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MALGRANGE’S VANISHING THEOREM IN
1-CONCAVE CR MANIFOLDS

CHRISTINE LAURENT-THIEBAUT' anp JURGEN LEITERER'

Abstract. We prove a vanishing theorem for the 9,-cohomology in top degree
on 1-concave C'R generic manifolds.

The aim of this paper is an analogous in the C'R setting of Malgrange’s
theorem [13] for the vanishing of the d-cohomology in top degree in con-
nected, non compact complex manifolds. We prove the following theorem

THEOREM 0.1. If M is a connected, C>+¢-smooth, £ € N, non compact,
1-concave, CR generic manifold of real codimension k in a complex manifold
of complex dimension n, n>3, then for allp, 0 <p <mn,

Hgnik(M) =0,

where Hf’”_k(M), 0 < p < n, denote the Oyr-cohomology groups of top
degree on M with coefficients of class C.
If moreover M is assumed to be C*°-smooth, then

HPF(M) =0 .

We point out that this theorem holds without any global condition
on M (l-concavity is a local condition, cf. Sect. 1). If, additional, certain
global convexity condition is fulfilled then the vanishing of H} RO s
well-known. The first result of this type can be found in the paper [1]
(Th. 7.2.4) of Airapetjan and Henkin, where the vanishing of HE" *(M)
is obtained under the hypothesis that M is a closed submanifold of a Stein
manifold. Generalizations of this result can be found in [9] and [12].

Note that in view of the lack of the Dolbeault isomorphism in top degree
on 1-concave, C R-generic manifolds, one cannot deduce the vanishing of the
groups Hf’”_k(M), 0 < ¢ < oo, from the vanishing of one of them.
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The proof of the theorem is based on some local results on the solvability
of the tangential Cauchy-Riemann equation in top degree and the approx-
imation of Ops-closed C’-forms of top degree minus one by CTl-smooth,
0n-closed forms in 1-concave, C'R generic manifolds, on the unique contin-
uation of C'R functions and on the Grauert bumping method.

We may notice by looking precisely to the proof that the manifold M
needs not to be a 1-concave C'R-generic manifold embedded into a complex
manifold but that Theorem 0.1 still holds under the following assumptions :

(i) The C' R-manifold M is either locally embeddable and minimal in
the sense of Tumanov [14] or abstract and 1-concave (this ensures in both
cases the unique continuation of C'R functions, see [14], [3]).

(ii) One can solve locally the tangential Cauchy-Riemann equation in
top degree in the C’-class with an arbitrary small gain of regularity and
approximate locally 9;-closed C¢-forms of top degree minus one by CfH1-
smooth, 0ys-closed forms.

Note, moreover, that if F is a vector bundle over M, which locally
extends as an holomorphic vector bundle, then Theorem 0.1 still holds for
HY" "M, E).

As a consequence of Theorem 0.1, we get a global approximation the-
orem.

THEOREM 0.2. If M is a connected, C*°-smooth, non compact, 1-
concave, C R-generic manifold of real codimension k in a complex manifold
X of complex dimension n, n > 3, and p an integer, 0 < p < n, then each
continuous, Oyr-closed, (p,n—k—1)-form in M can be approzimated uni-
formly on compact subsets of M by Oyr-closed, (p,n—k—1)-forms of class
C*® in M.

Again this theorem holds without any global condition on M. In the
case when M is a closed submanifold of a Stein manifold, it was proved by
Airapetjan and Henkin (cf. [1], Th. 7.2.3).

§1. Notations and definitions

Let X be a complex manifold of complex dimension n. If M is a C2*-
smooth real submanifold of real codimension k in X, we denote by T.C(M)
the complex tangent space to M at 7 € M.

Such a manifold M can be represented locally in the form

(1) M ={z € Qlpi(z) = = pr(z) = 0}
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where the p,’s, 1 < v < k, are real C>* functions in an open subset  of
X. If M is C* smooth the functions p, can be chosen of class C*.
In this representation we have

n ay
2) T;C(M)_{gecn, ai-(T)Cﬂ:O’ z/_l,...,k}
j J

—1

and dimc TS(M)>n — k, for 7 € M N, where (21,...,2,) are local holo-
morphic coordinates in a neighborhood of 7.

DEFINITION 1.1.  The submanifold M is called C'R if the number
dime TS (M) is independent of the point 7 € M. If moreover dim¢ TS (M) =
n — k for every 7 € M, then M is called C'R generic.

In the local representation, M is C'R generic if and only if
Op1 A -+ NOpp # 0 on M.

DEFINITION 1.2.  Let M be a C?>tf-smooth C'R generic submanifold
of X. M is 1-concave, if for each 7 € M, each local representation of M of
type (1) in a neighborhood of 7 in X and each z € R* < {0}, the quadratic

form on T.C(M) defined by > 0 p (T)¢aCp, Where py = x1p1 + - + Tppy
a7ﬂ

922023
and ¢ € TS(M), has at least one negative eigenvalue.

The bundle of (p, g)-forms on M, denoted by Ap’q| A+ 18 by definition,
the restriction of the bundle AP? of (p,q)-forms in X to the submanifold
M. Thus a section f of AWl’

M

restriction of the coefficients of the (p, ¢)-form to M. We denote by Cﬁq(M )
(resp. Co%, (M), if M is C*°-smooth) the C’ (resp. C™) sections of the bundle
Ap’q‘M.

Following Kohn and Rossi [10], two forms f, g € Cf;’q(M )(resp. Cp5, (M)
are said to be equal if and only if [, f Ay = [,,9 A ¢ for every form

is obtained locally from an ambient form by

pecC>® . (X) with compact support.

We set on Cf;’q(M ) the topology of uniform convergence of the coef-
ficients and all their derivatives up to order ¢ on compact subsets of M.
This topology will be called the C’-topology on M. The dual space of
C£7q(M) is denoted by ‘%{p,nfqu(M)v it is the space of (n—p,n—k—q)-
currents of order ¢ with compact support on M. If M is of class C*°, then
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the space C;5, (M) is provided with the topology of uniform convergence of
the coefficients and all their derivatives on compact subsets of M. Its dual

n—pn—k—q(M) is the space of (n — p,n — k — g)-currents with compact
support on M.

We denote by Dz’fq(M) the space of (p, ¢)-currents of order [ on M, this
space is the dual of the space sz—p,n—k—q(M) of C*-smooth (n—p, n—k—q)-
forms with compact support on M provided with its usual inductive limit
topology. If M is of class C*, D, ,(M) denotes the space of (p, g)-currents
on M, this space is the dual of the space Dy_p n—k—q(M) of C*-smooth
(n—p,n—k—q)-forms with compact support on M provided with its usual
inductive limit topology.

We denote by djs the tangential Cauchy-Riemann operator on M.

A current f € Dz’fq(M) is called CR if and only if 05/ f = 0.

If U is an open subset of M, then for £ € NU {co},
Z£7q(U) is the Fréchet space of CR (p, q)-forms of class C* on U;

12 : 4 _ A
E, ,(U) is the subspace of Z, ,(U) of the forms f such that f = dung
with g € Cf;’q,l(U);

HP(U) denotes the quotient space Zf (U)/ES ,(U).

If Q is a relatively compact open subset in M, we denote by Cﬁ,q—l(ﬁ)
the Banach space of (p,q)-forms of class C* on Q and by Cﬁfqﬁl(ﬁ) the
Banach space of (p, q)-forms whose coefficients are of class C/T*, 0 < a < 1,
on €.

If D is a relatively compact open subset in M, we denote by germ
Cﬁq(ﬁ) the space of germs of (p, ¢)-forms of class C’ in neighborhoods of
D. Then germ Zﬁq(ﬁ) is the space of germs of CR (p, q)-forms of class C*
in neighborhoods of D, germ E;;q(ﬁ) = germ Zﬁ,q(ﬁ) N 0y germ Cﬁq_l(ﬁ)
and germ HY(D) = germ Zﬁq(ﬁ)/germ E]l;,q(ﬁ)'

§2. Proof of Malgrange’s theorem in the C‘-case

Let X be a complex manifold of complex dimension n, n>3, M a con-
nected, C2*t-smooth, ¢ € N, non compact, 1-concave, CR generic subman-
ifold of real codimension k£ in X, and p an integer, 0 < p < n.

Local results
We need first a result on the local solvability of the tangential Cauchy-
Riemann equation in top degree on M.
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PROPOSITION 2.1.  For every point zy in M, one can find a neighbor-
hood My of zg in M such that for each open subset 2 CC My, there exists

‘ , =\ +3 ‘
a continuous linear operator Kq from Cf;’nfk(Q) into Cp:;_ikfl(Q) which

satisfies Oy Kaf = f for all differential forms f in Cﬁnfk(Q).

Proof. This result can be easily deduced from Theorem 0.1 in [2].
Under the hypothesis £ > 0, a slightly weaker result, also sufficient for our
application, is given in Theorem 7.1.2 of [1].

We shall use also some approximation theorem for 9ys-closed (p,
n—k—1)-differential forms.

DEFINITION 2.2. Let U and V be two open subsets of M such that
U C V. We shall say that U has no hole with respect to V if for each compact
subset K of U there exists a compact subset K of U such that K ¢ K and
V ~ K has no connected component which is relatively compact in V.

PrROPOSITION 2.3.  For every point zy in M, there exists a neighbor-
hood My of zy in M such that for each open subset £ CC My without hole
with respect to My the image of the restriction map

Zf;:n*kfl (MO) - ﬁ,nfkfl (Q)

is dense with respect to the uniform convergence of the coefficients and all
their derivatives up to order £ on compact subsets of €.

Proof. Let zg be a fixed point in M. By the Hahn-Banach theorem, it is
sufficient to prove that there exists a neighborhood My of zy in M such that
for each open subset 2 CC My without hole with respect to My, if L is a
continuous linear form on C£7n7k71(9), whose restriction to Z£7n7 o1 (Mo)

vanishes, then the restriction of L to Z£7n7k71(9) is identically equal to

zero. Note that such a linear form L is a djs-closed (n — p,1)-current of
order ¢ on My, with compact support in 2. By Theorem 1’ in [7] (see also
Theorem 2.4 in [11]) in the case £ = 0 and their direct generalization, using
Proposition 2.1, to the case £ > 0, we can find a neighborhood My of z
in M on which we can solve the d)/-equation with compact support in
My in bidegree (n — p,1) for currents of order ¢. We choose such an M)

74 : —
and  CC My, then for L € &7, ,(22) with L‘Zﬁ,n—k—l(MO) = 0, there

exists a (p,0)-form T with compact support in My such that 97 = L.
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The (p,0)-form T is CR on My ~ supp L and vanishes on an open subset
of My~ supp L. Since M is 1-concave, if €2 has no hole with respect to My,
then T vanishes on a neighborhood of My \ € by analytic extension (cf.
[6]). Consequently the support of 7" is contained in Q. Let f € Zﬁ,n—k—l(Q)’
then by the Airapetjan-Henkin Theorem 7.2.1 in [1], f can be approximated
locally by C“+'-smooth 9y-closed (p, n—k—1)-differential forms. Let (U;)ser
be a finite open covering of the support of T' by open subsets satisfying the
Airapetjan-Henkin approximation theorem and for each i € I, (f),en a
sequence of C*®-smooth dys-closed (p,n — k — 1)-differential forms in U;,
which converges to f on U; in the C’-topology. If (x;)ics denotes a partition
of unity subordinated to the covering (U;);er, then setting f, = > . ; Xif?
we get a sequence (f,),en of C**l-smooth (p,n — k — 1)-differential forms
which converges to f on Q in the C’-topology and such that the sequence
(a1 £, )ven converges to zero on € in the C’~topology. We obtain

L(f) = Vh_{go L(fu) = Vli_)rgo(gMTa le> = VILHC}O<T7 5Mfu> = 0.

A first global consequence of the local results

By standard arguments (see e.g. the proofs of Lemma 2.3.1 in [8] and
Proposition 3 in Appendix 2 of [8]), it follows from Proposition 2.1 that, if
D is a relatively compact open subset of M, E;;n_ (D) is closed and finite

codimensional in Z¢

k(D). Moreover we have

PROPOSITION 2.4. Let D be a relatively compact open subset of M.
(D) — (D)

There exists a continuous linear operator A : zZt

5t - pyn—k ﬁ,nfkfl
such that Oy Af = f for all f € Ef;,n,k(D)-

The bumping method

DEFINITION 2.5. A bump in M is an ordered collection [My, 21, s],
where My, 21 and Qs are open subsets of M such that

(i) My is as in Propositions 2.1 and 2.3.
(ii) Q1 and Q9 have C2-smooth boundary and €; C Qy CC M.

(iii) Q; admits a basis of neighborhoods without hole with respect to M.

Note that Q; = 0 is allowed in this definition.
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DEFINITION 2.6. An extension element in M is an ordered pair
[Dy, Do), where Dy C Dy are open subsets with C2-boundary in M such
that there exists a bump [My, 21, Q9] in M with the following properties:

Dy =Dy UQy, Q1 =D1NQy and (Dl\QQ)m(QQ\Ql):Q).

PROPOSITION 2.7.  Let [D1, Ds] be an extension element in M, then
the restriction map

germ Hf’n_k(ﬁQ) — germ Hf’n_k(ﬁl)
18 1njective.

Proof. Let Uy C Uy be open neighborhoods of Dy and D5 in M re-
spectively and let f € Zgn p(U2) and u; € C£7n_k_1(U1) be given such
that Opu; = f on U;. We have to prove the existence of a neighborhood
Wy C Us of Dy in M and of a differential form us € Cﬁm_k_l(Wg) with
EMUQ = f on WQ.

Let [My,21,€Q9] be the bump associated to the extension element
[D1, Do) and Vo CC U N My a neighborhood of Qs in M. By Proposi-
tion 2.1, there exists u € Cﬁnikil(‘/g) such that dy;u = f on Va. Hence we
get Opr(uy —u) = 0 on Uy N Va. We choose a neighborhood Wy € Uy N Vs
of Q; without hole with respect to My, then by Proposition 2.3, we can
find a sequence (w,)yen C Z° pn—k—1(Mo) which converges to u; — u in
the C’-topology on W;. Let V be a neighborhood of Q5 \ ; such that
VCcVonMyand VN (DN Q) =0, and x a C'*1-smooth function with
compact support in V' equal to 1 on a neighborhood V of Qs ~ 0. Setting

= (1—x)u1 +x(u+w,), we define a sequence (v, ),y in C- ok (U1uV)
such that the sequence dpv, = - 3MX A (u1 — u — w,) converges to f
in the C’-topology on the neighborhood Uy UV of Dy in M, where Uy
is a nelghborhood of D; such that U1 C Uy and U1 NV =W NV. Let
Wy CC U1 UV be a neighborhood of Dy. Then, using Proposition 2.4, we
get a (p, n—k—1)-differential form uy of class C* on Wy such that dprug = f
on WQ.

PROPOSITION 2.8.  Let [Dy1, D3] be an extension element in M such
that D1 CC M, then the restriction map

germ Z;n_k_l (D3) — germ Zﬁ,n_k—1 (Dy)
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has dense image with respect to uniform convergence of the coefficients and
their derivatives up to order £ on Dj.

Proof. Let U; be an open neighborhood of D; in M and [Mo, 04, Qo]
the bump associated to the extension element [Dy,Ds]. Let f € Z p n_t—1(U1)
be given and W C U;j a neighborhood of Q, without hole with respect to
My. By Proposition 2.3, there exists a sequence (g, ),en C Z¢ pn—k—1(Mo)
which converges to f in the C’-topology on W;. Let V be a nelghborhood
of Qy < Q such that V. My and VN (D ~ Q) = 0, and x a C*F1- smooth
function with compact support in V/ equal to 1 on a ne1ghborhood V of
Q5 ~ Q. Setting f, = (1—x)f+ x9gv, we define a sequence (f,,),,eN of forms
of class C* on the neighborhood U; UV of Dy, which converges to f in the
Ct- topology on D;1. Moreover, since 9y f, = Opx A (f — g,,) the sequence
(8MfV)V6N converges to zero in the C’-topology on Uy =U1 U V where U3
is a neighborhood of D; such that U1 C U; and U1 NV =W inNV. As
D; CcC M, we can choose a relatively compact neighborhood W5 of D5 in
M and apply Proposition 2.4. Therefore, there exists a sequence (u,),en C
ct k-1 (W3) which converges to zero in the C*-topology on Wy and satisfies

8MUV = 8Mfl/ It f, = fu uy, we get a sequence (fl/)l/GN C Z 7n—k}(W2)
which converges to f in the C’-topology on Dj.

We need now two technical lemmas about the existence of extension
elements to jump from one level of an exhausting function on M to another
level.

LEMMA 2.9. Let ¢ be a function of class C> on M and zy a non
degenerate critical point for . Suppose o(z) = 0, ¢~ 1(0) is compact and
2o 48 the only critical point on ¢~1(0). Then there exists a neighborhood Vy
of zo in M such that for all neighborhood V- CC Vy of zg in M, we can find
an extension element [Dy, Da| in M with the following properties:

(i) D12 ¢ ((—00,0)) N V;
(ii) 20 € Da~ Dy C V.
Proof. 1If zy is a point of local minimum, we choose Vj so small that
Vo N~ ((—00,0]) = 0 and My C V C Vj a neighborhood of 2q satisfying
Propositions 2.1 and 2.3. Taking Q; = 0, Qs CC My a neighborhood of z

and setting D7 = ¢~ 1((—00,0[) and Dy = D; U Qy, we get the required
extension element.
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Assume now that zg is not a point of local minimum. By the Morse
lemma, there exist local real coordinates (z1,...,x9,) around 2y in X such
that p = 2% +...+ a2 —22,, —...—23 _, . Let V be a neighborhood of zo
on which we are in the above situation and My CC V C V) the intersection
of M with a small ball centered in zy in holomorphic coordinates around
zp as in Propositions 2.1 and 2.3. Let B be a ball centered in zg with
respect to the Morse coordinates (z1,...,Z2,—) such that B C My, and
U a small neighborhood of 2y relatively compact in B. Let € be equal to
2 min |p(z)|. We choose § € D(U) such that 0 < 0(z) < ¢, if 2 € U, and we

zeU

set U ={z € B|p(z)+6(2) <0} and Q2 = {2z € B| p(2) —0(2) < 0}.
Then it is clear that ©; has no hole with respect to B (it is sufficient to
look at the picture in the Morse coordinates) and as the boundary of B
is connected and M, has no compact connected component then €2; has
also no hole with respect to My. Smoothing the boundary of 21 and €y
we get a bump [My, Q1, ] in M such that Dy = ¢~ 1((—00,0[) U Qs and
D1 = Do~ (Qy \ Q1) have the required properties.

From Lemma 2.9, one easily obtains the following lemma (cp. the proof
of Theorem 7.10 in [12]).

LEMMA 2.10. Let ¢ be a function of class C*> on M all critical points
of which are non degenerate such that the following conditions are fulfilled:

(i) no critical point of ¢ lies on = 1({0,1});
(i) ¢~ 1([0,1]) is compact;
(iii) ¢ has no point of local mazimum in ¢~1(]0,1]).

Then there exists a finite number of extension elements [Dj, Djy1], j =
0,...,N, such that Dy = ¢~ 1((—00,0[) and Dy11 = ¢~ ((—o0,1[).

As an easy consequence of Propositions 2.7 and 2.8 and Lemma 2.10,
we obtain the following result:

PROPOSITION 2.11.  Let ¢ be a real exhausting function of class C?
on M without local maximum and such that all critical points of p are non
degenerate. Let o, B € o(M) with o < [ and such that no critical point of ¢
lies on = ({a, B}) and set Dy = p~1((—00,]) and Dg = ¢~ 1((—o0, 3[).
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(i) The restriction map
germ Hf’nik(ﬁﬁ) — germ Hf’nik(ﬁa)
18 1njective
(ii) The restriction map
germ Zy . 1(D) — germ Z,, . _1(Da)

has dense image with respect to uniform convergence of the coefficients
and their derivatives up to order £ on D..

Proof of the first assertion of Theorem 0.1

We may now conclude the proof of our Malgrange type theorem in non
compact, 1-concave C'R manifolds in the C’ case, ¢ € N.

Since M is connected and not compact, by a theorem of Green and
Wu [4], M admits a real exhausting function ¢ of class C? without local max-
imum and we may assume that all critical points of ¢ are non degenerate
(cp. e.g. [5]). Let zp be a point where ¢ takes its minimum value. By Propo-
sition 2.1, there exists a neighborhood Qg of z such that H?" *(D) = 0
for all D CC Q. As ¢ is an exhausting function on M, it admits only a
finite number of points where ¢ takes its minimum value. We denote by €2
the union of the previous neighborhoods associated to these points and we
choose ag € (M) such that ¢~ 1((—o0, ap[) is not empty and contained
in Q and (@;)j>1 C ¢(M) such that no critical point of ¢ lies on ¢~!(a;),
j>0, and if D; = ¢! ((—o0,;[), Dj C Dj4q for j>0 and M = |J D;. We

i>0
deduce from Proposition 2.11 (i) and from the choice of Dy tﬁat, for all
720,
germ Hé””_k(ﬁj) =0.

Let f € Zﬁ,n—k(M) be given. Then from Proposition 2.11 (ii) we obtain

a sequence (u;)jen such that u; € germC;n_k(Ej), dyu; = f on a neigh-

borhood of D; and ||u;+1 — uj\\gﬁj < . Hence u = Jlirgo u; exists, belongs

to Cf;,n—k:—l(M)’ and solves the equation dp;u = f on M. 0
§3. Proof of Malgrange’s theorem in the C*°-case

We shall first prove an approximation theorem in 1-concave C'R mani-
folds, which is a direct consequence of Malgrange’s theorem in the C’-case.
Then we shall use this theorem to get Malgrange’s theorem in the C*°-case.
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THEOREM 3.1. Let X be a complex manifold of complex dimension
n, n>3, M a connected, C3*t-smooth, ¢ € N, non compact, 1-concave, CR
generic submanifold of real codimension k in X and p an integer, 0 < p < n.
Then the space Zﬁ#_k_l(M) is dense in the space Z;n_k_l(M) for the
topology of uniform convergence of the coefficients and their derivatives up
to order £ on each compact subset of M.

Proof. By the Hahn-Banach theorem, it is sufficient to prove that for
any T € €T’f_p’1(M) such that (T, ) = 0 for all p € Zﬁjllfkfl(M) we have
(T',v) =0 for all ¢ € Z£7n_k_1(M). Note that the hypothesis on T implies
that T is djs-closed. We shall prove that T is dps-exact on M.

We define a linear form L on C:T1 (M) by setting L(p) = (T, 1) for

p7nik
p € Cf;";lik(M ), where 0¥ = . The application L is well defined since

first H Z’r"fk(M ) = 0 and consequently all ¢ € Cﬁtllfk(M ) can be written in

the form ¢ = 9y with ¢ € Cﬁ?{kfl(M) and second (T, ) is independent

of the choice of 9 satisfying dps¢ = ¢ because 1—]Z@+1 o = 0.
p,n—k—1

Moreover d is a closed operator between Cf;;l_ w1 (M) and Cﬁ;l_ p(M)

which is surjective since H, f_ﬂ_k(M ) = 0, consequently by the open mapping
theorem this implies the continuity of L. It follows that L can be represented

by a current S € Efffplo which satisfies

<5MS7 90> = <575M90> = <T7 ()0)

for all p € C;f’n_k_l(M), i.e. 0y S = T. By regularity of 0y in bidegree
(n —p,1), the (n — p,0)-current S is of order ¢ since T is of order /.

It remains to prove that (T,¢) = 0 for all ¢ € Z;;,nfkfl(M)' Let
(NS Zﬁ n—k—1(M). In the same way as at the end of the proof of Proposition
2.3, we can construct a sequence (1) en of C/Tl-smooth (p,n — k — 1)-
differential forms which converges to ) on M in the C’-topology and such
that the sequence (ng,,)VeN converges to zero on M in the C’-topology. It
follows that

(T.¢) = lim (T'4,) = lim (Dnr9,4py) = lim (S, Ipripy) = 0.

Assume now that M is C*°-smooth, we shall prove that HZ"*(M) = 0.
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Proof of the second assertion of Theorem 0.1

Since M is connected and not compact, by a theorem of Green and Wu
[4], M admits a real exhausting function ¢ of class C* without local max-
imum and we may assume that all critical points of ¢ are non degenerate.
Following the proof of the C’-case we can construct a sequence (D;);jen of
open subsets of M such that D; C Djyq and M = |J D; and satisfying the

following two conditions: j=20

(i) germ H"*(D;) = 0.
(ii) The restriction map

germZ . ((Djt1) —>germZ . .(D;)

has dense image with respect to the C/-topology.

Let fe Z fion w(M) and € > 0 be given. Then we can construct a sequence
(uj)jen such that u; € germC ke 1(D;), Onu; = f on a neighborhood of
D; and |juj+1 — UJHDN =. By (i) there exists ug € germC ke 1(Dy)

such that Opug = f on a neighborhood of Dy. Assume now that
we have already constructed (u;j)o<j<jo- By (i) there exists w41 €

germ C;OJ e 1(D]OH) such that 8Mu]0+1 = f on a neighborhood of D]0+1

Then 1,41 — uj, € germZ

pn—k— 1(Djo+1) and by (i) we can ﬁnd Vjg+1 €

germ Zjon w_1(Djo+1) such that ||@jo41 — vjo+1HD More-

< 2 2J0
over by Theorem 3 1, we choose 7,41 € germ Z;OJ e 1(D]OH) with [|0j41—
UJOHHD] o < 5270 Setting ujy4+1 = Ujo+1 — Ujo+1, then wj 41 has the re-
quired properties. It follows from the properties of the forms u; that the
sequence (u;);jen converges to a form u uniformly on each compact subset

of M and moreover u € Cp5,_, (M ) and dpyu = f on M. U

Some important consequences of vanishing theorems are approximation
theorems. Using the first assertion in Theorem 0.1, we have proved Theo-
rem 3.1. In the same way Theorem 0.2 follows from the second assertion
in Theorem 0.1; it is sufficient to use that HE" (M) vanishes instead of

Hp'T ¥(M) and replace £ by zero and £+1 by oo in the proof of Theorem 3.1.
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