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1. Introduction. The Widder-Post real inversion operator
[4] is defined by

k
(1.1) L = S O @

k=1,2,... . Utilizing this inversion operator one can obtain
the following representation theorem (see e.g. [4] Chapter VII,
Theorem 15a) .

THEOREM A. Necessary and sufficient conditions for a
function f to have a representation

(1.2) fx) = [ F(oat, (x>0)
0

where F(t)eLp(O,. w), p>1, are that

(1.3) f(x) has derivatives of all orders in 0<x< o0 ;
(1.4) f(x) = o(1) (x—=>w) ;

* p
(1.5) {) lLk’t[f]l dt< M, k=1,2,... .

%
The author is indebted to Professor P.G. Rooney for some
valuable comments.
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Let ¢ be a positive function defined on (0, ») . The
spaces L (¢), 1< p<w, consist of those measurable functions
p

f defined on (0,0) such that

ey, () = (7ot 15017 a9 * /P < o
P 0

Similarly, we define the Lorentz spaces A(gp,p), p>1,
to consist of those measurable functions f on (0,) for which

160 a0y = ¢S o(t) £ (P a 1P < o,
' 0

3
where f 1is the equimeasurable rearrangement of lfl of de-
creasing order on (0,®) . (For a definition of f* see e.g.
[5, Chapter 1, §13]) .

In this paper we generalize Theorem A in the sense that
the L -spaces are replaced by the L (¢)- spaces and Lorentz
p p

spaces A(e,p), p> 1, where ¢ belongs to a certain general
class of functions. If ¢ =1, the L (¢)- and A(e,p)- spaces
p

reduce to the ordinary Lebesgue spaces.

In the next section a number of preliminary results are
given. The Lp((p) - representation theory is established in
Section 3 and the last section contains the A(g, p)- representation

theory.

2. Preliminary results. The following theorem is an
extension of a result of Widder [4, Chapter VII, Theorem 11b].

THEOREM 2.1. If f(x) has derivatives of all orders in

0< x<w, then Lk t[f] , t> 0, exists. If in addition for each

positive integer k and some constant c¢c> 0

fx L, [fldt= o(e™) (x> o) ,
0 i

then f(w) exists and
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lim foo e-Xt L [f]dt = £(x) - £(c) .
k, t
k=>w 0

Proof. The existence of Lk t[f] , t> 0 is obvious. By

(1.1) and hypotheses

k
x _(-1) x kk+ (k) k
{Lk’t[f]dt——kl fo ) £ ()dt
(-1)k *® k-1 (k) K
= f v £ (v) d (v=g)
: k/x

0(e“™) (x= o) ,

1]

for k=1,2,... . Replacing k by k+1,

(2.1) foo vk f(k+1)(v)dv = O(ecx) (x=>o), k=0,1,... .
1/x

Let s> 1/x, then from (2.1) with k=0

S
(2.2) [ £ dv=£(s) - £(3) = 0(e) (x> w) .
1/x *

Since the integral in (2.2) tends to a limit as s—=> o, it follows
that f(w) exists. Also by (2.1) with s> 1/x and k=1,2,...

@.3) [ SO a0 ML) [,
1/x 1/x
where both integrals exist. It follows, therefore, that
£(s) = 0(s ™) (s e0)
which together with the existence of f(w) implies that
(k) _ 0(s'k)

(s = )

[£(s) - £(e0)]

for k=0,1,2,... . Hence by Theorem 4.4 of [4, Chapter V]
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(2.4) £(s) - £0)]™ = o(s™X) (5 o0}

)

with k =0,1,2,... . From (2.4) (s) = o(sk) (s> o), so

that by (2.3) with s—= o

=60 () = 0(e™) (x c0)

i.e.,

](k) (k)

(2.5) [f(x) - (o) = £ (x) = 0(e

k=1,2,... . If k=0, (2.5) is also satisfied, for by (2.2)

0
J By =1) - 15) = 0(e™) (x> w)
1/x

f(x) - f(o0) = O(ec/x) (x> 0+) .

Now Theorem 411a of [4, Chapter VII] holds also if its hypotheses
2 is replaced by

£ x) = 06 *x7F) (x> 04)

k=0,1,2,... . Thus the result follows from (2.4), (2.5) and
Theorem 11a with f(x) replaced by f(x) - f(wx) .

LEMMA 2.1. Let ¢ and X be non-negative measurable
functions on (0, ©) such that for each R > 0

R R
[ wwat< [ X(t)dt.
0 0

If ¢ is a non-negative decreasing function on (0, ©) , then

0 0

(2.6) J e u(tydt < [ o(t) X(t)dt .
0 0

Proof. Assume

00

f o(t) X(t)dt < o,
0
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for otherwise (2.6) holds trivially. Define C‘r1 and G2 by

t t
Gi(t)={) G (u) du , Gz(t):{) X(u) du, t> 0.

If ¢(0+) is finite, then

R R

{) p()[Ut) - X(t)]dt = {) g(t) d[G, (1) - G,(1)]

R

= 9(R)[G, (R) - G,(R)]- [ [G,(t)- G,(0)]d o(t) < O

0
since Gi(t)_<_G2(t) and ¢ is decreasing. Hence

R R 00
(2.7) [ oemutdis [ o)X(tdt< [ o(t)X(t)dt
0 0 0

for each R > 0. The result follows now if R=>w. If ¢(0+) = «,
define for each &> 0

o(6) te(0,5)
s (t) =
o(t) te (6,0) .
Hence from (2.7)

o0 o0 o0

{) goé(t)\p(t)dti{) ¢6(t)X(t)dtg{) o(t) X (t)dt ,

and by Fatou's lemma

o0 o0 0

[ oemumdt<tim [ o (e ()< [ o) X(t) dt,
0 . 6=0 0 0

which is the result.

LEMMA 2.2. If

0
H(t) = f A(u, t) h(u) du
0
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exists for almost all t> 0, where A(u,t) satisfies

0 o
f IA(u,t)’du_<_K and f lA(u,t)ldtiK
0 0

for some constant K, then for each R > 0

R R
[ H (t)dtg_Kf h™ (t)dt,
0 0

ES B 3
where H and h are the equimeasurable rearrangements of
decreasing order of |H| and |h|, respectively.

Lemma 2.2 is proved in the same way as Theorem 3.8.1
of [1].

LEMMA 2.3. If ¢(t) is a non-increasing, positive
function defined on (0, ) and {t) non-negative on (0,0) then

© 0 o
(2.8) [ e et dt < [ oty (1) dt,
0 0
where 4;" is the rearrangement of decreasing order of (.

Proof, If the right side of (2.8) is not finite, the result
is obvious. Otherwise for each R> 0,

R " 1 00 *
{) (1) at < e {) o(t) U (t)dt<oo.
Since for each R >0
R R "
J o wdt< [ ¢ () ae,
0 0

(2.8) is an immediate consequence of Lemma 2.1 with X re-
placed by LIJ* .

LEMMA 2.4. I

k. k+1

- k
eku/tu t) , u>0, t>0

(2.9) Ak(u, t) = (

1
k!
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and k=1,2,..., then

© 0
fo Ak(u, t)du = {) A.k(u, t)dt =1 .

DEFINITION 2.1. A function ¢(t) defined for t> 0
belongs to the class A if ¢(t) is a non-increasing function for
all t> 0 and if there exists a function K(x) > 0 non-decreasing
for all x> 0 such that
(2.10) o(t) > ¢ T K(x)

for all x> 0.

3. Lp(cp) - representation theory,

THEOREM 3.1. Let ¢ belong to class A . Necessary
and sufficient conditions that a function f(x) defined for x> 0
be the Laplace transform of a function F in L (¢), p> 1, are
p

that
(3.1) f(x) has derivatives of all orders in 0< x<
(3.2) f(x) = o(1) (x> )
and that
(3.3) [£] <M, k=1,2,...
Iy Cl L

Proof. Let

0
f(x) = f e-Xt F(t)dt, x>0,
0

with Fe Lp(go) . Then (3.1) holds. By Hoélder's inequality with

14111 and (2.10)

P P
00 00 ' 00 -

(3.4) f e-thF(t)Idt_<_{f e ¥t aryt/P { eXtIF(t)Ipdt}1/p
0 0 0

, ) 00
<x P REIVP L e [Paeyt /P
0
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so that (3.2) holds. Next we show that (3.3) is satisfied. Define

f , >0 by
nTl

f(x):f e-th (t)dt, x> 0,
n n

o

where

F(t) = F(t) 0<t<n
“]o otherwise.

Clearly f (x) has derivatives of all orders in 0< x<®, so
Ul

that by H6lder's inequality

® k k k.k
|yl 117 E AN F_(w) du P
17 K/t ke ko p ® _xu/t kK kk+l . p/p'
kl fO e t lF (u )l du {k'f € u (?) du}
(3. 5) N
- k kk
=kif ku/t K HIF()I
)
Al kst kkk+1
%/ (0" P [®
0
RTINS o gk k1w >
57{) IF(U)I duimfo (p(u)’F(u)l du < o,

0

0

where Ak(u,t) is the function defined by (2.9).

- P
H n(t)-f Ak(u,t)an(u)l du t>0,

Then by (3. 5),

H (t) exists for t> 0 and by Lemmas 2.2 and 2.4, for each

k,n
R>0,
R R

%k p*
H t) dt < F (t) dt .
4 () _f(ln )

’ 0
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In particular, for R=1q,

1 LI n p.*
f Hk’ﬂ(t) dtff Hk:n(t) dt_<_f ('Fn(t)l ) dt
0 0 0
(3.6) " . i
=/ IF ®[Fat= [ |F®)|" at.
0 n 0

But n> 0 is arbitrary, so that by (3.5), (3. 6) and Lemma 2.1

0 00 0

(3.7) {) q)(t)lLk’t[fn]lpdt_Sj(; <p(t)Hk’n(t)dt§f0 <p(t)]F(t),P dt .

Now by definition of F , lim F (t) = F(t) and |F (t) |< IF(t) I,
L IS no-
so that by (3.4), Lebesgue's theorem of dominated convergence

yields
Lm f (x) =lim [ e F (t)dt=/ e F(t)dt=£x)
o | n—>o 0 " 0

Similarly, we obtain for x> 0,

0

im £ (%) = 1m (1)~ [ o™ £ F (1) dt
'r]—>00 1']—'00 0 n
o0
= (-1)F / X F)ar = %) k=1,2,...,
0

and hence by (1.1)

- P _ p
n=e

Therefore, by Fatou's lemma and (3.7),
© ©

{)q,(t)lLk,t[f]lpdtg_%{) ¢(t)lLk,t[fn]lpdt
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0

< [ oty|F®Pat,
0

proving (3.3).

Sufficiency. By (3.1) Lk t[f] exists and by Hlder's
inequality, (2.40) and (3.3) for x> 0

X

x4 -1/
fo L, [f]lde = {) o(0) P o) P L, [£]] at

IN

X ' ' X
([ o0 /Pagt/p (f owlry 17 agt /P

1 1
Mpl/P' XYP /p-1]1 /p!

[

Kip'/P VP

IN

X 1 1
—H ([ TP Pyt
K(y) 0

Thus, for some ¢>0 and k=1,2,...,

X

J Ly [fflde= 0T, (x=e
0 ?

and Theorem 2.1 is applicable, so that with f(w) = 0

o0
(3.8) im [ e L
k=0 0

n

Jildt = £(x) .

k,

. _ _ 1/p
Next, define N k=1,2,..., by yk(t) = o(t) Lk, t[f] . Then
by (3.3)

(e 0]
(t) Pat< Mp, k=1,2,... .
Y, =
0

By the weak compactness argument [4, Theorem 17a, Chapter 1,
0
§ 17] there is an increasing unbounded subsequence {ki} and
‘ 1/p i=1
a function vy(t) = ¢(t) F(t) ¢ Lp (0, ) , such that for every

B(t)eL , (0,)
p
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0 0

(3.9) lim [ B(t) v, (t) dt = [ B() y(t) dt
i=»0 0 i 0
Let i . _ -1/p -tx
et in particular PB(t) = ¢(t) e , x>0, p>1; then

B(t) € Lp' (0, ) , for by (2.410)

© 1 ®© 1/ txp ! tp % 1/ 1
[ 1P at= [ o) PP e atc k(=) PP [ S A I T
0 0 0

Hence by (3.9)

0 0

lim f e Lki’t[f]dt= { e X F(t) at,

i=+o0 0

so that by (3.8)

©
f(x) = f e--Xt F(t)dt, x> 0,
0

where F ¢ Lp((p) ,p>1.
4. A(e,p)- representation theory. We note that if ¢

belongs to class A, then the Laplace transform of a function
Fenle,p), p>1 exists. For by [1,p.60],

(4.1) F*p=(|F|p)* p>1,

H8lder's inequality, (2.410) and Lemma 2.3 with | replaced by
IF(-)IP yields

[*¢] 00 ' o0 _
/ e E(t) dt< { [ e ¥t gpyt/P ([ e ) p(e)|Paeyl/P
0 0 0

' _ >}
<x P R ([ o] ([P eyt /P
0

1 [*.0}
<= P R (o B P eyt P <,
0
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THEOREM 4.1. Let ¢ belong to class A . Necessary
and sufficient conditions that a function f(x) defined for x> 0

be the Laplace transform of a function Fe A(p,p), p> 1 are
that (3.1), (3.2) and

(4.2) ”Lk’:[f]” A(%p)g_M, k=1,2,...,
hold.
Proof. By Lemma 2.3 and (4.1)
0 0 %
[ e®|F®|P dat< [ o) F (0° at,
0 0

so that the proof of the necessity part follows as in Theorem 3.1.

Sufficiency. Using Lemma 2.3 and (4.1) we see as in the
proof of Theorem 3.1 that

o0
(4.3) im [ e L

[f]dt = f(x)
k=>o00 0 t

k,

By [1, Theorem 3.7.3, §3.7, p.74] the spaces A(g,p), p>1
are reflexive and hence [3, Theorem 4.61 c, §4.61] the unit
sphere in A(g, p) is weakly compact. We next define the
functional GX, x>0, on A(g,p), p>1, by
(o]
G (u) = f e-'Xt u(t) dt .
x 0

Clearly Gx is linear and also bounded, since Hélder's inequality

(2.10), Lemma 2.3 and (4.1) yield

0 0 , o
IGX(U.)I < f e_Xt [u(t)| dt < {f e xt dt}1/p {f e thu(t)lpdt}i/p
0 0 0

<x VPR P pt) || Paeyt /P
0

1 ¢}
< P RE TP [ o) oF (0P ae)t /P
0
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_1/ 1 _1/
x P K(x) P lull .
A(‘P: P)
By [3, Theorem 4.41 B, §4.41], for any bounded linear functional
o0
G on A(g,p), p>1 and for each bounded sequence {uk} in

k=1
00

A(p,p) there is a subsequence {ki} and a function ueA{g, p) ,
i=1
such that

lim Cr('llk ) = G(u) .
i

i=->00

This holds in particular for the functional Gx and the sequence
0
L t[f] e Alp,p) . Hence there is a sequence {ki} and a
’ i=1
function FeA(p,p), such that

© 0
. -xt -
(4.4) im [ e L, [fldt = [ e *pt)dt .
- k.,t
i+ 0 i 0
From (4.3) and (4.4) we obtain

0

fx)= [ e F@mat, x>o0,
0
which is the result.
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