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Plane ice-sheet flow with evolving orthotropic fabric
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School of Mathematics, University of East Anglia, Norwich NR4 7TF, England

ABSTRACT. A plane, gravity-driven, steady flow of an isothermal ice sheet over a
horizontal bedrock, with no-slip basal conditions, is considered. The ice is modelled as a
linearly viscous, incompressible and anisotropic fluid, with evolving orthotropic fabric
that depends on local strain rates and deformations. For a fixed, free-surface elevation,
the ice-accumulation rates necessary to maintain the prescribed geometry are calculated
by using the finite-element method, together with the velocities and stresses. Numerical
simulations have been carried out for different combinations of enhancement factors for
compression and shear in order to investigate their effect on the rate of flow. The results
obtained have shown that, apart from the near-divide region, the global flow rate is nearly
proportional to the magnitude of the shear-enhancement factor and is very little sensitive
to the value of the compression enhancement factor. Normalized velocity—depth profiles
have been compared for the anisotropic and isotropic ice and it has been found that sig-
nificant differences occur only in a region near the ice divide. Direct shear stresses are
little affected by the ice anisotropy, but the longitudinal deviatoric stresses in a part of

the ice sheet are significantly increased compared to the isotropic ice flow.

1. INTRODUCTION

The solution of the complete ice-sheet flow equations is a
complex problem due to the thermomechanical coupling of
the equations, anisotropy of ice associated with the forma-
tion and evolution of fabric, and the presence of moving
boundaries changing the geometry of an ice sheet. For this
reason, a number of simplifications are adopted in ice-sheet
models in order to reduce the complexity of calculations. The
most common simplifications are: (1) the reduction of geo-
metrical dimensionality by taking advantage of symmetries
in a flow field and solving either a plane or an axi-symmetric
problem, and (2) the assumption of isotropic behaviour for
the ice. Such an approach, in which Stokes’ equations for an
incompressible viscous fluid are solved with the constitutive
relation in the form of Glen’s flow law, was employed, for in-
stance, by Hooke and others (1979), Raymond (1983), Hodge
(1985), Hanson (1993) and Hvidberg (1996).

A fundamentally different method is to construct an ap-
proximate solution to the problem equations by exploiting
the long aspect ratio of natural ice masses, reflecting varying
conditions in lateral directions compared to the normal dir-
ection through the ice thickness. Such an approach, which
constitutes the shallow-ice approximation (SIA) theory
(Fowler and Larson, 1978; Morland and Johnson, 1980; Hut-
ter, 1981, 1983; Morland, 1984), uses scaled variables based on
typical physical magnitudes and provides explicit relations
for the velocity and stress fields in ice sheets with slowly vary-
ing bed topography and free-surface elevation. The first ap-
plication of the SIA to numerical modelling of ice sheets is
due to Hutter and others (1986); since then the SIA has been
widely implemented, with various modifications, in many
large-scale ice-sheets models (Hindmarsh and others, 1987;
Herterich, 1988; Dahl-Jensen, 1989; Huybrechts, 1990; Fabre
and others, 1995).

Although the STA has proved to be a very effective tool
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in ice-sheet modelling, its application is restricted due to the
assumption of isotropic ice response. For this reason, an at-
tempt has been made recently by Mangeney and Califano
(1998) to extend the SIA applicability to anisotropic ice.
These authors have analysed the problem of ice flow in the
ice-divide region by adopting a transversely isotropic fabric
corresponding to that in the Greenland Icecore Project
(GRIP) ice core. The same fabric has also been used with
the complete set of mechanical equations by Mangeney
and others (1996, 1997) to solve numerically the problem of
a steady-state flow of ice under isothermal conditions. In the
latter papers, however, the empirically derived anisotropic
fabric 1s, in fact, a function of the ice depth only, since no
constitutive law that relates the fabric evolution to the flow
field 1s included in the model.

A proper approach requires that the ice response is de-
scribed by a frame-indifferent constitutive law that relates
the stress to a limited number of variables representing the
deformation and the evolving structure (fabric) of ice. Re-
cently several constitutive models describing strain-induced
anisotropy of polar ice have been developed, but here we
focus on the theory developed by Morland and Staroszczyk
(1998) and Staroszczyk and Morland (2000), in which it is
assumed that the macroscopic response of ice can be de-
scribed in terms of fabric induced entirely by macroscopic
deformation, and all microscopic processes occurring at
the grain level are ignored. It is also supposed that the in-
duced anisotropy depends only on the current strains and
does not depend on the deformation history, which ignores
the effects of crystal interactions which may depend on the
nature of the deformation process, and therefore induce dif-
ferent fabric for different deformation paths. It is believed,
however, that this approximation is the most simple ap-
proach to an evolving anisotropic viscous law which can be
implemented in large-scale ice-sheet modelling, since it
requires that only current deformation gradients are cal-
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culated 1n addition to the velocity and pressure fields. The
adopted form of an orthotropic constitutive law expresses
the deviatoric stress in terms of the strain rate, strain and
three structure tensors defined by the current principal
stretch axes. The relation is separable in the isotropic depen-
dence on strain rate and fabric dependence on deformation,
and in its simplified form involves two fabric-response func-
tions with dependence on the principal stretches and an in-
variant measure of total deformation. The constitutive law
is used to analyse a plane, gravity-driven, steady flow of an
1sothermal ice sheet without making the shallow-ice approx-
imation. Assuming a horizontal bedrock with no-slip basal
conditions and a fixed, free-surface elevation, ice-accumu-
lation rates needed to maintain the prescribed geometry, to-
gether with the velocities and stresses, are calculated by
using a finite-element method (FEM). Numerical simula-
tions have been conducted for different combinations of
model parameters in order to investigate their effect on the
flow field. The results obtained for anisotropic ice are com-
pared with those for isotropic ice (modelled as a Newtonian
fluid) to show how the anisotropy influences the velocities
and stresses in the ice sheet.

2. PROBLEM FORMULATION

We consider a plane-strain, gravity-driven, steady flow of an
ice sheet over a rigid horizontal bedrock (Fig. 1). The
problem 1is solved in rectangular Cartesian coordinates
Oxyz, with the horizontal plane Ozy coinciding with the
flat bed, the z axis directed upward and passing through
the ice divide, and the x axis in the direction of flow to the
right of the divide. For simplicity, the ice-sheet profile is
assumed symmetric about the plane z = 0.

Let o be the Cauchy stress tensor, with components 0,
0., and 0, in the plane of flow, and v be the ice velocity
vector, with components u, v and w in the z, y and z direc-
tions respectively (here, for the flow in the Ozz plane,
v = 0). The deviatoric stress ¢ is defined in terms of o and
the mean pressure p by

1
o=o0+pl, p:—gtrtr, tro’ =0, (2.1)

where I is the identity tensor, and tr o denotes the trace of
0. The deviatoric stress 07 is determined by the viscous con-
stitutive law, described in section 3, while the pressure p,
being here a workless constraint stress compatible with the
incompressible response, is not determined by the flow law,
but by the momentum balance and boundary conditions.

In the absence of inertia forces, due to a negligibly small
Reynolds number for the gravity-driven ice-sheet flows, the
momentum-balance equations become the equilibrium rela-
tions

do,, 0o, Op

Ox 9z Oz =0, (2.2)
do,,. 0o, Op

or 0z 0z ¥ (2.3)

where p is the ice density, assumed constant, and g is the
gravitational acceleration. The mass balance 1s here the in-
compressibility condition divv = 0, which in components
reads

ou . ow

or = 0z
The equilibrium and incompressibility relations (2.2)—(2.4)
94

0. (2.4)
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h(x)

Fig. 1. Cross-section of an idealized symmetric ice sheet.

have to be supplemented by the boundary conditions. At
the undeformable bedrock it is assumed that the ice tem-
perature is significantly below the melting point so that
there 1s no melt and no basal sliding at the interface. Thus
the conditions at z = 0 are

z=0: u=w=0. (2.5)

In view of the symmetry of the flow, at the ice divide z = 0
the relations

x=0: 0 =0 (2.6)
hold. At the free surface z = h(z, t) the kinematic condition
is

u =0,

oh Oh
E—Fus%—wszq, (2.7)

where ¢ denotes time, us and wy are, respectively, the free-
surface horizontal and vertical velocities, and ¢ = ¢(z, 1) is
the accumulation rate (ablation if ¢ < 0). The free surface is

z=h(z,t):

assumed to be traction free, that is the atmospheric pressure
is considered negligibly small compared to typical stress
levels in the ice sheet. Hence,

z=h(x,t):

where ng is a unit outward vector normal to the free surface.
In the flow problem considered here we assume that the
free-surface elevation is prescribed and stationary; that is
h(z,t) = h(z) and Oh/Ot = 0in (27), and we calculate the
ice velocities and the associated accumulation rate ¢(x)
required to maintain the fixed ice-sheet geometry. These
quantities will then be compared for the isotropic and ani-
sotropic solutions.

on, =0, (2.8)

3. CONSTITUTIVE LAW

The anisotropic viscous behaviour of ice is described by an
orthotropic model formulated by Morland and Staroszczyk
(1998) and further extended by Staroszczyk and Morland
(2000). The adopted flow law expresses the deviatoric stress
o’ in terms of the current strain rate D, the left Cauchy—
Green strain tensor B and three structure tensors M)
(r=1,2,3) defined by the current (evolving) principal
stretch axes. Here we denote the spatial rectangular Carte-
sian coordinates by Oz;, (i = 1,2, 3), with the equivalence
T =2, T2 =Y, T3 = 2, and, for the velocity components,
V] = U, V3 = v, U3 = w, with vy = 0. Let the particle refer-
ence coordinatesbe OX; (i = 1,2, 3), with the equivalence
X1 =X, Xy =Y and X3 = Z. Then the deformation gra-
dient, F, spatial velocity gradient, L, and the strain rate, D,
have components

ox i 81)1-

Fj=z0y Ly=2-,
g an J 8%,

_]. 81)2' 81)]-
ff*i(axﬁaz)’ (3-1)


https://doi.org/10.3189/172756400781820570

Staroszezyk and Morland: Plane ice-sheet flow with evolving orthotropic fabric

and the deformation gradient is determined by the kine-
matic relation

OF;; OF;
+vp—=

Fij =
J ot 8xk

LiFy;, (3.2)

where the superposed dot () denotes the material time deri-
vative and the summation convention for repeated subscripts
is applied. In practice, (3.2) must be solved simultaneously
with the momentum balance, incompressibility condition
and constitutive law, and is subject to an initial condition
that F = I when the ice 1s first deposited at the surface. The
strain B, its principal stretch axes given by unit vectors e(”)
(r=1,2,3), and the squares of the principal stretches
b, (r =1,2,3) are defined by

B=FF", Bel) =bel,

3.3
det(B—bI)=0, b =\ >0, (3:3)

where A, are principal stretches along the vectors e and,
due to the ice incompressibility,

detF = )\1)\2)\3 =detB = b1b2b3 =1. (34)

The orthotropic structure tensors M), describing reflexio-
nal symmetries in the principal stretch planes normal to the
axes e, are defined by

MU =e@ e, M =1, (r=1,23),

MY+ M? + MO = 1. (35)

Following Staroszczyk and Morland (2000) we express the
orthotropic viscous law in a form for 07 in terms of D and
B and involving two fabric-response functions, each de-
pending on a single deformation invariant argument:

o = M{i: f(b) [MWD + DM — % tr (MWD)I}
r=1

+ % [DB +BD — ; tr (DB)I] } (3.6)

where pg = po(tr D?, T) defines the isotropic fluid viscos-
ity at temperature 7" when B =1, and K is an invariant
measure of total deformation

K=trB=20b +by+b3>3. (37)

The normalization
1
f(1) +§ GK)=1 (3.8)

has been introduced to yield the isotropic fluid viscous law
o’ = 2pyD when B =1, thatis when by = by = b3 = 1 and
K = 3. Although the adopted form (3.6) is a considerable
simplification of a general orthotropic law (Boehler, 1987),
this reduced form still retains ample flexibility to correlate
with observed viscous responses. This has been demon-
strated in Staroszczyk and Morland (2000), where the
model was used to simulate the ice behaviour in simple
stress and strain configurations, corresponding to those oc-
curring in uni-axial compression and simple shear tests con-
ducted in a laboratory. The simulated responses given by the
model have also been compared with the predictions of a
micro—macroscopic model of Gagliardini and Meyssonnier
(1999) and a good agreement between the results of the two
theories, based on very different approaches, has been found
(Staroszczyk and Gagliardini, 1999).

The viscous response defined by the law (Equation (3.6))
is determined by the two fabric-response functions f(b,)
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and G(K). It is expected that these should be simple,
smooth functions, and it has been deduced (Staroszczyk
and Morland, 2000) that f(b,) should be positive and
monotonic increasing, that G(K) should be negative, and
that f(b,) and G(K) are explicitly related so the model is
defined by a single-fabric function. This last result follows
from an equality between instantaneous viscosities in plane
flow at different axial stretches, being one of a set of equal-
ities and inequalities deduced for valid responses at all pos-
sible differential stretches. These are based on the
assumption that the alignment of ice-crystal ¢ axes towards
the direction of compression (and away from the direction
of extension) depends on the relative magnitudes of the
three principal stretches A;. The smaller a given principal
stretch 1s compared to the other two stretches, the stronger
is the alignment of ¢ axes towards the direction of this
stretch, and hence the easier is the crystal basal gliding on
the plane normal to this principal stretch axis. Thus,

Gg) - ‘bgbl 1 [f(br) = (0 )], (3.9)
where
bl:%[K‘“ (K—1)2—4] >1,  (3.10)

which, due to the normalization (3.8), imposes a restriction

on f(b,) ath, = 1
fO) = =1
Further, the limit of (3.9) as b — 0o yields the relation

f(0) = f(o0) = G(o0) = 0.

(3.11)

(3.12)

Two additional relations between limit values of f(b,)
and G(K) are obtained by considering uni-axial compres-
sion and simple shear tests, in which the limit ratios of a fab-
ric-induced viscosity to the isotropic viscosity are measured
at large strains. The reciprocal values of these limit ratios
are conventionally described as enhancement factors for
compression and shear. By applying the viscous law (3.6) to
the uni-axial, unconfined compression (when both lateral
principal stretches are equal), we obtain the relation

2 1 1

3 /(0) 43 f(00) + £ G(o0) = 4, (3.13)
3 3 6

where A is the reciprocal of the axial-enhancement factor.
For simple shear (when the principal stretch normal to the

shear plane is unity), the law (3.6) gives

S H(0) 43 f(00) 43 Gloo) = 5,

5 (3.14)

where S is the reciprocal of the shear-enhancement factor.
These two relations (3.13) and (3.14), together with (3.12), de-
termine f(0), f(o0) and G(0):

£(0) =S, f(c0) =64 — 58, G(co) =6(S — A). (3.15)

The above values ensure that the viscosity ratios for uni-ax-
1al compression and simple shear at large strains reach the
limits which are equal to the prescribed model parameters
A and S, but the rate at which the limit viscosities are ap-
proached during ice deformation depends on specific cd
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g, 2. Evolution of the normalized axial viscosity with in-
creasing stretch Ay in uniaxial compression_for different re-

sponse functions f(b,).

forms of the response functions. We have explored two sets of
simple functions:

f(by) = f(o0) = [f(o0) =f(0)] exp(=ab;’), o > 0, m >0,
(3.16)
f(br) = f(0)+ [f(00)—f(0)] tanh(ad;"),

a>0, m>0,
(3.17)

where o is determined by the restriction (3.11), m is a free
parameter, and 7 = 1,2, 3. Below we illustrate the results
predicted by the viscous law (Equation (3.6)) for uni-axial,
unconfined compression (Fig. 2), and simple shear (Fig. 3).
In Figure 2, Ay > 1 is a lateral stretch measured in the dir-
ection normal to the axis of compression, and in Figure 3,
K > 0 denotes a shear strain measured in the plane of shear-
ing. The curves labelled (1) and (2) correspond to the func-
tion (3.16) with m = 1.5 and 2 respectively, and the labels

Normalized shear viscosity

0.0 \ | x \

Shear strain «

Fig. 3. Evolution of the normalized shear viscosily with in-
creasing strain K in simple shear started from an isotropic state

Jfor different response functions f(b,).
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(3) and (4) refer to the function (3.17) with m = 1 and 1.5 re-
spectively. These particular values of m have been chosen as
giving good correlation with the micro-macroscopic model
of Gagliardini and Meyssonnier (1999); see Staroszczyk and
Gagliardini (1999). The results presented in the figures have
been obtained for the limit viscosity ratios A =3 and
S = 0.2, corresponding to the enhancement factors 1/3 for
compression and 5 for shear.

For other combinations of A > 1 and S < 1 qualitatively
similar results are obtained; that is, a continuous strengthen-
ing of ice (increase in the axial viscosity) during axial com-
pression, and an initial strengthening (for x < 2), followed
then by a significant softening of ice, during simple shearing.
Such a qualitative behaviour agrees with the observed res-
ponses of cold ice subjected to stress levels typically occur-
ring in large ice sheets, for which, according to Pimienta
and others (1987), the value of A can be as high as 10 for a
single-maximum fabric. We have chosen here A = 3, since
this smaller value seems to be more relevant to polar ice
sheets and corresponds to the value obtained by Mangeney
and others (1996) for the ice near the bottom of the GRIP ice
core. It should be pointed out here that values of A < 1, cor-
responding to the enhancement factors for compression
greater than unity, have been measured for warm ice (near
melting) subjected to large strain rates (Budd and Jacka,
1989), and as such are appropriate for modelling the flows of
temperate glaciers, rather than large cold ice sheets. How-
ever, as will be demonstrated later, the influence of the axial
viscosity ratio A (as opposed to the shear factor S) on the
global flow of large ice sheets is very small.

4. DIMENSIONLESS VARIABLES

Before solving numerically the equilibrium and mass-conser-
vation equations (2.2)—(2.4) together with the constitutive law
(3.6), we eliminate physical dimensions from the equations in
a way suggested by Morland (1984). We adopt a typical ice
depth, h*, as a length scale, and a typical accumulation rate,
v*, as a velocity scale. These two characteristic magnitudes
determine other scaling parameters which (assuming p =
918kgm *and g = 9.81ms ) are collected in Table 1.

Using the adopted scales, we introduce dimensionless
variables, indicated by a superposed bar, defined as follows:

(%,2,X,2) = (z,2, X, Z)/h*, (4,w) = (u,w)/v",
(0/.p) = (o' ,p)/7", L=L/D", D=D/D",
F=t/t, =l (4.1)
An essential feature of the ice-sheet analysis is that lateral
derivatives with respect to  are much smaller than normal

derivatives with respect to z. In order that maximum Z and
z derivatives have equal status, we apply coordinate stretch-

Table 1. Scaling parameters

Parameter Magnitude Description

h* 3000 m Length scale

v* 02ms ' Velocity unit
T = pgh* 27 MPa Stress unit

D* =v*/h* 6.67x10 °ma’ Strain-rate unit
t* = h* v 15%10 *ma Time scale
W= Th*[v* 4.05x10 °m MPaa Viscosity unit
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ing in the Z direction, an approach on which the shallow-ice
approximation theory is based (Hutter, 1983; Morland,
1984). Hence, we adopt a small parameter € < 1 and intro-
duce differentially scaled coordinates

3=z X=eX, Z=2. (4.2)
By choosing € to be the aspect ratio defined by the ratio of

the characteristic ice depth h* to the characteristic lateral
dimension of the glacier L*

h*
L’
both & and z coordinates become order unity. Since W is order

T =€x,

€ =

(4.3)

unity by construction, we re-normalize the velocities by

U = €U,

(4.4)

so that @ is also order unity (which follows from the mass-
conservation balance). Typically, the aspect ratio varies
from € = 10 for Antarctic to € = 5x10 ° for Greenland
ice sheets.

W = w,

Applying now the normalizations (4.1), (4.3) and (4.4),
the momentum-balance and mass-conservation equations

(2.2)—(2.4) become

86/;1:.%‘ 813 aﬁ/wz _
¢ ( o %) 5z = (4.5)
a6lz2 aﬁ/zz 8p
oz T o: ez b (4.6)
ou  ow
25Tz =0 (4.7)

In order to solve the above system of equations, the deviato-
ric stresses ¢';; need to be related to the velocity components
1 and W, which reduces the problem to solving the system of
three equations with three unknown functions 4, w and p.
This requires that the components of the Cauchy—Green
strain tensor B and the strain-rate tensor D are expressed
in the stretched coordinates (4.2). Accordingly, the deform-
ation gradient components (3.1); become

o0z _, 0% 0z 0z
Fi= 3 , Fay=

—_—=, F —=€ -, F —€—= ==,
x P 0z’ T ox 07

and the related Cauchy—Green tensor components (3.3); are
given by

By = FL+FE, DBiz = By = FuFy + FisFy,
Bss = Iy, + Fy,.

(4.8)

(4.9)

Further, the components of the velocity gradient, defined by
(3.1)9, are

_ oun - oun - o - ow
Liy=—, Liy=¢ ' —, Lyy=e—=, Lyz=—=, (4.10
=52, 13 € 93’ 3 € o7 BT 950 ( )

and the strain-rate tensor components are given by

- oOu 1 ou  oOw - ow
Dy=—=, D :7(717~ 7..), D3z=—. (411
u=gz Pu=ge grt gz ) Pu=gz- (I

From the above relations it follows that Dj; ~ eDj3 and
D33 ~ €D13, and hence, for the isotropic ice flow, governed
by the law o' = = 2/iyD, the relations &y, ~ €6,. and
& .. ~ €, hold. On the other hand, since the normalized
pressure gradients are order unity, Equation (4.5) implies
that &, = O(e), and hence it follows that &, = O(€?)
and & .. = O(€?). The latter relations imply, in view of Dy
and D33 being order unity, that jig = O(€*). We anticipate
that as the ice fabric evolves from its initial isotropic state,
none of the different axial and shear viscosities change by
more than one order of magnitude, so all the above relations
still hold true for anisotropic ice. This prompts the re-scal-
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ing of viscosities by introducing a new isotropic viscosity
fig = O(1) by
fio = € fio- (4.12)

This viscosity re-normalization corresponds equivalently to
defining €2 as a dimensionless viscosity (Morland and Johnson,
1980; Morland, 1984), and 1s that adopted by Hutter (1983) and
then by Mangeney and Califano (1998).

Now, with the relations (4.8)—(4.12), the constitutive law
(3.6), after its normalization by using (4.1), yields

.. = [ﬂge 0w | 5, (eajte‘g—:)} (4.14)
- MU@( o Ly g_:) (4.15)
where
o [ £+ M) + (o) (1 + M)
* 3 I +$(2B11 +B33)_ (410
o [ 00 (14 D)) + f(bs) (1 + M)
h=3 _ +$(Bu +2By) | (4
a =g [fo0) + sy + S B aas)
b= 100+ 100+ E2 (B4 B | aa9)

In the isotropic state, when B = I, thatis by = by = b3 =1
and K = 3, inview of the identities (3.5)9, (3.5)4 and the nor-
malization (3.8), we have

ﬂl = ﬂ? = 2; 63 = 07 64 = 17 (420)

and the Relations (4.13)—(4.15) for the deviatoric stresses re-
duce to the isotropic viscous fluid relations

O gy = QﬂOEQ@a 5—,22 2.&062% )
, _ ( 811+ 3811))
0 = €E—+ € —
H\ 8z 7 oz

The shallow-ice approximation, not adopted here, is given
by the leading order balances when all terms of order € and
smaller are neglected.

5. NUMERICAL MODEL AND RESULTS

The problem defined by Equations (4.5)—(4.7) together with
(4.13)—(4.15) is solved for the velocities u, w and the pressure
p by using the finite-element method. A weighted residual,
or Galerkin, approach is adopted (Zienkiewicz and Taylor,
1989), in which the problem equations are satisfied in an in-
tegral mean sense. The plane domain of interest is discre-
tized by using triangular finite elements with six nodes
(three vertices and three mid-side points). In each element
the velocity field is approximated by using six nodal values
of 4 and w and bi-quadratic shape functions, while the pres-
sure field is approximated by three nodal values of p (at ver-
tices) and bi-linear shape functions. All surface integrals are
evaluated numerically by applying Gauss—Legendre quad-
rature with seven sampling points within the element.
Simultaneously with solving the FEM equations for @, w
and p, Equation (3.2) describing the evolution of the deform-
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ation gradient F has to be solved to determine the fabric as-
sociated with the deformation field. For the plane problem
considered here it is equivalent to solving a system of four
first-order differential equations for the deformation gradi-
ent components F11, Fi3, F3; and F33 at each node of the
discrete system. We have assumed bi-linear variation of the
F;; components over the element and hence the above
system of differential equations is solved at each vertex no-
dal point. In order to find a steady solution of the problem
discussed, an iterative procedure is followed. At the begin-
ning of calculations it is assumed that ice is isotropic, that
is F = I For this initial isotropic state the velocities are de-
termined by solving the FEM equations, and they are used
to calculate from (3.2) the rate at which the deformation
gradient changes. By imposing a restriction on maximum
variation of the deformation gradient over one iteration, a
maximum time-step At (which here has little physical
meaning since the steady problem is analysed) is evaluated
for solving (3.2) and updating the components Fj;. In com-
putations, the above restriction has been defined in terms of
the maximum relative change in the Euclidean norm of a
vector containing the components of F' at all discrete nodes,
and it has been required that this maximum change over
one iteration does not exceed 1073. The current deform-
ation-gradient components are used to find the values and
directions of the principal stretches A, (r=1,3; = 1),
which then define, through (3.5), the structure tensors M)
and the values of the response functions f(b,) and G(K),
that is a new fabric. For this new fabric, the FEM equations
are solved to provide new values of the velocities and pres-
sures, which are then used again to update the fabric, and
the whole iteration process described above is continued
until steady flow is reached. In our simulations, the calcula-
tions have been terminated when the relative change
between two consecutive steps of the Euclidean norm of a
vector containing all nodal velocities is smaller than 1075,
Usually, depending on the model parameters defining the
strength of anisotropy, the stationary solution has been
reached for ¢ ~ 0.19 to 0.27.

A crucial part of a numerical model for the ice-sheet-flow
analysis 1s the solution of Stokes’ Equations (4.5)— (4.7), since
the incompressibility constraint (4.7) may give rise to numer-
ical difficulties which are due to the absence of a pressure
term in (4.7). Hence, a common method of treating this
problem consists in adding an artificial pressure term to the
continuity equation. There are a number of possible ways to
do this. In the pseudo-compressibility method, formulated
by Chorin (1967), a compressibility term in the form of a
pressure time derivative is added to Relation (4.7), and when
a steady state 1s reached, this artificial term vanishes. In an
alternative approach, so-called pressure-correction method
(Hirsch, 1992), which can be applied to both stationary and
time-dependent flows, an iterative procedure between the
velocity and pressure fields is applied. This results in solving
the momentum equations together with a Poisson equation
for the pressure correction, obtained by taking the diver-
gence of the momentum equations. The performance of this
scheme depends very much on the accuracy of solving the
Poisson equation. The pressure-correction method is closely
related to a fractional-step method, also called projection
method, which, with some modification, has recently been
applied by Mangeney and others (1996) to the steady ice-
sheet-flow problem. Yet another approach consists in the
adaptation of a method used for solving the problems en-
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countered in incompressible elasticity and plasticity (Zien-
kiewicz and Taylor, 1989). In this method, a term involving
the pressure, times some small parameter, is subtracted from
both sides of the incompressibility relation (4.7) and the
resulting system of the momentum and modified continuity
equations 1is solved by an iteration procedure, in which the
initially adopted pressure is gradually updated until the sta-
tionary solution is found. In some ways, the latter method
can be regarded as an improvement on the usual penalty
method, in which the pressure times some penalty parameter
1s simply inserted in the continuity relation. Finally, it is also
possible to solve the FEM equations resulting from the in-
compressible Stokes’ equations by using a special solver for
semi-definite systems of equations (personal communication
from R. C. A. Hindmarsh, 1998). In our model we have tested
two methods in order to compare their numerical perfor-
mance. The first method has been the pseudo-compressibil-
ity method, in which the system of first-order differential
equations is solved. As an initial solution the velocities and
pressures given by the SIA for isotropic ice have been used.
The other method has been a combination of the penalty
method, with a very small penalty parameter, and the appli-
cation of a special solver for the semi-definite matrices. The
small penalty parameter has been introduced since the avail-
able solver has still caused some numerical problems (oscil-
lating solutions appeared) in the vicinity of ice-sheet
margins with a steep, free-surface elevation, for instance for
Vialov’s profiles, and at places with a rapid change in the fi-
nite-element mesh size. The comparison of the results given
by the two methods has shown that the times, #, needed by
both schemes to reach a stationary flow do not differ by more
than 10 per cent, therefore the second method has been pre-
ferred in computations as being much cheaper (algebraic in-
stead of differential equations are solved).

The numerical results presented below have been
obtained for a simple geometry defined by a parabolic,
free-surface elevation

L 5.1

N
where H is the ice thickness at the divide, and L is the lateral
extent of the glacier (see Fig. 1). By adopting the latter geo-
metrical dimensions as the typical scales introduced 1n sec-
tion 4, that is by assuming H = h* and L = L*, Equation
(5.1) can be written as

h+& =1, (5.2)

where h = h/h* is the normalized free-surface elevation,
and 0 < h < 1,0 <z < 1. The simulations have been per-
formed for the aspect ratio € = H/L = 1072 The ice aniso-
tropy has been modelled by the response function (3.16) with
m = 2, and we have adopted the constant isotropic dimen-
sionless viscosity [ip = 1; that is, for the needs of this study,
we assume that the isotropic viscosity is independent of the
strain rate and temperature.

In Figure 4 we show the variation of the normalized hor-
izontal and vertical velocities at the free surface, 4s(Z) and
Ws(Z), as well as the accumulation rate §(Z) = g/v*
required to maintain the fixed geometry of the ice sheet.
The results obtained for different combinations of the para-
meters A and S, describing the limit viscous response of ice
in compression and shear, have been compared in order to
illustrate the effect of these parameters on ice-sheet flow. We
note immediately that the influence on the global flow of the
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parameter A, defining (for A > 1) the hardening of ice in
uni-axial compression (recall Fig. 2), is very limited. Com-
parison of the results obtained for A =3 and §=0.2
(dashed lines) with the results for A =10 and S =0.2
(dotted lines) shows that the differences between the free-
surface velocities are small and confined to the region of po-
sitive accumulation. Another feature worth noting is that
for a large value of A, meaning a high resistance of the ani-
sotropic ice to axial stresses, the accumulation rate, g, neces-
sary to maintain the fixed free-surface profile may be
smaller than that for the isotropic case (though this applies
only to a small region near the divide). A general conclusion
for practical applications to be drawn at this point is that the
significance of the parameter A (the reciprocal of the en-
hancement factor for compression), in terms of the global
flow of the ice sheet, 1s very small. Hence, since there is still
some disagreement among glaciologists on the proper mag-
nitudes of A for polar ice, mainly due to the lack of realistic
experimental data, our numerical results show that even the
use of precisely determined enhancement factors for com-
pression will have a negligibly small effect on the global
flow-rate estimation for large ice sheets. On the other hand,
as follows from Figure 4, the significance of the limit-viscos-
ity factor S (being the reciprocal of the shear-enhancement
factor) is crucial. It is clearly seen that the decrease of S (the
increase of the enhancement factor) considerably acceler-
ates the ice-sheet flow. Comparison of the results obtained
for A =3 and S = 0.2 (dashed lines) with those for A = 3
and S = 0.4 (dashed-dotted lines) indicates that both hori-
zontal and vertical velocities, practically over the whole
extent of the ice sheet, are about twice as high for § = 0.2
as for S' = 0.4. This means that the global flow of ice is ap-
proximately proportional to the shear-enhancement factor
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Fig. 5. Variation of the free-surface horizontal velocity with
increasing shear-enhancement factor 1/S at different
locations x/ L.

1/S.This feature is confirmed by Figure 5, in which we illus-
trate how the free-surface horizontal velocity, us, obtained
for anisotropicice (S < 1) increases with respect to the cor-
responding velocity for the isotropic ice (S = 1); the results
have been obtained for A = 3. The horizontal-velocity ratio
is plotted against the enhancement factor 1/5 for different
locations Z = x:/ L. We observe that at locations distant from
the ice divide (curves for /L = 0.4 and 0.6) the increase in
the flow velocity is almost exactly proportional to the shear-
enhancement factor. Only in the vicinity of the ice divide is
this increase slightly smaller (curves for /L = 0.1 and
0.2), which is obviously due to relatively high levels of the
axial deviatoric stresses here, as opposed to the region far
from the divide, where the flow is dominated by the shear
stresses. 1o some extent, the conclusions drawn here can be
related to the particular geometry of the adopted ice-sheet
profile, therefore they should be further confirmed by the
results of simulations carried out for other geometries, as
well as by results obtained for the problem in which the
free-surface elevation is calculated for a prescribed accumu-
lation rate.

In Figure 6 we present depth profiles of the horizontal
and vertical velocities at different locations & = /L, cal-
culated for anisotropic ice (A =3, S =0.2) and isotropic
ice (A =S5 =1). The velocities are normalized by the re-
spective free-surface values, that is the ratios 4(Z, 2)/ts(Z)
and W(Z, 2) /ws(Z) are plotted against the normalized eleva-
tion 2/h = z/h. We note that the horizontal-velocity profiles
(Fig. 6a) calculated for the anisotropic ice (lines) vary with
Z, contrary to the isotropic ice flow for which the normalized
profile (indicated by circles) is common for all locations.
This velocity pattern for isotropic ice differs slightly from
those predicted by the models in which Glen’s flow law with
the power factor n = 31is used (Dahl-Jensen, 1989; Hvidberg,
1996) due to the assumption of the constant isotropic viscos-
ity made here. The most significant differences between the
horizontal velocities obtained for anisotropic and isotropic
ice occur in the near-divide region, while for /L 2 0.6 the
profiles for both cases coincide. As regards the vertical
velocity profiles (Fig. 6b) a more complicated pattern is
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observed, and the profiles for both anisotropic and isotropic
ice vary with x/L; for the sake of clarity only the profiles for
x/L = 0 (circles) and /L = 0.6 (triangles) are plotted for
the isotropic ice. The largest discrepancies between the
velocities for anisotropic and isotropic ice take place, as for
the horizontal velocities, near the ice divide, and again the
corresponding profiles for anisotropic and isotropic ice coin-
cide at locations distant from the divide.

Finally, in Figure 7 we illustrate the depth variation of
the shear and axial deviatoric stresses at different locations
x/L, and again the results obtained for anisotropic (A = 3,
S = 0.2) and isotropic ice are compared. Since the stresses
., and &, are of different orders, O(€) and O(€?) respect-
ively, they have been re-normalized to become order unity,
and hence the values @, /€ and &, /€ are plotted against
the normalized elevation z/h . We observe in Figure 7a that
the shear stresses are not affected by the anisotropy of ice,

since the results for both cases are practically the same (lines
for the anisotropic and symbols for the isotropic ice), which
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agrees with the shallow-ice approximation result that the
direct shear stress is independent of the material properties.
On the other hand, as seen in Figure 7b, the ice anisotropy
dramatically changes the axial deviatoric stresses @, in a
region close to the ice divide. An interesting result, which
can be, however, a consequence of the particular ice-sheet
profile adopted here, is that the maximum axial deviatoric
stresses occur not at the ice divide, which is the case for iso-
tropic ice, but at some distance (x/L ~ 0.2) from the divide.

CONCLUSIONS

In the paper we have solved the problem of a plane, steady-
state, isothermal flow of a large polar ice sheet with a pre-
scribed free-surface elevation, for which the accumulation
rates required to maintain the fixed geometry are cal-
culated. The strain-induced anisotropy of ice has been
modelled by applying an orthotropic constitutive law, in
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Fig. 7. (a) Depth profiles of the normalized shear stresses G, and (b) the longitudinal deviatoric stresses G,/ € at different locations

x/ L for the anisotropic ice (lines) and the isotropic ice ( symbols ).
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which the viscous response of ice depends on current strain
rates and deformations. The results of numerical simula-
tions carried out for different sets of rheological parameters
A and S, describing the limit viscous behaviour of ice in
compression and shear, have shown the following:

(I) The global ice-sheet flow is little sensitive to the magni-
tude of the enhancement factor for compression and the
influence of this parameter on the flow is confined to the
region in the vicinity of the ice divide. For large values of
the parameter A (reflecting significant hardening of ice
in axial compression) the accumulation rates predicted
for anisotropic ice flow may be smaller in the near-
divide region than the rates obtained for isotropic ice;

(2) The ice-sheet flow is very sensitive to the magnitude of
the enhancement factor for shear. It has been found that
in most of the ice sheet (apart from a small domain ad-
jacent to the divide) the flow rate is practically propor-
tional to the value of this factor;

(3) In the near-divide region the normalized depth profiles of
the horizontal and vertical velocities evaluated for aniso-
tropic ice differ from those for isotropic ice, whereas in a
region far from the ice divide the velocity profiles obtained
for both anisotropic and isotropic cases coincide;

(4) The anisotropy of ice practically does not the affect the
shear stresses, but significantly influences the distribu-
tion of longitudinal deviatoric stresses in the vicinity of
the ice divide.

Since the above results have been obtained for a particu-
lar, idealized ice-sheet profile, further simulations involving
a more realistic situation, in which a steady free-surface ele-
vation is calculated for given accumulation rates, should be
conducted before the general conclusions on the effect of the
ice anisotropy on ice-sheet flow have been drawn. Neverthe-
less, the results obtained in this work have shown that aniso-
tropy significantly affects the flow of ice in the near-divide
region, where the deviatoric axial and shear stresses are of
comparable magnitudes, while in the region where axial
stresses are small and flow is dominated by shear stresses,
anisotropy plays practically no role and isotropic ice solu-
tions can be applied.
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