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Prehomogeneity on Quasi-Split Classical
Groups and Poles of Intertwining Operators

Xiaoxiang Yu

Abstract. Suppose that P = MN is a maximal parabolic subgroup of a quasisplit, connected, reductive
classical group G defined over a non-Archimedean field and A is the standard intertwining operator
attached to a tempered representation of G induced from M. In this paper we determine all the cases
in which Lie(N) is prehomogeneous under Ad(m) when N is non-abelian, and give necessary and
sufficient conditions for A to have a pole at 0.

1 Introduction

In this paper we continue to study the poles of intertwining operators attached to
representations induced from supercuspidal representations of maximal parabolic
subgroups of quasi-split classical p-adic groups and their connection with local L-
functions [1,2,9,10].

To be more precise, let F be a non-Archimedean field of characteristic zero, G be
a subgroup of F-rational points of a quasi-split connected reductive group G over F
and let P = MN be a maximal parabolic subgroup of G.

Let = Lie(N), the Lie algebra of N. When M is abelian, then it is known that
9 is a prehomogeneous space under the action of Ad(M) [6, 11]. The poles of some
certain intertwining operators are determined in terms of orbital integrals in [10].
Even explicit generators of these orbits have been found, together with the fact that
the centralizer and twisted centralizer are actually equal when G is split [12].

Throughout this paper we assume that G is a quasi-split connected reductive clas-
sical group over F and P is any maximal parabolic subgroup of G. We have de-
termined all cases when 9t is prehomogeneous under Ad(M) if N is non-abelian.
Namely, except for two special cases, N is not prehomogeneous. And in these two
special cases, we have shown that the centralizers have index 2 in the twisted central-
izers and the poles of standard intertwining operators have been determined.

It should be pointed out that since 9 can be graded as M = N; & N, by a, where
« is the simple root that determines P. Each M;, i = 1, 2, is a prehomogeneous space
under Ad(M), i.e., has a finite number of open orbits under Ad(M) by M. Sato and
T. Kimura in [7]. However, it is not known whether M is prehomogeneous. In fact
since 9 is reducible, it does not fall into the classification of prehomogeneous spaces
in [7].
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2 Preliminaries

Let F be a non-Archimedean field of characteristic zero. Denote by O its ring of
integers and by P the unique maximal ideal of O. Let g be the number of elements
in O/P and fix a uniformizing element @ for which || = g~!, where |- [f = |- |
denotes an absolute value for F normalized in this way.

Let G be a quasisplit connected reductive classical group defined over F. For an

positive integer r, let
1
Wr: ( ‘.' ) eMr(F).
1

And for any positive integer I, let

Walt1 if G = SOy1415
b = § wy if G = SOy;
(_w"™) ifG=Spa

Suppose G is defined with respect to Jy, i.e., G = {g € GLy|'gJug = Ju}°, with
the superscript indicating the connected component.
Let T be the maximal split torus of diagonal elements in G, then we can take

X1
X2
X
1 . )
T= xl—l x; € F*, i=1,2,...,1 »,
xz_1
-1
X
if G = SOy, 1, and otherwise,
X1
X2
X
-1 ..
T= X x; €F, i=1,2,...,1
x;l
xl_1

Let B = TU be a Borel subgroup of G, where U is the unipotent radical of B.
Let A be the set of simple roots of T in the Lie algebra of U. Denote by P = MN a
maximal parabolic subgroup of G in the sense that N C U. Assume T C M and let
© = A\ {a} such that M = My. Let N be the unipotent subgroup of G opposed to
N.
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As usual, we will use W = W(T) to denote the Weyl group of T in G. Given
w € W, we use w to denote a representative for w. Particularly, let wy be the longest
element in W modulo the Weyl group of T in M.

We will also use G,P,M,N,N,B,T,U to denote the subgroups of F-rational
points of the groups G,P,M,N,N, B, T, U, respectively. Let ® be the set of roots
of G, and let ®* be the positives ones. Let Y (O) be the subset of ® that are the lin-
ear combinations of the elements from © and () be the subset consisting of its
positive elements.

Let g = Lie(G), the Lie algebra of G. For any g € G, We will use Int(g) to denote
the inner morphism of G induced by g, i.e., for any u € G, Int(g) o u = gug~'. We
will use Ad(g) to denote the adjoint action on g induced from Int(g).

Let 9t = Lie(N), the Lie algebra of N. Then 0 can be graded by cvas N = N, &N,
i.e.,, forany t € {center of M}, and for any n; € 9y, m, € N,

Ad(t) oy = alt)ny Ad(t) oy, = 2a(t)n,.

M acts on 9 by adjoint action, in particular, each N;, i = 1,2, is invariant under
Ad(M). Notice N, is the center of N. Suppose N; = exp(N;),i = 1,2, then N =
NN, with N, being the center of N.

Suppose A = {a; | i =1,2,...,1}. Lete; (1 < i < 1) € Hom(T, F*) such that
e;(T) = x;,thena; = ¢; —ej41,i =1,2---1—1,and

e, if G = SOy (F);
ap=qe_1te, ifG=_S80y(F);
21, if G = Sp,(F).

Suppose @ = a; = e, — €41, then M 22 GL,,(F) X SO2,41(F), GL,(F) x SO,,,(F)
or GL,(F) x Sp,,,(F), depending on whether G is of type B;, D;, or Cj, respectively.
For convenience of notation, we set G’ = GL,(F) and

SO2m+1(F), if G = SOy.1(F);
Gm = SOZm(F)7 ifG= SOZI(F);
Sp,,,(F), if G = Sp,,(F).

3 Non-Prehomogeneity

Forany Y € M,(F), we set e(Y) = w, 'Yw, . Then e(e(Y)) = Y since w,, ' = w,.
We define an action ¢ of G’ on M,,(F) by £(g) 0 A = gAe(g), Vg € G',A € M, (F).
And we call the group G! , = {g € G’|e(g) 0 A = A} the e- twisted centralizer of A
inG'. '

Definition 3.1 Forany A € M, (F), we say that A is e-symmetric if e(A) = A and
skew-e-symmetric if e(A) = —A. Denote by M, (F) the subspace of M, (F) consisting
of e-symmetric elements, and by M;7(F) the subspace of M,,(F) consisting of skew-
e-symmetric elements.
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Lemma 3.2 M, (F) = M (F)®M;:(F), and both M,(F) and M’ (F) are closed under
e(G).

Proof Straightforward. u

Lemma 3.3 Letn € N and suppose that

L, X Y
n—= 0 Ik X’
0 0 I

Then we have

+ ) =Dm ' Xwy,, if Gis orthogonal;
Jom 'Xwy,  if G is symplectic.

And

XX — Y +e(Y), ifGisorthogonal;
Yy —e(y), if G is symplectic.

In particular, ifn € N,, then X = 0andY € M7 (F)(or M;,(F)) if G is orthogonal (or
symplectic respectively). If n € Ny, then Y € M (F)(or M7 (F)) if G is orthogonal (or
symplectic respectively).

Proof The first part is a counterpart of [1, Lemma 2.1], the rest is straightforward.
| ]

Lemma 3.4 Usen(X,Y) to denote n in Lemma 3.3. For any n(X,Y) € N, write

Ao Yielt) if G is orthogonal;
B if G is symplectic.

And

B— Y—elr) if G is orthogonal;
B if G is symplectic.

ThenY = A+ BwithY being decomposed as in Lemma 3.2.

Let ny = n(X,A),n, = n(0,B). Thenn; € N;,i = 1,2, and n = nyn,. Moreover,
for any B € M (F) (or M;(F), according to whether G is orthogonal or symplectic,
respectively), n(0,B) € N, C N.

Proof Straightforward. ]

Let Mi(F) = {A | A € M,(F),A = "A} be the subspace of n-dimensional
symmetric matrices, and M(F) = {A | A € M,(F),A = —'A} be the sub-
space of n-dimensional skew-symmetric matrices. Then it is clear that M,(F) =
M (F) @& MS(F).

Define a group action § of G’ on M,,(F) as 6(g) 0 A = gA'g, Vg € G', A € M, (F).
Then we have the following.

Lemma 3.5 M (F) is a prehomogeneous space under 4.
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Proof Let GL;(F) = GL,(F) N M;(F), then GL; (F) is a dense open subset of M, (F).

Forany A € GL;(F), it is a basic fact in linear algebra that thereis ¢ € G’, such that
gA'g = diag(ay,az,...,q,) forsome a; # 0,i = 1,2,...,n. Choose a complete set
of representatives S = {g;,i = 1,2,...,k} of F*/(F*)%, where k = card(F* /(F*)?).
Suppose a; = t¢; with &; € S, let g = diag(t; ¢, ", ..., t;"). Then 6(g1g) 0 A =
diag(e1,€2,...,€,). So GL;(F) has only finite number of generators under 6(G’),
i.e., M (F) is a prehomogeneous space. ]

Corollary 3.6 M.(F) is a prehomogeneous space under (G').

Proof There is anisomorphism f: M5 (F) — M; (F) defined by f(A) = Aw,,VA €
M (F). If we notice the fact that e(g) = f 0 §(g) o f~!,Vg € G/, then the proof is
trivial. Moreover, for any A € M5(F) N G, there is ¢ € G, such that

&2
(3.1) e@oA=| . ,

withe; €S, i=1,2,...,n. n

Lemma 3.7 M:(F) is a prehomogeneous space under §(G’). More precisely, suppose

0 b, bis - big

—bi; 0 bz - b

B= | —bis —bas 0 <o bay
_bl,n _bZ,n _bS,n e 0

is an arbitrary element in M:(F), then there is g € G', such that

0 1
-1 0
(32) 5(g)oB = %%
Moreover, such g fixes the vector (0, ..., 0,1)" by left multiplication, and consequently

0(g) will fix the element E,, ,,.

Proof Letr, = 2[n/2], where [1n/2] is the maximal integer that is no greater than
n/2. Let M$(F) = {A|A € M$(F),rank(A) = r,}, then M3(F) is a dense open
subset of M;’(F).

If n = 1, then the lemma is trivial.

If n = 2, let ¢ = diag(1, b;zl) if B # 0. Then g will satisfy the lemma.

Suppose the lemma is true forall k < n — 1. Let k = n.

We can always assume by, # 0. Otherwise, we first assume that there is one
i,3 < i < n, such that by ; # 0. Let K;; = I, + E, ;, where for any pair of positive
integers {7, j}, E; j is an elementary matrix in M,,(F), whose {i, j}’s entry equals to 1,
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all other entries are 0. Then the {1,2}'s entry of K, ;B'K;; is b, ;, which is not 0. On
the other hand, if such i does not exist, then it will fall into the induction hypothesis.

Now let b
Ki=1,— —E,, i=3,...,n andh = [[ K.
bl-,2 ' i=3
Then

0 by 0 - 0

—bl,z 0 b273 .. bé"n

B,=d0(h)oB=| 0 —bas 0 - b3,

0 _bé,n _bZ/»,n T 0

bl .
LetP; =1, + ﬁ i1,3 < i< n,and set

W=T[P. W' =diagbii,1,---,1), h=h"h
i=3

Then
0 1 0 0 cee 0
s 0 0 0 by, - by, 0 1
= = 1 2 frng —
Bz ( 2) e} B] 0 0 _b3’4 0 - b4,n 1 0 B, R
0 0 —by, —b), --- O

with B € M;;_, (F).

By induction hypothesis, there is g € GL,_,(F), such that §(g;) o B’ satisfies
equation (3.2) when k = n — 2.

Let h; = diag(l, §1),g = hshyhy, then 6(g) o B satisfies equation (3.2). Therefore
there is only one generator of M$*(F) under §(G’) which automatically implies that
M(F) is a prehomogeneous space under §(G’). The property that (0, ...,0,1)" =
(0,...,0,1)" is obvious from the construction of g, thus, 6(g) 0 E,.,, = E; . |

Corollary 3.8 M (F) is prehomogeneous under £(G'). Moreover, forany B € M (F)
thereis g € G’ such that

) 0B — 1 0
(3.3) e(g) 0

In addition, such g fixes (0, ..., 0, 1)" by left multiplication, and consequently, (g) fixes
E.1.
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Proof This is a direct result of Lemma 3.7, and the proof is similar to Corollary
3.6. [ |

Let GL (F) = GL,(F) N M (F), then GL;, (F) is a dense open subset of M:*(F)
when # is even and is an empty set when 7 is odd. For this reason and the purpose of
further use, we let B, be the matrix which has a form as the right side of equation (3.3)
with rank r,,. Then from Lemma 3.7 and Corollary 3.8, B,, is a generator of the unique
dense open orbit of M (F) under £(G’). We then define:

E — B, if n is even;
" B, +E,;, ifnisodd.

We can define a map f from M, x(F) to M5(F)(or M (F)) by f(X) = XX'.
Notice f is a polynomial function in terms of the entries of X.

Lemma 3.9 Ifn < m, then f is surjective. In particular, if n > 2 and m > 1, then
for almost all X, rank(XX") > 2.

Proof Suppose first that G is orthogonal, let A = (a; j),x» be an arbitrary element
in M5(F). Let X = (I,,, 0, X, ) where X; = —A/2. Then

e(Xy)
X' = 0 ,
e
and XX’ = —(X; +(X;)) = A as desired.
If G is symplectic, then the proof is similar. The rest of the lemma is straightfor-
ward. [ |

For any m = (g, h,e(g™')) € M, where g € G’ and h € G,,, we have Int(m) o
n(X,Y) = n(gXh™!,gYe(g)), (see also [1,2]). Moreover, if we decompose M,,(F) (as
Y is concerned) into subspaces as in Lemma 3.2, then both M (F) and M;:(F) are
invariant under Int(M).

Lemma 3.10 There is an open dense subset O in N, such that for any n(X,Y) € O,
det(Y) # 0.

Proof Write Y = A + B as in Lemma 3.4. By Lemmas 3.3 and 3.4, det(Y) is a
polynomial function in terms of the entries of X and B. So we only need to show that
det(Y) # 0.

If G is symplectic, let X = 0 and B = Y € GL;(F). If G is orthogonal and # is
even, choose X = 0 and B =Y = E,. In both cases, det(Y) # 0.

If G is orthogonal and n is odd, let B = B,,, where B, is defined as before. And let

o o0 --- 0 O

X = : : B : : S Mn><(2m+1)(F)-
o o0 --- 0 O
10 --- 0 -1

ThenY = B, + E,; = E,, and obviously det(Y) # 0.
Thus, the subset of N satisfying det(Y) = 01is a closed subset (in Zariski topology).
|
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Remark. The above lemma can also be used to prove the fact that up to a closed subset
of N, wy; 'n(X,Y) € PN by applying Lemma 2.2 in [1] where N is the unipotent
subgroup opposite to N.

Theorem 3.11 Ifn > 1 and m # 0, then N does not have a finite number of open
orbits under Int(M), i.e., W is not a prehomogenous space under Ad(M).

Proof Suppose O = |JO; is a dense open subset of N where each O; is an orbit of N
under Int(M). Let n(X;, Y;) be a representative of O; under Int(M). WriteY; = A;+B;
as in Lemma 3.4. By Lemma 3.4 and Corollaries 3.6 and 3.8, we can always assume
B; has a same form as the right side of equation (3.1) or (3.3) depending on whether
G is symplectic or orthogonal, respectively. If G is orthogonal, we can even fix B; as
B, by Corollary 3.8.

Suppose n(X,Y) € O withY = A + B being decomposed as in Lemma 3.4, then
there is an i such that n(X,Y) € O;. Thus, there exists an m = (g, h,e(g™!)) € M,
such that Int(m) o n(X,Y) = n(X;, Y;). Consequently, gYe(g) = Y;, gBs(g) = Bi, by
the uniqueness of the decomposition in Lemma 3.2.

Therefore, if G is symplectic or if G is orthogonal and # is even, then

det(B)  det(B;)

(3.4) det(Y) ~ det(Y;)’

since by Lemma 3.10, we can always assume that both det(Y') and det(Y;) are nonzero.
The left side of equation (3.4) is a rational function in terms of the entries of X and B.
By Corollaries 3.6 and 3.8 and Lemma 3.9, it is obviously nonconstant. Therefore, the
set of n(X,Y) satisfying equation (3.4) is only a closed subset of N, a contradiction!

If G is orthogonal and n is odd, let B' = g~ 'E,;16(g) ™ '. Then g(B+ B’)e(g) = E,,
and consequently, we will have:

det(B+B')  det(E,)
det(Y)  det(Y;)’

By the proof of Lemma 3.7 and Corollary 3.8, the entries of g are rational functions
of that of B, so are the entries of B'. Now the same argument of the above paragraph
applies which will lead to a contradiction. [ ]

Remark. We use E,, and B + B’ because the determinants of both B and B; are 0 when
G is orthogonal and # is odd.

4 Cases When 9t is Prehomogeneous

By Theorem 3.11, 9t has a finite number of open orbits under Ad(M) only when
n = 1or m = 0. Since the prehomogeneity of M has been studied in [6,7,11] when
I is abelian, we will only study the prehomogeneity when M is non-abelian.

When m = 0, the only case that 9 is non-abelian is G = SOy (F). While if
n = 1, the unique case that 9 is non-abelian is G = Sp,,(F).

Theorem 4.1 If G = SOy (F) and m = 0, then N is a prehomogeneous space under
Int(M).
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Proof Suppose n(X,Y) € N, in this case M = G’ and

X1
X2
X= : eMnXl(F)-

Xn

By restricting to a dense open subset, we can assume that X # 0, then there isg € G’
such that gX = (0,...,0,1)" = X;. Therefore, X'e(g) = (gX)' = (-1,0,...,0),
and consequently, gXX'e(g) = —Ey .

Write Y = A + B as in Lemma 3.4, let B’ = ¢(g) o B. By Corollary 3.8, there
is ¢’ € G’ such that £(g’) o B’ = B, by restricting B to a dense open subset of
M (F). Moreover, ¢'X; = X, and £(g’) fixes E,, ;. Therefore Int(g'g) o n(X,Y) =
n(X1, B, — %Enyl), in other words, there is only one dense open orbit of N under
Int(M). |

Theorem 4.2 If G = Sp,,(F) and n = 1, then N is a prehomogeneous space under
Int(M).

Proof Suppose n(X,Y) € N, then X € M)y m—2(F) and XX’ = 0. Also in this
case M = GL; x Sp,,,(F), G' = GL; = F*,and Y € M;(F) = F.

Assume a =Y # 0, this assumption will apply to a dense open subset of N. Write
a = b’ for a suitable g; € S, let g = (b™!, Ly, b). Then Int(g) o n(X,Y) =
n(Xy,€;), where X; = b~ 'X.

Suppose X; = (X1, .y X, X1, - - - , X2m). We can assume x; # 0, by doing so, it
will only amount to a closed subset of N. Let X; = (xi, ..., X;), then there exists a
g € GL,,(F) such that X{g = (1,0,...,0) € M;x,,(F). Let

h' = diag(g, Wmtg_lwgl) € Spam(F), hy = diag(1,h’,1) e M, and X, = X;h'.
Then Int(hl_l) on(Xy,¢e;) = n(Xy, g;), where

X, =(1,0,...,0,%),1,...,%,) € F
for some suitable x},,,,...,x3,, € F.
Let !/ / /
Xm0 TXm—1 T Xom
0 T 0 _xZ/m—l
Q= . : : : € M, (F),
0 0 _x;g1+1
and

» Im
W = <0 IS,) € Sp,,, (F).

Then X,h'h” = Xoh” = (1,0, ...,0) € Miyom(F).

Denote E; = (1,0,...,0) € M;xom(F), leth, = diag(1,h”,1)and h = h;lhflgl,
then Int(h) o n(X,Y) = n(E,, ;). Therefore, there are only finitely many generators
for a dense open subset of N under Int(M). i.e., 9 is a prehomogeneous space under
Ad(M). In particular, the number of open orbits is card(S). [ |
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5 Centralizers and Twisted Centralizers on Prehomogeneous Cases

We now suppose G = SOy41(F), o = ej; or G = Sp,,(F), and o = e; — e,. Then

~ JGLi(F) x 1, if G is orthogonal;
| GLi(F) x Spy_,(F), if Gis symplectic.
And
G — 1, if G is orthogonal;
" | Spy_,(F), if Gis symplectic,
by definition.

By Theorems 4.1 and 4.2, N is prehomogeneous under Int(M).
We choose wy as follows:

0 0 I,
0 1 0/, if G is orthogonal;
I, 0 O

Wy =
0 0 —1
0 Iy, 0 |, ifGissymplectic.
1 0 0

Lemma 5.1 Suppose G = SOy;1(F) and n = n(X,Y) € N. Then Wo_ln € PN if
and only ifY € GL,(F), in which case

e(Y™h -y~ X I, I, 0 0
(5.1) wy'n = 0 1-X'Y7'X X'| [~ X) 1 0],
0 0 Y y-! Y-'X I,
with X'Y~1X = 0.
Proof This is [1, Lemma 2.2]. The proof is straightforward. |

Lemma 5.2 Suppose G = Sp,(F) and n = n(X,Y) € N. Then wy 'n € PN if and
only ifY € GL,(F), in which case

—e(Y Y 'X I, I, 0 0
(52) wy'n= 0 L, —X'Y7'X X Y~ 'X) L, 0],
0 0 -Y y-! Y-IX I,

and L, — X'Y'X € Sp,,,(F).

Proof This is also [1, Lemma 2.2], but since we chose a different Jy;, the right side of
equation (5.2) is a little bit different from the expression there. ]

Write equations (5.1) and (5.2) as wo_lni = m;n;n; , where m;, n;, n; belong to
M, N and N, respectively. Define

M,, = Centy(n;) = {m € M|Int(m) on; = n;}
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as the centralizer of n; in M, and
M,, = Cent, = {m € M|wo(m)mm~" = m;}

as the twisted (by means of wy) centralizer of m; in M. Then M,, C M;, by [10,
Lemma 2.1].

Theorem 5.3 Suppose G, M, o as above, then for any n; € O, where O has the same
meaning as in Theorem 4.1 or 4.2, [Mj, /M,,| = 2.

Proof We only need to prove the lemma for any generator of each orbit, since any
two elements in a same orbit are £(G’) conjugate to each other, their centralizers and
twisted centralizers are therefore £(G’) conjugate to each other.

First suppose G is orthogonal, then by Theorem 4.1, there is only one orbit of N
under Int(M). We can also choose a representative of this orbit as n = n(X;, B, —
%EM), where By, E,; and X; = (0,...,0,1)" € M, (F) are as in Theorem 4.1.
Then in this case m; = B,, — %EM if we identify (e(G'™N,1,G") with G'.

Suppose g € M,, C G’ such that £(g) o m; = m;. Then by Lemma 3.2, £(g) o

B, = Byand e(g) o (—E,1) = e(g) o (XiX{) = (gX1)(gX1)" = —E,;. Thus
gX; = £X;. If gX; = Xy, theng € M,; if gX; = —Xj, then —g € M,,. Therefore
M}, /My, | = 2.

Now suppose G is symplectic, then by Theorem 4.2, there are finitely many open
orbits of N under Int(M). The generator of each orbit can be chosen as n; = n(E,, ¢;)
withe; € S. Ifm = (k,h,k™') € M, with k € F* and h € Sp,,_,(F). Then
Int(m) o m; = m;, where m; = (—¢;, ;i + Ey—;,1, —¢;) is determined by Lemma
5.2.

Thus k*c; = ¢; and (kE1h)'(kE1h) = Ey_,1 = E{E;. Therefore, kEyh = +E;. If
kE\h = E;, then m € M,; it kEih = —E;, then (—1,L;—,,—1)m € M,,. Whence,
M /M, | =2 .

6 Poles of Intertwining Operators on Prehomogeneous Cases

For a connected reductive p-adic group H, we use °€(H) to denote the collection of
equivalence classes of unitarizable irreducible admissible supercuspidal representa-
tions of H.

Let (7/,V’) € °E&(GL,(F)) and (7,V) € °E&(Gy), then 7/ ® T is a unitary
supercuspidal representation of M. Let

I(s,7' @ 7) = Ind§ (7" @ | det( ") & 7 @ 1y).

We will use V(s, 7’ ® 7) to denote the space of I(s, 7/ ® 7). In order to understand the
reducibility of I(7' ® 7) = I(0, 7’ ® 7), one must determine the poles of the standard
intertwining operator

A, @ 7, wo) f(g) = / F(wi ' ng)dn
N

associated to 7/ ® 7 (cf. [1,3,9,10]), where f € V(s, 7’ ® 7). By Bruhat’s theorem
(cf. [4]) we may assume that wy(7’ ® 7) ~ 7’ ® 7, which is equivalent to assuming

7'~ 7/ [13].
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Denote by N the unipotent radical opposed to N. Let
V(s, 7' @ 7)o = {h € V(s,7" @ 7)| supp(h) C N modulo P}.

By a lemma of Rallis (cf. [9]), it is enough to compute the poles that arise when
A(s, 7" ® T, wy) is applied to functions in V(s, 7’ ® 7)y and evaluated at the identity.

Let LG’ = GL,(C) be the L- group of G/, r be the adjoint action of LG’ on the Lie
algebra 't of ' N, the L-group of N. Let p, be the standard representation of GL,,(C),
then p, ® p, = Ap2 ® Sym?*(p,). Let SO} be any of the quasi-split orthogonal groups
which has SO, (C) as the connected component of its L- group if # is even.

6.1 G is Orthogonal

We will still consider the case when G = SO, (F) and o« = ¢;. Notice in this case
n=IM=GL,and G,, = 1.
Welet (77, V') € °&(GL,(F)) and

I(s,7") = Ind$§ (7' @ | det()[) @ 1n).

In this special case, we will use V(s,7’), I(7"), A(s, 7", wp), V(s, 7")¢ to denote the
general settings V(s, 7/ @ 7),I(s, 7' @ 7), A(s, 7' @ T, wy), V(s, 7' ® T) as defined at
the beginning of this section, respectively.

Let h € V(s,7')o. Fix open compact subsets L C M,,(F) and L’ C M,,»1(F). We
assume that for some v/ € V', h satisfies:

I, 0 0
Rl (—'X)  1 0| =&Y e (YT (),
y-! Y 1X I,

where £; and ;/ are the characteristic functions of L and L', respectively. Let V' be
the dual spaces of V. Choose ¥/ € V' and let ¢, be the matrix coefficient of 7’
given by pair (v/,7"). Then, from Lemma 5.1, (v', A(s, 7', wo)h(e)) is equal to

(6.1) e (V)] det(Y)| >~ PO E(X, V)d(X, Y),
(X,Y)

where the integral is over the collection of F-rational solutions (X, Y) satisfying Lem-
mas 3.3 and 5.1. Here

pP= % Z B, EX,Y)= §L(Y71)§L/(Y71X)a a= (p,a)flp,

BEP\> " (0)

and d(X,Y) is a choice of Haar measure on N.

By Theorem 4.1, there is only one orbit O of N under Int(G’). For any n(X,Y) €
0, define d*(X,Y) = |det(Y)|~»®d(X,Y), then d*(X,Y) is an invariant measure
on O (see [1]). Therefore, the integral in (6.1) will be changed to:

(6.2) e ()] det(¥)] €0 V) (Y,

Xy
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Moreover, the representative of this orbit can be chosen as n(Xj, B,), where
X; = (1,0,...,0)" € M,x(F) and B, as the right side of equation (3.3). Hence,
the unique dense open subset O can be expressed as n(gX;, g(B, — %En,l)s(g)) as
g runs through G’. Thus, d*(X,Y) induces an invariant measure on G’/M,,. Fur-
thermore, by [10, Lemma 2.3], it also induces an invariant measure on the quotient
G'/M}, since M}, /M, = 2 by Theorem 5.3. Therefore, if we let Y; = B, — 3E,1,
then equation (6.2) can be expressed as:

(6.3) 2// ¥y (gY16(g))] det(gY1e(8))| ~°€(gX1, gY1e(g))dg,
G'/Gly,

where M}, = Gy, by definition.
Let w’ be the central character of 7. Since we are assuming that 7’ is self-dual,
w? is trivial. We then can choose f € C>°(G’) such that

volg) = [ flagl
2(G")
Substitute the above equation into (6.3), then the expression will be:

(6.4) 2/ f(zgY1e(g))w'(z~)d*z| det(gY1e(g))| —*¢(gXi, gY12(g))ds.
G'/Gly, J2(G")

By making a substitution gz — g, we can rewrite expression (6.4) as:

65 2w [

YES ,/Gsl.y

&z (@)Y g Hé (2 e(g) 7Y X )d X zdg.

Now we have the following.

/ f(rgY1(g))] detz] | det(gY=(g))]
. Z(G’)

Lemma 6.1 The intertwining operator A(s, 7', wy) is convergent for s > 0 and has a
pole at s = 0 if and only if

(66) St [ s g Ao
G'[Gly,

v€ES

Proof This has been proved in [9], and a more general result has also been estab-
lished in [1]. Here we will use the finiteness of orbits to give a shorter proof.

We can use a similar argument as that of [1, Lemma 4.5] to prove our lemma.
Namely, the integrand inside (6.5) is nonzero only when

gY1e(g) € v~ 'supp(f) N2 supp(ér) ™! = C,

where supp(£7) ! is the subset of N consisting of the inverse elements of supp(&y).
Thus, ¢ must belong to a compact subset of G’/G!y and z=2 € supp(¢;) - C. Con-
sequently, |z| must be bounded from below. '

Therefore, there exists p such that when |z|r > pu, the order of the integrals in
(6.5) can be interchanged. By the fact that f, &y, £+ are all bounded, the conclusion
of the lemma follows immediately. ]
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Moreover, Shahidi in [9] has shown that the orbital integrals appearing in equa-
tion (6.6) are all equal, i.e., for any y € S,

/ flrg¥ie(g)~")dg = / f(gYie(g)~Hdg.
G'/Gly,

G'/Gly,
We thus obtain the following.

Theorem 6.2 The intertwining operator A(s, 7', wy) has a pole at s = 0 or equiva-
lently I(7') is irreducible if and only if w’ = 1 and

(6.7) | rane@ i £o
G'/Gly,

In that case:

(a) if nis odd, then A(s, 7', wy) has a pole at s = 0;
(b) ifniseven, then A(s, 7', wy) has a pole ats = 0 if and only if T/ comes from SO}, (F).

Proof Ifw’ is nontrivial, then equation (6.6) is zero. Part (a) is [9, Proposition 3.10],
and part (b) is Corollary 10.6 from the same paper. We give here a shorter proof for
part (b).

By Theorem 4.1, there is only one orbit of N under Int(M). Moreover, by the proof
of Theorem 4.1, we can choose n;(kX;, B, — %szn,l) as a generator of this orbit for
any k € F*. LetY; = B, — %kZEn,,l, then (6.7) will be changed to:

/ f(gYie(g)~")dg # 0.
G'/Gly,

Because 7 is even, both B, and Y; belong to G'. Since f € C>°(G'), it is clear that
gYie(g)~" € supp(f) if and only if ¢ belongs to a compact set C; of G’ /G y., where
¢ is the representative of ¢ in G'/G/ y.. Moreover, when |k| is small enough, these C;
will be independent of k. We will use C to denote such uniform C;.

For each § € C, there is a neighborhood O(g) of g such that for any ¢’ € O(g),
there is a positive number ug, such that f(g'B,e(g’)™") = f(g'Yie(g')™") when
|k| < ug. By the compactness of C, we can choose k small enough such that for any
gYie(g)™! € supp(f), f(gBne(g)™") = f(gYie(g)™"). Therefore, the determining
condition (6.7) will be changed to:

/ f(gBue(g)~dg # 0.
G'/GLy,

But this is the determining condition of the same intertwining operators for SO} if
we take M = GL,(F) there. Thus, A(s, 7', wp) has a pole at s = 0 if and only if 7’
comes from SO}, (F) by means of the definition in [9]. [ |
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6.2 Gis Symplectic

We now consider the case G = Sp,(F) and o = e; — e;. Notice M = GL;(F) x
Sp,;_,(F) = F* X G
Let x be a character of F* = GL,(F) to the unit circle in the complex plane and V'
be the space of . Since we may assume Y is self-dual, x*> = 1. Let (7, V) € °&(G,,)
and
I(s,x®7) = IndS(x @ |- ) @ 7 ® 1y).

Let h € V(s, x ® 7)o. Fix open compact subsets L C Fand L’ C M x2,,(F). We
assume that for some v/ € V' v € V, h satisfies:

I, 0 0
(X)) L, 0] =& ey X6 @),
y—! Y-'X I,

where &1 and {1 are the characteristic functions of L and L', respectively. Let V.V
be the dual spaces of V' and V, respectively. Choose v’ € V' and v € V, let ¢, and
f- be the matrix coefficient of x and 7 given by pairs (v/,v") and (v, V), respectively.
Then from Lemma 5.2, (v/ ® v, A(s, x ® T, wy)h(e)) is equal to

U (=) (L — XY TIX)|Y |5~ P2 E(X, V)X, Y),
(X,Y)

which is proportional to
68 [ A X0 DAY,
(X.,Y)

where the integral is over the collection of F-rational solutions (X, Y) satisfying Lem-
mas 3.3 and 5.2. Here p, £(X,Y), d(X,Y) have a same meaning as in Subsection 6.1.

By Theorem 4.2, there are only a finite number of open orbits O of N under
Int(G’). For any n(X,Y) € O, define d*(X,Y) = |Y|~»d(X,Y), then d*(X,Y)
is an invariant measure on O (cf [1]). Therefore, the integral in (6.8) will be changed
to:

6.9) / XD fo (b — XY X)|Y | €0X, V)" (X, Y).
(X)Y)

Moreover, the representative of each orbit can be chosen as n(E;, €;), where X; =
(1,0,...,0) € M;«,(F) and €; € S. Hence, each open subset of O can be expressed
as n(gXyh,g%;) as g and h run through G’ and G,,, respectively. Thus, d*(X,Y)
induces an invariant measure on G’/ M,,,. Furthermore, by the same reason as before,
it also induces an invariant measure dri1 on the quotient M /M;, since M, /M, = 2
by Theorem 5.3. Therefore, if we let Z; = I, — sflEzmﬁl, then M;, = {£1} x C(Z)
where C(Z;) is the centralizer of Z; in G,,. Then equation (6.9) can be expressed as:

2 S gz g s g didg,
F*/{£1} m/C(Z;)

g €S

where dg, dh are invariant measures on G'/{#1} and G,,/C(Z;), respectively, in-
duced from dri.
Then we have the following.
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Lemma 6.3 The intertwining operator A(s, x ® T, wy) is convergent for s > 0 and has
apole ats = 0 if and only if

(6.10 JS SR C

,,,/C(Z,‘) 5;‘65

Proof The proof is similar to that of Lemma 6.1. Actually, it can be regarded as an
improvement of the results in [1, 10] in these two special cases. ]

Since G,, = Sp,,,(F), we will fix T, e;,i = 1,2,...,m as in Section 2. Let 8 =
e1 —e; and choose a maximal parabolic subgroup P = MN with M = Mg. Then M =
GL,(F) x Sp,,, ,(F) = M; x M. Let Ty = {diag(t;,1,...,1,1,---,1,6; )|ty €
F*} = F* be a torus in M.

For each i,1 < i < m, we choose a root vector of —2e; as: §_5,, = Ejy1—i;. Let
U_3.(x) = exp(xg_y,) be the unipotent subgroup of G,, attached to —2¢;. Then
Z; = U_y,, (—¢;). Since NPN is a dense subset of G,,;, (6.10) can be changed to:

(6.11) > x(e)fr(hzih™")dh # 0.

g €S

/NPN/NPNHC(Z,-)

But it can be easily shown that NPN N C(Z;) = NM,, thus, (6.11) is equivalent to:

6.12 D) f-(hZ:h~Ydh # 0.
(6.12) /WZx<a>f< \dir

€S
We state our main result in this case as follows.

Theorem 6.4 The intertwining operator A(s, x ® T, wy) has a pole at s = 0; equiva-
lently, I(x ® T) is irreducible if x = 1.

Proof Forany fixedv e V,V eV, let K, be a minimal compact subgroup of U_,,,
such that Ky = supp(f,) NU_z, C K,5. Let ¢: V — V be defined by

P(v1) = vol(K, 7)™ / T(k)vidk, Y v, €V.
K,

Then V = VK @ Ker ¢, with Ker ¢ being the orthogonal complement of VX7 and ¢

is a projection from V to VX#. We will use v1*” to denote ¢(v,).

Since (7,V) € °&(Gy), V can be identified with V through the Hermitian inner
product (-, -). Let 7 be the contragredient representation of 7 on V, then 7(g) =
7(g) for all g € G,, under the above identification. The left side of inequality (6.12)
will be changed to

/ ZfT(hZih‘l)dhz// D (T Uge (—it?) - u™ "), )didu
M;N N *

&€S &€S

:// Z<T(U—zel(—EitZ))T(u’l)v,r(uf‘)?x}dfdu,
N *

& ES
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where dii, df are the restriction measures of df on N, Mj, respectively.
For any u € N, letv, = (1(u=)v)%7 and v, = (7(u=1)»)%7. Then

/ Z<T(U_zel(—Eit2))7’(u71)v, T(u™ V) di = vol(Ko) (v, 7(u™1)v)
P L
© = vol(Ky) (vy, V).

In particular, if we choose v = v, then the right side of the above equation is non-
negative. We can also choose such v that v&7 £ 0, then if u belongs to a small
neighborhood of 1, 7(u~!)v = v. Thus (Vi Vu) > 0.

Therefore, for some v € V and v € V, the left side of (6.10) is non-zero and
A(s,x ® T,wp) has a pole at s = 0. [ |

Remark. If o = x ® | det(-)|" is a self-dual representation of M;, then by the results
in [8], A(s,0 ® T, wp) has a pole at s = s; if and only if A(s, x ® T, w) has a pole at
s = 0. For this reason, we have simplified our assumption on .
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