrast, figure 15(a)
shows that small flocs tend to align themselves with the extensional strain direction e1.
For large flocs, we did not observe preferential alignment of the flocs with any of the three
eigendirections of the Eulerian velocity difference tensor (not shown).

The alignment of the elongated flocs and the modified vorticity vector with the
eigendirections eLm of the Lagrangian stretching tensor is shown in figures 15(c) and 15(d),
respectively. The results indicate that the elongated flocs are perfectly aligned, and the
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modified vorticity vector is strongly aligned with the direction corresponding to the largest
eigenvalue eL1 of the Lagrangian stretching tensor C . This alignment is consistent with,
but even more pronounced than the corresponding previous findings by Parsa et al. (2011)
and Ni et al. (2014), due to our definition of the modified deformation gradient tensor B.
The perfect alignment of xf with eL1 suggests that the present Lagrangian stretching tensor
C is well suited for analysing the instantaneous alignment of flocs in turbulent flows.

4.6. Floc size vs Kolmogorov length scale
Several authors have hypothesized that for sufficiently strong turbulence the median floc
size should be of the same order as the smallest turbulent eddies (McCave 1984; Fettweis
et al. 2006; Coufort et al. 2008; Kuprenas et al. 2018). Others have suggested that even
the largest flocs cannot exceed the Kolmogorov length scale (Verney et al. 2011). In the
following, we discuss data from the present simulations in order to explore this issue.

Figure 16 discusses case Flo9, with η/Dp = 2.25, G = 0.62, St = 0.06 and Co =
1.2 × 10−7. Figure 16(a) compares both the average and the maximum floc size to the
Kolmogorov scale. It demonstrates that for all times the average floc diameter D̄f is smaller
than the Kolmogorov length scale η. However, at any given time the largest floc diameter
Df ,max is several times larger than η. We now define ‘big’ flocs as those whose diameter
Df is larger than η, and we indicate their fraction as

θbig = Nf ,big

Nf
, (4.13)

where Nf ,big is the number of big flocs at a given moment. Analogous to equation (4.8),
we also define the fractions of big flocs that grow, break or maintain their identity, so that
we have

θbig,br + θbig,id,gro + θbig,id,shr + θbig,ad = θbig. (4.14)

Here the subscripts br, ad, id, gro and shr have the same meanings as in (4.8).
Figure 16(b) demonstrates that θbig plateaus around a value of 0.2, so that at any given
time approximately 20 % of all flocs are larger than the Kolmogorov scale; θbig,id,shr levels
off around 0.1, which indicates that a substantial fraction of these big flocs deform towards
a more compact shape while maintaining their identity over �T = 3. Figure 16(c) shows
that the ratio θbig,br/θbr is stable around 0.6, so that about 60 % of those flocs that break
are larger than the Kolmogorov scale η. The ratio θbig,id,gro/θid,gro levels off around 0.2,
meaning that of those flocs that become elongated while maintaining their identity, only
about 20 % are big. Hence we can conclude that most of the big flocs tend to either become
more compact or to break, but that some continue to grow. This finding is consistent with
previous experimental observations by Stricot et al. (2010), who found that the breakage
of big flocs is not instantaneous and depends on the floc strength.

Figure 16(d) addresses the time scale over which big flocs grow. The duration of the
continuous growth of the big flocs is denoted by �tbig,gro. We remark that �tbig,gro is
measured for all big flocs until their Df is smaller than η. The results indicate that, on
average, flocs larger than the Kolmogorov scale keep growing only for the relatively short
time period of �tbig,gro ≈ 4.8. This is consistent with previous observations for controls
on floc growth in tidal cycle experiments by Braithwaite et al. (2012), who found that big
flocs cannot resist the turbulent stresses for long, and that they are torn apart quickly. This
relatively quick breakage of large flocs in the simulations also agrees with our findings in
§ 4.5, which showed that flocs are being continually stretched until they break.
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Figure 16. Constraint on the floc size by the Kolmogorov length scale, for case Flo9 with η/Dp = 2.25, G =
0.62, St = 0.06 and Co = 1.2 × 10−7. (a) Temporal evolution of the average and maximum floc diameters,
D̄f and Df ,max. The dashed horizontal line indicates the Kolmogorov length scale η. (b) The fraction θbig of
flocs that are larger than η, and the fraction θbig,id,shr of big flocs maintaining their identity that become more
compact. (c) The ratios θbig,br/θbr , θbig,id,gro/θid,gro and θbig,ad/θad . (d) Average time interval �tbig,gro over
which big flocs exhibit continuous growth.

To summarize, while the size of an individual floc can be larger than the Kolmogorov
length for a brief period of time, once Df becomes bigger than η, the floc tends to
break relatively soon. Given that the physical parameter ranges listed in table 1 represent
common fluid–particle systems in nature, our simulation data suggest that the average
floc size D̄f is effectively limited by the Kolmogorov length scale η in such systems. We
remark, however, that for other classes of primary particles with potentially much stronger
bonds it may be possible, in principle, to form flocs that are significantly larger than the
Kolmogorov scale.

For cases Flo14 and Flo15, figure 17 discusses corresponding results regarding the time
scale over which big flocs grow. Flo14 employs an increased shear rate G = 2.7 along
with η/Dp = 1.08, while Flo15 has G = 7.4 and η/Dp = 0.65. We remark that the ratio
η/Dp is widely used to classify the primary particles as either ‘small’ if η/Dp > 1, or
as ‘finite size’ if η/Dp � 1 (Fiabane et al. 2012; Chouippe & Uhlmann 2015; Costa et al.
2015). Hence Flo14 addresses the small particle scenario, while Flo15 considers finite-size
particles. Interestingly, figure 17(a) shows that the time interval �tbig,gro over which big
flocs grow for Flo14 is smaller than the corresponding value for Flo9 in figure 16(d). This
observation indicates that the constraint on floc growth by the turbulent eddies becomes
stronger for increasing shear rate G, which is consistent with experimental findings for
small particles by Braithwaite et al. (2012). Those authors had found that the time lag
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Figure 17. Average time interval �tbig,gro over which big flocs exhibit continuous growth: (a) η/Dp = 1.08,
Co = 1.2 × 10−7, St = 0.38 and G = 2.7 (case Flo14); (b) η/Dp = 0.65, Co = 1.2 × 10−7, St = 1.25 and
G = 7.4 (case Flo15).

before big flocs break becomes shorter for larger G. However, a further increase of the
shear rate to G = 7.4 in case Flo15, which means that the primary particles now fall into
the finite-size category, yields a longer time lag �tbig,gro ≈ 20.5, as shown in figure 17(b).
While the detailed reasons for this observation will require further investigation, we
can conclude that the enhanced control on floc growth by the Kolmogorov length scale
for stronger turbulent shear is seen to hold for small primary particles with η/Dp > 1,
although it does not necessarily apply for finite-size primary particles with η/Dp � 1.

5. A new flocculation model with variable fractal dimension

As indicated by figures 7–10, the average characteristic floc diameter D̄f and the average
fractal dimension n̄f both increase during the flocculation stage, and then remain constant
during the equilibrium stage. This indicates that flocs of larger size generally have a more
compact shape, and that it is difficult for elongated flocs to keep growing in turbulent shear
without breaking. Closer inspection indicates that for all of the cases listed in table 3 the
relationship between these two quantities can be approximated well by a power law of the
form

n̄f = k1

(
D̄f

Dp

)k2

. (5.1)

The condition that n̄f = 1 for an individual primary particle requires that k1 = 1, while
the value of k2 varies as a function of St, Co and G. Typical fitting results are shown in
figure 18(a) for cases Flo4 and Flo5. This power law relationship allows us to obtain the
average fractal dimension n̄f during flocculation as a function of the average floc diameter
D̄f , rather than assuming a constant fractal dimension, as was done in earlier investigations
(Winterwerp 1998; Kuprenas et al. 2018; Zhao et al. 2020).

The power law (5.1) is closely related to the earlier study by Khelifa & Hill (2006a,b).
However, those authors assumed that an individual primary particle has nf = 3, and
consequently they set k1 = 3. For the exponent k2 they proposed an empirical correlation
of the form

k2 = log(n̄f ,char/k1)

log(D̄f ,char/Dp)
, (5.2)
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Figure 18. (a) The relationship between the average fractal dimension n̄f and the average value D̄f /Dp, during
the flocculation and equilibrium stages. Simulation data and power law fits according to (5.1) are shown for Flo4
with Co = 6.0 × 10−8, St = 0.02 and G = 0.29; and for Flo5 with Co = 1.2 × 10−7, St = 0.02 and G = 0.29.
(b) Comparisons between the experimental data of Maggi et al. (2007), predictions by the relation of Khelifa &
Hill (2006a,b) and the new relation (5.7). The experimental parameters are Dp = 5 μm, ρp = 2650 kg m−3,
c = 0.5 g L−1, ρf = 1000 kg m−3, μ = 0.001 Pa s and G = 5 ∼ 40 s−1. Khelifa’s relation ((5.1)–(5.2)) has
constant coefficient values n̄f ,char = 2, D̄f ,char = 2000 μm and updated k1 = 1. The calibration of the empirical
coefficient for the new relation (5.7) yields a3 = 4 × 10−6 for G = 5 s−1 and a3 = 4 × 10−5 for G = 40 s−1.

where D̄f ,char denotes the characteristic floc size that exhibits the characteristic fractal
dimension n̄f ,char. As a general rule, D̄f ,char and n̄f ,char should be evaluated from
experiments before one can then determine k2 from (5.2). Should that not be feasible,
Khelifa & Hill (2006a,b) suggested assuming constant values of n̄f ,char = 2 and D̄f ,char =
2000 μm, which yields a constant value for k2 that depends only on the primary particle
size Dp. As figure 18(a) indicates, however, k2 should be a function of G, St and Co even for
a constant Dp, since n̄f ,char = 2 is associated with different average floc sizes D̄f ,char/Dp
in cases Flo4 and Flo5. Hence, even though (5.2) has been widely used to describe the
fractal dimension of flocs (Maggi et al. 2007; Son & Hsu 2009; Klassen 2017), we will
now try to refine this scaling law by accounting for the dependence of k2 on St, Co and G.

By fitting the simulation results for all of the cases Flo1–15, we obtain a relationship for
k2 of the form

k2 = 0.44St−0.018Co0.096G−1.5, (5.3)

with a coefficient of determination value R-squared of 0.97. We remark that in a laboratory
experiment or field investigation it may be challenging to evaluate the Stokes number St
as defined in (4.1), if the root-mean-square velocity urms is unknown. To overcome this
difficulty, we follow the approach taken in our earlier work (Zhao et al. 2020), where we
defined the characteristic Stokes number Stchar and cohesive number Cochar by employing
the characteristic fluid velocity uchar = 0.25(G/Re)0.5 instead of urms, so that

Stchar = St uchar

urms
= ρsD2

puchar Re

18η
, (5.4)

Cochar = Co

η2u2
char

. (5.5)

Here, Re and Co are of the form defined in (2.6) and (2.10), respectively. Note that uchar and
η in (5.4) and (5.5) are dimensionless. Based on Stchar and Cochar, a fit of the simulation
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data yields the relationship for k2

k2 = St−1.9
char Co0.1

char

1.3 × 105 , (5.6)

which has an R-squared value of 0.86. Here Stchar captures the strongly inverse influence
of the shear rate G on k2. By substituting (5.6) into (5.1), we obtain a new model for the
average fractal dimension n̄f of the form

n̄f =
(

D̄f

Dp

)a3 St−1.9
char Co0.1

char/(1.3×105)

. (5.7)

For the specific range of physical parameters listed in table 1, a3 = 1 yields optimal
agreement with a maximum deviation of ±30 % from the simulation data. As we will
see below, this value of a3 is not universally optimal, so that a3 will have to be recalibrated
for other parameter ranges. In the following, we will compare predictions for the fractal
dimension by the new relation (5.7) with corresponding ones by the earlier relation of
Khelifa & Hill ((5.1)–(5.2)).

Employing the approach of Maggi & Winterwerp (2004), Maggi et al. (2007) estimate
the time evolution of the average fractal dimension n̄f and floc size D̄f in experiments
with constant turbulent shear rates G = 5, 10, 20 and 40 s−1, respectively. The suspended
cohesive sediment in the experiments has a primary particle diameter Dp = 5 μm,
density ρp = 2650 kg m−3, and concentration c = 0.5 g L−1. Since the authors assume
n̄f = 3 for flocs with one particle while we set n̄f = 1 for that situation, we have to
convert their original experimental data before we can compare them with the present
simulation results. The details of the conversion are discussed in Appendix A, and
the converted data are presented in figure 18(b). In addition, we set the dimensional
Kolmogorov length η = [μ/(ρf G)]0.5 m and the Hamaker constant AH = 1.0 × 10−20 J
to obtain the characteristic values Stchar and Cochar according to (5.4)–(5.5). Since the
experimental shear rates G = 5 ∼ 40 s−1 are much smaller than the simulation values
G = 3.7 × 103 ∼ 9.5 × 104 s−1, we have to recalibrate the constant a3 required for our
model (5.7) from the experimental data. Based on the fact that the exponent k2 should
decrease for increasing G, we obtain a3 = 4 × 10−6 for the minimum experimental shear
rate G = 5s−1, and a3 = 4 × 10−5 for the maximum experimental shear rate G = 40 s−1,
respectively. Figure 18(b) demonstrates that the present relation successfully reproduces
the range of experimental data for different G-values, whereas Khelifa & Hill’s relation
does not account for variations in G. At the same time, we do need to keep in mind that
the present model does require a recalibration of a3 for different experimental parameter
ranges.

In order to develop a variable fractal dimension model for the transient stages, we build
on the approach taken in our recent investigation (Zhao et al. 2020). There we conducted
cohesive sediment simulations for a steady, two-dimensional cellular flow model. Based
on the simulation data, we proposed an analytical flocculation model of the form

D̄f = (N̄p)
1/n̄f Dp, (5.8a)

N̄p = 1
(1/N̄p,in − 1/N̄p,eq)ebt + 1/N̄p,eq

, (5.8b)

N̄p,eq =
{

N, if N̄p,eq � N,

8.5a1St0.65
charCo0.58

charD
−2.9
p,charφ

0.39
p ρ−0.49

s (W + 1)−0.38, otherwise,
(5.8c)
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Terminology Composition of models Predict the evolution of

Khelifa & Hill (2006a,b) relation (5.1) and (5.2) Average fractal dimension n̄f (D̄f )

New fractal relation (5.7) Average fractal dimension n̄f (D̄f )

Zhao et al. (2020) model (5.8) Average floc size D̄f (t)
Present model (5.7) and (5.8) Both D̄f (t) and n̄f (t)
Combined model (5.1), (5.2) and (5.8) Both D̄f (t) and n̄f (t)

Table 4. Typical models cited, proposed and implemented in the present work.

b =
⎧⎨
⎩

−0.7a2St0.36
charCo−0.017

char D−0.36
p,charφ

0.75
p ρ−0.11

s (W + 1)−1.4, Stchar � 0.7,

−0.3a2St−0.38
char Co0.0022

char D−0.61
p,charφ

0.67
p ρ0.033

s (W + 1)−0.46, Stchar > 0.7.
(5.8d)

Here, N̄p,in and N̄p,eq = N/Nf ,eq indicate the average number of primary particles per
floc at the initial time and during the equilibrium stage, respectively, |b| denotes the
rate of change in the number of flocs, where a bigger |b| indicates a faster increase of
the mean number of primary particles per floc N̄p during flocculation, Dp,char = Dp/η
is the characteristic primary particle diameter, W represents the Stokes settling velocity
and a1 and a2 are empirical coefficients that need to be calibrated via comparison with
experiments or simulations. Under the assumption of a constant average fractal dimension
n̄f = 2, and for given values of N, N̄p,in, Stchar, Cochar, Dp,char, φp, ρs and W, this model
predicts the transient floc size D̄f and the average number of particles per floc N̄p as
functions of time. Model results were presented in Zhao et al. (2020). As the present
simulations show, however, assuming a constant average fractal dimension represents a
serious limitation, cf. figures 7(d), 9(d) and 10(d), which we aim to overcome in the
following.

Towards this end, we combine (5.7) and (5.8) to obtain a new flocculation model
(termed the ‘present model’) that allows for a variable fractal dimension. This model
yields predictions of the floc size D̄f , the number of particles per floc N̄p, and the fractal
dimension n̄f as functions of time. Since (5.7) and (5.8a) need to be solved concurrently,
the model cannot be written in closed form. However, due to the narrow range of the
average fractal dimension 1 � n̄f � 3, an iterative solution can easily be obtained.

In analogous fashion, we can link the variable fractal dimension relation (5.1)–(5.2) by
Khelifa & Hill (2006a,b) to our previous flocculation model (5.8), to obtain the ‘combined
model’. A list of all models discussed here is provided in table 4 for convenience. We now
proceed to assess their performance.

By calibrating with the average floc size data for simulation Flo4, we determine the
empirical coefficients for the ‘present model’ as a1 = 8, a2 = 0.5 and a3 = 1, shown as
solid red line in figure 19(a). We then employ the present model to predict the average
fractal dimension for Flo4 as function of time. Figure 19(b) indicates good agreement
between the predictions and the simulation data. In complete analogy, we determine the
empirical coefficients for the ‘combined model’ as a1 = 2, a2 = 0.5 and k1 = 1, which
yields the solid blue line in figure 19(a). The average fractal dimension n̄f predicted by
the combined model is very close to that of the present model and to the simulation data,
which suggests that both models are able to predict the average fractal dimension quite
accurately.

In applications, it may be difficult to obtain precise calibration values for a1, so that it
is important to establish the robustness of the present model with regard to uncertainties
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Figure 19. Comparisons between the numerical data and predictions by the present model and the combined
model listed in table 4, simulation data of case Flo4 with Co = 6.0 × 10−8, St = 0.02 and G = 0.29 is selected.
(a) Calibration predictions for the temporal evolution of the average floc sizes D̄f , the calibrated coefficients
in the models are a2 = 0.5 and a3 = 1, the constant k1 = 1. (b) Comparisons for the temporal evolution of the
average fractal dimension n̄f .

in the value of a1. In order to assess this robustness, we ran the present model for a1 = 2
and a1 = 32, instead of the optimal value a1 = 8 that we had obtained earlier from the
calibration. The results, shown in figure 19 as dashed and dotted red lines, indicate that the
model predictions are reasonably robust with regard to uncertainties in the value of a1.

To summarize, our new fractal relation (5.7) no longer has the limitation associated
with assuming a constant value for k2 in (5.1) and (5.2) when predicting the variable
fractal dimension n̄f . In addition, we observe that predictions of the floc size D̄f and the
fractal dimension n̄f as functions of time by the present flocculation model (5.7) and (5.8)
are fairly robust with respect to uncertainties that arise when calibrating the empirical
coefficients by means of experimental data.

6. Conclusions

In the present investigation we have employed one-way coupled simulations to explore
the dynamics of cohesive particles in homogeneous isotropic turbulence. The simulations
account for the Stokes drag, as well as lubrication, cohesive and direct contact forces.
They demonstrate the existence of a transient flocculation phase which is characterized by
the growth of the average floc size. This flocculation phase is followed by a statistically
steady equilibrium phase governed by a balance between floc growth and breakup. The
simulations provide information about the temporal evolution of the floc size and shape,
as a result of aggregation, breakage and deformation, and as a function of the governing
parameters. In general, we find that larger turbulent shear and weaker cohesive forces
limit the floc size and result in elongated floc shapes. Flocculation proceeds most rapidly
during the transient stage when the Stokes number of the primary particles based on
the Kolmogorov scales is of order unity. During the transient stage cohesive forces of
intermediate strength yield the largest flocs. On one hand, these intermediate cohesive
forces are strong enough to result in the rapid aggregation of primary particles, but on
the other hand they are not so strong as to pull them into a compact shape. During the
equilibrium stage, stronger cohesive forces produce larger flocs. Small Stokes numbers and
weak turbulence typically lead to a later onset of the equilibrium stage. The equilibrium
floc size distribution exhibits a preferred size as function of the cohesive number. This
distribution decays exponentially for larger floc sizes. The simulation results indicate

921 A17-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

48
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.487


K. Zhao and others

1.50
100 101

D–f /Dp

n– f,
or

i

102

1.75

2.00

2.25

2.50

2.75

Original experimental data
3.00

3.25

Figure 20. Original experimental data of Maggi et al. (2007) for the experimental parameter values
Dp = 5 μm, ρp = 2650 kg m−3, c = 0.5 g L−1, ρf = 1000 kg m−3, μ = 0.001 Pa s and G = 5 ∼ 40 s−1.

that flocs are generally elongated by turbulent stress before they eventually break. We
observe that flocs close to the Kolmogorov scale in size preferentially align themselves
with the intermediate strain direction and the vorticity vector. Flocs that are smaller than
the Kolmogorov scale, on the other hand, tend to align themselves with the direction of
extensional strain. The simulation results furthermore demonstrate that flocs generally
align themselves with the strongest Lagrangian stretching direction. The simulations show
that the average floc size is effectively limited by the Kolmogorov scale, and can at most
exceed it marginally. However, individual flocs can grow larger than the Kolmogorov
scale for a limited amount of time. Based on the simulation data we propose a novel
flocculation model that allows for a variable fractal dimension, which enables us to
predict the temporal evolution of the floc size and shape, as a function of the governing
dimensionless parameters, after some limited calibration. Predictions by the new model
are fairly robust and cover a broad range of parameters.
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Appendix A. Conversion of the experimental data

Maggi et al. (2007) measured the floc size and evaluated the fractal dimension n̄f ,ori in
experiments by setting the fractal dimension of an individual primary particle to three.
Taking their experimentally measured floc size as the characteristic floc diameter Df in
(4.3), the original experimental data are shown in figure 20. For each pair of n̄f ,ori and
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D̄f /Dp, we can obtain the average floc size D̄f ,char as

D̄f ,char = Dp10[log(n̄f ,char/k1,ori)]/k2,ori, (A1)

where the characteristic fractal dimension n̄f ,char = 2, the diameter of primary particles
Dp = 5 μm, k1,ori = 3 and

k2,ori = log(n̄f ,ori/k1,ori)

log(D̄f /Dp)
. (A2)

The converted fractal dimension n̄f for the corresponding D̄f /Dp in the experiments can
then be obtained from

n̄f = k1

(
D̄f

Dp

)k2

, (A3)

where k1 = 1 and

k2 = log(n̄f ,char/k1)

log(D̄f ,char/Dp)
. (A4)

The converted experimental data are shown in figure 18(b).
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