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Introduction. This paper is based on part of the thesis of one of the 
authors (5), submitted at the University of Toronto in 1963. In the first part 
of the paper a result on induced representations (2, 4, 9) is generalized slightly 
and a number of corollaries are derived. In the rest of the paper a special case 
of this result is applied to put the representation theory of the alternating 
group on a par with that of the symmetric group. A knowledge of the repre­
sentation theory of Sn (7) on the part of the reader is assumed. 

1. Let G be a group of finite order [G:l] and A be an algebraically closed 
field of characteristic not dividing the order of G. We denote by 0 the Kro-
necker product of two matrices. If T and 5 are any two irreducible repre­
sentations of G, consider the group [T 0 S]G generated by all elements of 
the form [Tu, Sv] = Tu 0 Sv, where u and v are elements of G and Tu is 
the image of u in T of G. The group [T 0 S]G is not a representation of G 
but of G X G. We call [T 0 S]G the outer tensor product of T and S of G. The 
diagonal subgroup (T 0 S)G of [T 0 S]G, which consists of elements of the 
form (Tuj Su) = (T ® S)u — Tu 0 Su, is a representation of G and is called 
the inner tensor product of T and S of G. Such a representation is, in general, 
reducible over A, since we assume A to be a splitting field for G and for all 
its subgroups. 

Next if p and q are any two fixed elements of G, consider the group 
[Tp 0 Sq]G generated by all elements of the form [Tp u, Sq v] = T(pup"1) 
0 S(qvq~l). The subgroup of this group consisting of all elements of the form 
(Tp u, Sq u) = T(pup~l) 0 S(quq~l) may be denoted by (Tv 0 Sq)G. Then, 
since the characters are equal, we have the following lemma. 

1.1. LEMMA. [T 0 S]G ^ [Tv 0 Sq]G and (T 0 S)G ^ (Tv 0 Sq)G. 

The representation T of G restricted to a subgroup H will be denoted by 
{T}H and, conversely, if 5 is a representation of H, then the representation 
of G induced by 5 will be denoted by {S\G. 

Let T be an irreducible representation of G over a field of characteristic 0. 
If / is the identity representation of the subgroup H, then (9) 

1.2 ({I}° 0 T)G*Ê{{T}H}G. 
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A more general result is obtained by replacing the identity representation / 
by any representation 5 of H in the form (2, 4) 

1.3 ({S}°® T)G^ {(S® {T}H)H}G. 

Robinson, Taulbee, and Littlewood made use of 1.2 and 1.3 to decompose 
the inner tensor product representation of two irreducible representations of 
the symmetric group. In the following we generalize 1.3 and obtain a number 
of corollaries. 

1.4. THEOREM. Let F> H, and K = F C\H be subgroups of a finite group G 
such that [G:F] = [H:K] and H contains a set of coset representatives of F in G. 
If T and S are any representations of G and F respectively over the field A, then 

\({S\a® T)G}H^\\(S® {T}F)F\K\B. 

Proof. Let [G: F] = n and g1( = 1), g2j . . . , gn be a set of coset representatives 
of F in G, which are also elements of H. Without loss of generality we may 
assume that g2, g3, • • • , gn do not belong to K. Then we have the unique 
decomposition 

G = U FgT 

into disjoint cosets of F in G, so that 

HnG=Hn\v Fgr\ = V (HnFgr) = \J (H n F)gT. 
\ r=l / r=l r=l 

Since H C\ G = H and H C~\ F = K, we obtain the unique decomposition 

H= \J KgT 

of H into disjoint right cosets of K in H. Moreover, if we now define a map­
ping 0: Fgr —» Kgr, then 0 is one-to-one and cfr1: Kgr —> FgT exists, so that 
there is a one-to-one relation between the cosets FgT of F in G and the cosets 
KgT of K in FI. This correspondence ensures that the permutation (matrix) 
representation of G induced by the identity representation of F, restricted to 
H, is identical (not just isomorphic) with the permutation (matrix) repre­
sentation of H induced by the identity representation of K. 

Denote by CG(g) the conjugate class of G to which the element g belongs 
and by [CG(g) H F:CG(g)] the ratio of the number of elements of CG(g) H F 
to the number of elements of CG{g). Then the permutation character of g 
in {I)G is 

1.5 [G:F][CG(g)r\F:CG(g)l 

If we now restrict ourselves to elements of the subgroup H, then 1.5 takes 
the form 

1.6 {[G:F}[C°(g)r\F:CG(g)}}H = [G r\ H:FH H][C°(g) H Fr\ H:C"{g)] 

= [H:K][C«(g)r\K:C»{g)\, 
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where g is an element of H and [G: F] = [H:K]. If the character of an element 
h of H in S of J7 is f s(h), then from 1.6 the character on each side of the desired 
relation is 

[H:K][CH(h) nK:CHmts(fi)tT(h), 

where f 5(h) is 0 if h lies in (G — F) O iJ, i.e. if & lies in H — K, the comple­
ment of K in if, which proves 1.4. 

Next, if we set T = I in 1.4, the result reduces to 

1-7 {{S}°U= 1{S}K\». 

If F H if = 1, the right side gives a regular representation of if with multi­
plicity equal to deg (5). 

Our next corollary is a counterpart of Mackey's subgroup theorem (3) 
and gives information about the representation on the right side of 1.7, which 
may be stated as follows: 

Let N be a AF-module, where A is any field and AF is the group algebra of 
F over A. For each (F, if)-double coset D = FaH, (a ® N) is a left AF-
module for the subgroup F = aFa~l C\ H of F and N(D) = {(a ® N)^}H 

is a left Aif-module which depends only on the double coset D. Moreover, 

(1.8) {{N\G\H= D N(D) 
D 

is a left Aif-module, where the sum is taken over all (F, if)-double cosets 
D in G. 

From 1.7 it follows that {{SUS77 also depends on the double coset decom­
position of G with respect to F and H, which we may state in the form of 
the following corollary. 

1.9. COROLLARY. Let N be a AF-module of F and 

t 

G = U FdiH, 

where t is the number oj double cosets. Then 

{{N)K]H = t, N(Dt), 
1 = 1 

where N(Dt) = {(ai® N)^}H with F = at Far1 H H. 

From now on we explicitly assume that A is a field whose characteristic 
does not divide the order [G:l] of G. If 0 and cj> are any two class functions 
belonging to the algebra cf(G) of all class functions of G, an inner product 
may be defined thus: 

(i.io) (e, *> = j ^ j C e(g)<t>*(g), 

where 0* is the conjugate of 0. If 0 is an irreducible character of G, then 
(0, 4>) is the multiplicity of the character 4> in 0. 
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1.11. COROLLARY. If 9 is a common irreducible character of F and K} and 
$ is an irreducible character of H, then 

(\{e}°}H,<i>) = ({e}K,{<t>}K). 

Proof. Since 6 is an irreducible character of K, Frobenius' Reciprocity 
Formula gives 

({0U, {<*>)*> = <{{0}*iw ,4>>. 

But {{fljx}^ = {{0}GW from 1.7, where on the right side 6 is viewed as a 
representation of F. Hence, we have 

{!(«!%*) = <i»U, MK). 

2. In this section, let A be the field of complex numbers and ASn and AAn 

be the group algebras of the symmetric group Sn and the alternating group 
An. Each class of conjugate elements of Sn is defined by means of a partition 
(X) = (XiX2. . . Xft); n = Xi + X2. . . + X* and X* > \i+i > 0. We use the 
symbol (X) to denote the conjugate class of Sn determined by the corresponding 
partition. Corresponding to each class (X), there exists a uniquely defined 
irreducible representation [X] and a (left) irreducible A5„-module defined in 
term of the Young diagram 

. . . . . (Xi nodes) 
[X] . . . . (X2 nodes) 

. . . (\h nodes) 

where we use the same symbol [X] to denote the corresponding Young diagram. 
The Young diagram [X] can also be described by a Frobenius symbol 

ai ct2 . . . ah 

Ui 62 . . . bhr 

where at is the number of nodes to the right of the diagonal in the ith row and 
bi is the number of nodes below the diagonal in the ith column. The diagram 
[X'], obtained from [X] by interchanging rows and columns, is the conjugate 
of [X] and corresponds to the conjugate representation of [X] and the dual 
of the irreducible ASw-module defined by [X]. If [X] = [X'], then [X] is a self-
conjugate diagram and in this case we call the conjugate class (2Xi — 1, 
2X2 — 3, 2X3 — 5, . . .) a splitting class of Sn. Frobenius (1) proved the following 
theorem. 

2.1. THEOREM. If the diagram [X] 9^ [X'], then the representations [X] and 
[X'] of Sn restricted to An are equivalent irreducible representations of Ani while 
if the diagram [X] = [X'] the representation [X] of Sn restricted to An splits into 
two (conjugate) irreducible representations [X]+ and [X]~ of the same degree. 

Thus, every irreducible character of a self-conjugate representation of Sn 
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is the sum of two characters of An. The class (2XX — 1, 2X2 — 3, . . .) 
= (pu P2, • • • , ph) ior which the character X\P) of Sn is 

^ _ / -I \e(PlP2...pfc—1) 

x (p) — I— i ; 

splits into two classes (£)+ and (£)~ in A„. The corresponding characters of 
the two classes (p) + and (p)~ in [X]+ are 

(2.2) r , r* = i{ (_ i )^ ip 2 p3 . . . -D ± v ^ 2 p 3 . . T ( i ) * C p i w > " - 1 ) } , 

which are interchanged between the two classes in [X]"". 

2.3. LEMMA. The characters of the representations [X]+ and [X]- of An are real 
or complex according as the number of nodes above or below the diagonal of the 
Young diagram [X] is even or odd respectively. 

Proof. From 2.2, the character of the representation [X]+ is real or complex 
according as \(p\pipz... —1) is even or odd respectively. The proof turns 
out to be trivial if we express the Young diagram in terms of the Frobenius 
symbol 

ai a2 . . . ah 

Lai ao . . . ahJ ' 

Then fx+(P)+ is real or complex according as 

i[(2a! + l)(2a2 + 1) • • • (2ah + 1) - 1] 

is even or odd, i.e. according as 

Q>\ + a2 + az + . . . + ah 

is even or odd. But this is precisely the number of nodes above or below the 
diagonal of the diagram so that the lemma is proved. 

From now on we shall use the same symbols to denote the irreducible repre­
sentations of An and we shall not distinguish between [X] and [X'] as repre­
sentations of An. Consider the n\ Young tableaux obtained by placing the 
symbols 1, 2, 3, . . . , n in [X] in all possible ways. In / x of these tableaux the 
symbols appear in their natural order in both row and column, and these 
tableaux are called standard. Making the following construction, we obtain 
the actual matrices of the irreducible representation [X] of Sn (7). 

2.4. THEOREM (Young). To construct the matrix representing (r, r + 1) in 
[X] of Sn, arrange the fx standard tableaux . . . t\ . . . tx

v. . . in dictionary order 
and set 

(i) 1 (and —1) in the leading diagonal where tx has r and r + 1 in the same 
row (column), 

(ii) a quadratic matrix 
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( 2L_ Vl-p2\ 
\ V i - P2 P ' 

at the intersection of rows and columns corresponding to t\ and tx
v where u < v 

and tx
v is obtainable from t \ by interchanging r and r + 1. If r appears in the 

(i,j) position and r + 1 in the (&, /) position of t\ with i < k, I < j , then 

P"1 = (j ~ i) ~ (I ~ k), 

(iii) zeros elsewhere. 

If [X] 9^ [X'] the matrices representing (12) ( r , r + 1) can be constructed 
according to 2.4 and these will generate the corresponding representat ion of 
An. If [X] = [X'], the representation will split into [X]+ and [X]-, in which 
case we have the following construction (5, 10). 

2.5. T H E O R E M . TO construct the matrix representing (12) (r, r + 1) in [X] + 

([X]-) of An arrange the fx standard tableaux in dictionary order and assign the 
first \fx tableaux to [X]+ and the remainder to [X]~. Construct the matrix repre­
senting (12) according to 2.4 and the matrix representing (r, r + 1) in the same 
manner, as long as the two associated tableaux in 2.4 (ii) both belong to the same 
set [X]+ ([X]-). 

If tx
u lies in [X]+ and tx

v in [X]~, we must have r = n — 2 or n — 1. Denote 
by t\1 that tableau in which the part of the tableau in n — 2 letters is conjugate 
to the same part in t\, so that iK

ul also lies in [X]+. Set the quadratic matrix 

/ - p e V Ï - p 2 \ 

V - \ / i — p2 p / 

at the intersection of the rows and columns corresponding to t\ and tx
ul, where 

p has the same meaning as in 2.4 (ii) and t = (f)^ip2-.--i) m
- ^ p. = 2\t 

— (2i — 1). Putting zeros elsewhere leads to the matrix representing (12) (r, r + 1) 
in [X]+. 

A similar construction applied to tx
v yields tx

vl and with e and e~1 interchanged 
leads to the matrix representing (12) (r, r + 1) in [X]-. 

Proof. T h e s tandard tableaux of [X] arranged in dict ionary order are such 
t h a t the second half of the / x tableaux are the conjugates of the first half, 
b u t in reverse order. 

Consider the matrices representing An constructed according to 2.4. If the 
order of the tableaux in the second half of the set is reversed, the two repre­
sentat ions obtained by restricting [X] to An-2 (or An_i as the case may be) 
on the symbols 1, 2, . . . , n — 2 ( o r w - 1) will be equivalent by 2.1, so t h a t 
a further transformation will make them identical if necessary. I t follows from 
Schur 's lemma t h a t there exists a commuting matr ix which should enable us 
to reduce the representat ion [X] of Anj so transformed, into [X]+ and [X] -

leaving the two identical representat ions of An__2 (or An_i) unchanged. 
Combining these three transformations leads to a matr ix 
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dl 

# 2 

b, 

P = Q<\i 

a • * / -4/ 

C\ 

where 

C2 

et j a j 

— do 

,d} = 1/V2, b, = c, = (*)*<»' VV2, 

and a, dy + bj Cj = — 1 with ô - = d=l according as the j th tableau is obtained 
from the first by an even or an odd number of interchanges of symbols. The 
effect of transformation by P is as desired in the theorem. 

Example. As an illustration, consider the construction of the matrices of 
[312]+ of the alternating group Ab: 

[312 
1 2 3 
4 
5 

1 2 4 
3 
5 

1 3 4 
2 
5 

The group Ah can be generated by (12)(23), (12)(34), and (12)(45). We 
construct the matrices representing (12) (23) or (12) (34) according to 2.4, 
but for the matrix representing (12) (45) we must use the construction of 
2.5, obtaining 

'1 
(12) (23): \ V3/2 

V3/2 - \ j 

and 

(12)(45): 

where e = ( i ) 2^-" = — 1. 

/ - 1 / 3 V8/3 .N 
(12) (34): I V8 /3 1/3 

- 1 / 4 eVl5/4 
€"V15/4 1/4 ) 

3. Next let us determine the minimal left ideals of AAn over A. For this 
purpose, it is necessary to consider the cases [X] ^ [X'] and [X] = [X'] separately. 
First let [X] ^ [X']. 

https://doi.org/10.4153/CJM-1964-060-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-060-5


594 B. M. PUTTASWAMAIAH AND G. DE B. ROBINSON 

Let fit be any standard tableau belonging to [X] of An. Denote by Pi the 
product of the symmetric groups of the symbols of the rows and by QL the 
product of the symmetric groups of the symbols of the columns of the tableau 
tXi. Then clearly 

Pit^Qi = 1 and PtQi 9* QtP', 

in general. Define 

2ex = E E («« + *v)Pa> 
i ptPi,qeQi 

where ep = ± 1 according as p is an even or an odd permutation. It is well 
known that the expressions 

Z tppq and ]T €qpq, ( ] £ *vP<l)(!l ** Pv) = 0> 
p,q q,p \ p,q / \ p,q / 

are primitive characteristic units, i.e. non-zero idempotents of the group 
algebra ASn corresponding to [X] and [X'], which do not belong to the centre 
of the algebra. Hence, ex is a central idempotent, but for a constant. Thus we 
may associate the minimal ideal AAne

x with [X] of An. It can be shown that 
these ideals are the desired irreducible AA,rmodules. 

Secondly let [X] = [X']. Then define 

i pePi ,q*Qi 

where f(pq) = 2f and 2f* for elements of the split classes and f(pq) = 1 
otherwise and f, f* are defined by 2.2. From 2.1, 2.2, and the above argument 
we conclude that ex+ is also a central idempotent and the roles of f and f* 
are interchanged for the conjugate representation. 

4. We next show how the irreducible components in an induced permutation 
representation of An can be determined. For this purpose denote by [Xi]. [X2]. 
. . . [\h] the permutation representation of Sn induced by the /-representation 
of the subgroup F = S\l X 5\2 . . . X S\h whose reduction into its irreducible 
components is given by (7) 

(4.1) M . [x2].... M = n (i - RaT1 iï^ • • • x»]-

Rij for i < j indicates the process of raising a node from the 7th row to the 
'̂th row of [X] to yield a new diagram and I I Rti indicates the successive 

raising of the nodes subject to the restrictions that the result is to be dis­
regarded (i) if any row contains more symbols than a previous row or (ii) if 
two symbols from the same row appear in the same column. 

If K is the subgroup of all even permutations of F, then by 1.7, we have 

which may also be written as 

{[A1MX2]. . . . [ X » ] U = \{I)K\A", 
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where (/) F denotes the identity representation of F. If we use the same symbol 
[Xi] • [X2] • • • • [M] (Xi > 2) to denote the permutation representation of An 

induced by (I)K, then its reduction is given by 4.1, where along with the 
above restrictions on the raising operators, we have the further restrictions 
that (iii) [X] and [V] are equivalent if [X] ^ [X'] and (iv) [X] = [X]+ + [X]~ 
if [X] = [X']. 

Example. If [3]. [2] is the permutation representation of A$ induced by the 
identity representation of the subgroup of all even permutations of the product 
S3 X S2, then 

[3]. [2] = I I (1 - RtJ)-i [32] = (1 + R12 + R\2) [32] 

= [32] + [41] + [51 

If [X] 9e [X'], then we can invert 4.1 in the form 

4.2 [MM. . . XJ = I I (1 - R„)[Xi].[X2]. . . . [Xj, 

thus expressing an irreducible representation in terms of permutation repre­
sentations. Here no restrictions on the Rtû are needed. The relations 4.1 and 
4.2 can be extended to all subgroups of An (6). 

Example. 

[3,2] = n ( l - i ? i , ) [ 3 ] . [ 2 ] = (1 -7?12)[3].[2] = [3] . [2] - [4] . [ l ] . 

5. Let A be a field of characteristic p in which all the modular irreducible 
representations of a finite group G of order [G:l] = grpa with (g*', p) = 1 
can be realized. Two modular irreducible representations of G over A are 
called mutually "^-conjugate" if they are obtained from each other by a 
different choice of the pa-th primitive roots of unity. If a modular representa­
tion of G is its own ^-conjugate, it may be called a self ^-conjugate repre­
sentation. In case of Sn, a self ^-conjugate representation appears as a compo­
nent of an ordinary self-conjugate representation. In the following A is a 
finite extension field of the Galois field GF(p). Let Q be the field of rational 
numbers and Z be the ring of integers. If [X] is a ()-representation Qf An, then 
[X] is (2_ e cluiv ale nt to a Z-representation. In this Z-representation we reduce 
the coefficients modulo p and denote the resulting representation by [X]. 
Now, by 2.1, if [X] 5̂  [X'], then [X] and [X7] of An contain the same modular 
irreducible components. First let p 9^ 2. Then we have the following theorem. 

5.1. THEOREM. TWO distinct p-conjugate representations of Sn restricted to An 

are Q-equivalent representations of An over GF(£), while a self p-conjugate 
representation of Sn restricted to An splits into two p-conjugate representations 
of An over an extension of G¥(p). 

Proof. As in the case of ordinary irreducible representations, the characters 
in the ^-conjugate representations of Sn are equal for all even ^-regular elements 
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and different only for certain odd ^-regular elements of Sn. From this the first 
part follows. A self ^-conjugate representation of Sn is necessarily a component 
of an ordinary self-conjugate representation of Sn. Then the second part 
follows from 2.1. 

Next let p = 2. In this case 1 = — 1 (mod 2), so that every GF(2)-repre-
sentation of Sn is a self 2-conjugate representation. The result 5.1 needs to 
be modified. If [X] = [A'] is any representation, then 

IX]= E mT.T, 
T 

where mT is the multiplicity of the GF(2)-irreducible representation T of Sn. 
In this equation we have to single out those components T with odd multi­
plicity. Then a representation T of Sn over GF(2) restricted to An is an irre­
ducible representation of An unless T is a component of [X] = [X'] with odd 
multiplicity. In the latter case T splits into two equivalent or two 2-conjugate 
representations of An according as all [X] = [X'] in which T appears as a 
component are such that (X) are 2-singular or 2-regular classes respectively. 

Example. The 4-dimensional modular irreducible representation T of S$ 
over GF(2), contained in [312], is a self 2-conjugate representation of S$. 
This representation T, restricted to Ab, is irreducible over GF(2); but in the 
extended field GF(22) consisting of four elements 0, 1, w, w*, it reduces into 
two representations T\ and T2 of dimension 2 each. Moreover, the class (312) 
which corresponds to [312] is 2-regular and hence 7\ and T2 are 2-conjugate. 
The matrices representing (123) and (345) in T are 

T: (123): 

If we now transform by 

1 1 0 0 0 0 1 1 
1 0 0 
0 0 0 

0 
1 » (345): 

0 
0 

0 1 0 
1 1 0 

0 0 1 1_ 1 1 0 1 

" l w* 0 0" 
0 0 w 1 
1 w 0 0 y 

0 0 w* 1 

we obtain the two 2-conjugate representations of A5: 

7 \ + T2: (123): 

w 0 
0 w* 

w* 0 
0 w 

(345): 
r ° i 

i i 

0 1 
1 1 

As in the case of Sni the block structure of An depends on the p-core [X] 
of [X]. Let us consider first those diagrams which are themselves ^-cores, i.e. 
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from which no /?-hooks are removable. In general, the maximum power of p 
which divides the degree / x is given by (7) 

5.2 etf) = e(n\) - e((n - a)\) + e(f\), 

which reduces to 
5.3 e(fx) =*(»!) 

if a = n. If p 7e 2, and [X] is not self-con jugate, 

5.4 e(P) = e(inl) 

so that [X] of An is modularly irreducible and constitutes a block by itself. 
If [X] = [X'], then the representation will split and 

5.5 e{Mx) = *(**!) 

so that the same statement applies to each of [X]+ and [X]~. 
In the case p = 2 the situation is simplified by the fact that every 2-core 

is self-conjugate so that 5.5 still holds and each of the 2-conjugate components 
[X] + and [X]- is modularly irreducible and constitutes a block by itself. 

Example. Let p = 3 and n = 5. The 3-core [3, l2] containing 5 nodes yields 
two modularly irreducible representations of degree 3. The matrices con­
structed according to 2.4, on transforming by an appropriate matrix and 
reducing module 3, take the form 

(123): 

1 1 - 1 
0 1 0 
0 1 1 

1 1 - 1 
0 1 0 
0 1 1 

, (345): 

- 1 1 0 0 0 1 
- 1 - 1 0 0 0 0 

0 0 - 1 - 1 - 1 o 

0 0 - 1 - 1 1 0 
0 0 0 - 1 - 1 0 
1 1 0 0 0 - 1 

The representation [3, l2] of A 5 is irreducible in GF(3). But if we extend the 
field to GF(32) consisting of 9 elements 

0 ,1 , - l , i , - j , 1 + j , - 1 +j, - 1 - j , 

where j 2 + 1 = 0 (mod 3), the representation reduces into two 3-conjugate 
modularly irreducible representations: 

(123): 

1 1 - 1 
0 1 0 
0 1 1 

1 1 - 1 
0 1 0 
0 1 1 

(345): 

- 1 1 -j 
- 1 - 1 0 

j j - 1 

- 1 1 j 
- 1 - 1 0 
- j -j - 1 

https://doi.org/10.4153/CJM-1964-060-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-060-5


598 B. M. PUTTASWAMAIAH AND G. DE B. ROBINSON 

T h e representations are irreducible in any extension field. Also since the 

degrees (i.e. 3) are divisible by the characteristic of the field, they form their 

own 3-blocks and indecomposable components of the regular representat ion 

of A*. 
We have thus disposed of the blocks determined by the p-cores of An con­

taining exactly n nodes. For the blocks determined by p-cores containing less 
than n nodes, we have the following theorem. 

5.6. T H E O R E M . All ordinary irreducible representations of An which have 

p-cores [X] or [X'] belong to the same p-block of An. 

Proof. We deduce the result from t h a t for Sn. T h e representat ions [X] and 
[X'] of An contain the same irreducible representat ions. From this remark, the 
result follows. 

In enumerat ing the ordinary and modular irreducible representat ions of 
An in a block, we have to consider the following three types : 

(i) T h e block determined by the non-self-conjugate p-cores [X] and [X']. 

(ii) T h e block determined by a self-conjugate p-core [X], to which no 
ordinary split representations of An belong. 

(iii) T h e block determined by a self-conjugate p-core [X], to which split 
representat ions of An do belong. 

Clearly no split representation can belong to a block of the first type. For 
if it does, it has to belong to blocks determined by p-cores [X] and [V] in the 
case of Sn, which implies [X] = [X'], contrary to the assumption. Moreover, 
half the number of representat ions of Sn determined by the two p-cores [X] 
and [X'] are also representat ions of An. Hence, in a block of type (i) of Ani 

the number of ordinary or modular representat ions of An is the same as t ha t 
for Sn. For actual enumerat ion see (7, 8) . 

In a block of the second type , there are no split representat ions. Also the 
number of ordinary irreducible representat ions in a p-block of Sn of the second 
type is even, for if [X] belongs to the block, so does its conjugate [X']. T h u s 
the number of ordinary and modular irreducible representat ions of An in a 
block of the second type is equal to half the number of the representat ions of 
the block of Sn determined by the p-core [X]. 

In the third case the si tuation is more complicated. If n = a + bp, and the 
number b of removable p-hooks is even, then the block of Sn characterized 
by the self-conjugate p-core [X] does contain a t least one self-conjugate [X] 
and this condition is both necessary and sufficient when p = 2. If p ^ 2, 
however, we can have a self-conjugate [X] when b is odd, e.g. [2, 1] for p = 3 
and [33] for p = 5. Thus , the distinction between p-blocks of types (ii) and 
(iii) depends upon both b and p and enumerat ion is more difficult. 

We conclude by giving the ^ -ma t r i ce s (mod 2, 3) of An for 

n = 3 , 4 , 5 , 6 , 7 , 8 . 
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D-Matrices (mod 2) of An 

deg. 1 1 1 

[3] 
[21]+ 

[21]-

1 [3] 
[21]+ 

[21]-

1 

[3] 
[21]+ 

[21]- 1 

599 

deg. 1 1 
1—

1 

[4] 1 

Ai [31] 1 1 1 
[22]+ 0 1 0 
[22]" 0 0 1 

deg. 1 2 2 4 

[5] 1 
[32] 1 1 1 Core 
[312]+ 1 1 0 m 
[31*]- 1 0 1 

[41] 

1 0 1 

i 

deg. 

[6] 1 
[51] 1 1 
[42] 1 1 1 
[4P] 2 1 1 
[32] 

[321]+ 

1 0 1 [32] 

[321]+ 1 

[321]" 1 

A7 

deg. 14 20 

[7] 1 
[52] 0 1 
[512] 1 1 Core 
[421] 1 1 1 [1] 
[321] 

[61] 

1 0 1 [321] 

[61] 1 
[43] Core 1 1 1 
[41»]+ [2,1] 1 1 0 
[413]- 1 0 1 
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dee 6 14 20 64 

^ s 

18] 1 

[71] 1 1 
[62] 0 1 1 
[612] 1 1 1 
[53] 0 1 1 2 

[51'] 1 2 1 2 Core 
[42] 0 1 0 2 [0] 
[431] 2 1 1 2 2 
[422] 2 0 1 0 2 
[4212]+ 1 1 1 1 1 
[4212]- 1 1 1 1 1 
[322]+ 1 0 0 0 1 
[322]-

[521] 

1 0 0 0 1 

i 

[322]-

[521] Core [321] i 

D-Matrices (mod 3) of An 

deg. 1 

[3] 1 
[21]+ 1 

[21]- 1 

A, 

deg. 

[4] 
[22]+ 
[22]-

1 
1 
1 

Core 

in 

[31] i 

deg. 

[5] 
[32] 

[312]+ 

[312]-

1 
1 1 

C( 
[2] = 
1 

Dre 

= [I2] 

1 

^ 6 

deg. 

[6] 1 
[51] 1 ] 

[4P] 0 1 L 1 1 C o r e 

[32] 1 ] L 0 0 M 
[321]+ 1 ] L 1 0 
[321]" 

[42] 

1 ] L 0 1 [321]" 

[42] l 
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deg. 1 13 10 10 15 

[7] 1 
[52] 1 1 
[43] 1 1 Core 
[421] 2 1 1 1 [1] 
[413]+ 0 0 1 0 
[4P]- 0 0 0 1 

[61] 1 
[51*] Core 0 1 
[321] [3, 11 - [2, l2] 1 1 

deg. 13 27 35 21 35 35 

[8] 1 
[7,1] 0 1 
[6,2] 0 1 1 Core [2] = [l2] 
[42] 1 0 1 
[5,3] 1 0 0 1 
[5, 2, 1] 2 0 0 1 1 

[5, 1»] 0 0 0 0 1 
[4, 3, 1] 1 1 0 1 1 
[4, 22] 

[6, l2] 

1 1 1 0 1 [4, 22] 

[6, l2] 1 
[32, 2]+ 1 Core [312] 
[32, 2]~ 1 

[4, 2, 12]+ 1 

[4, 2, l 2 ] - 1 
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