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Abstract
Fungi living within a plant (i.e., endophytic fungi) can directly affect the growth of the host plant or have
indirect effects by affecting levels of damage to the plant caused by insect herbivory or plant pathogens.
Greenhouse and field trials were conducted to investigate the endophytic effects of the fungus Beauveria
bassiana on wheat, on the wheat-feeding Sunn pest, Eurygaster integriceps (Hemiptera: Scutelleridae),
and on the wheat pathogen, Fusarium culmorum (Nectriaceae), which causes root and crown rot disease.
Conidia of B. bassiana were applied to wheat either by foliar spray, soil drench, or seed treatment. Seed
treatment with conidia provided the highest re-isolation percentages: 91.7% in leaves, 95.8% in stems,
and 91.7% in roots. Inoculated plants were taller and had greater wet and dry weights compared to
control plants. In both greenhouse and field studies, E. integriceps that were fed inoculated plants laid
eggs that were less likely to hatch. Inoculations reduced the incidence of root and crown rot disease by
42% under greenhouse conditions. These results document the potential of using endophytic infections
of B. bassiana in wheat as a control measure for Sunn pest and root and crown rot disease.

Introduction
Beauveria bassiana (Balsamo) Vuillemin (Cordycipitaceae), a fungus long known for its

entomopathogenic properties, causes an insect disease known as white muscardine. Although
B. bassiana initially was considered only an insect pathogen, it recently has been reported as
an endophyte (Jaber and Ownley 2018; Vega 2018). An “endophyte” is an organism that lives
inside a plant without causing any apparent symptoms during the plant growth cycle
(Wilson 1995; Akello and Sikora 2012).

Although the efficiency of entomopathogenic fungi is influenced by environmental factors such
as ultraviolet radiation, low moisture, and temperature (Lacey et al. 2015; Jaronski and
Mascarin 2017), using Beauveria as an endophytic has solved those barriers and demonstrates
more cost-efficient strategies to host plants. The reason mainly is that by establishing inside
plants, the fungi are protected from environmental abiotic stresses, and this is accompanied
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by longer persistence and less inoculum needed to colonise the host (Mascarin and
Jaronski 2016).

Among the entomopathogenic fungi that naturally colonise plants, B. bassiana has been reported
as an endophyte from a broad range of plants (Vega 2008; Dara 2019). Beauveria bassiana has been
established as an endophyte in citrus (Rutaceae) (Bamisile et al. 2020), coconut seedling (Arecaceae)
(Posada and Vega 2005; Gaviria et al. 2020), artichoke (Asteraceae) (Guesmi-Jouini et al. 2014),
banana (Musaceae) (Akello et al. 2008a, 2008b), corn (Poaceae) (Wagner and Lewis 2000),
sorghum (Poaceae) (Reddy et al. 2009; Tefera and Vidal 2009; Mantzoukas et al. 2015), and
tomato (Solanaceae) (Klieber and Reineke 2015). The endophytic activity of different isolates of
B. bassiana and their effects on plant growth, height, and tissue nutrient content, the
composition of induced plant defensive compounds, and plant volatiles have been previously
reported (Tefera and Vidal 2009; Mantzoukas et al. 2015; Shrivastava et al. 2015; Jaber and
Enkerli 2016; Renuka et al. 2016; Jaber and Ownley 2018; Sánchez-Rodríguez et al. 2018; Tall
and Meyling 2018; Vega 2018; Moloinyane and Nchu 2019; Bamisile et al. 2020).

The presence of endophytic B. bassiana in treated host plants has been effective in controlling pests
under lab conditions (Bing and Lewis 1991; Cherry et al. 2004; Vega et al. 2009; Lopez and
Sword 2015). Several studies have reported the impact of endophytic fungi on survival, fitness,
development, and fecundity of sap-sucking herbivores (Gurulingappa et al. 2010; Akello and
Sikora 2012; Lopez et al. 2014; Muvea et al. 2014; Jaber et al. 2018). These studies suggest that the
application of endophytic fungi can be integrated with other pest management strategies to
provide effective insect pest control. Endophytic fungi also can colonise the rhizosphere and
confer protection to the host plant (Ownley and Gwinn 2010; Greenfield et al. 2016; Jaber and
Ownley 2018) against plant pathogens such as Rhizoctonia solani (Ceratobasidiaceae), Pythium
myriotylum (Pythiaceae) (Ownley et al. 2008), Plasmopara viticola (Peronosporaceae) (Rondot and
Reineke 2019), Pythium ultimum (Pythiaceae), Sphaerotheca fuliginea (Erysiphaceae), Fusarium
solani (Nectriaceae) (Jaber and Ownley 2018), and Magnaporthe grisea (Magnaporthaceae)
(Atugala and Deshappriya 2015).

Wheat (Poaceae) production in the Near and Middle East, Eastern Europe, and North Africa is
affected by the Sunn pest, Eurygaster integriceps (Hemiptera: Scutelleridae) (Critchley 1998;
Hosseininaveh et al. 2009; Talaei-Hassanloui et al. 2009; Davari and Parker 2018) and the
plant pathogen Fusarium culmorum (Nectriaceae) (Motallebi et al. 2015). Nymphs and adults
of E. integriceps feed on leaves, stems, and grains (Critchley 1998; Hosseininaveh et al. 2009),
reducing crop yield. Insects feeding on developing kernels inject salivary hydrolytic enzymes
that break down gluten to reduce bread quality (Hosseininaveh et al. 2009; Koksel
et al. 2009). Fungal diseases – namely root and crown rot caused by F. culmorum – threaten
wheat production in different areas of the world (Grosu et al. 2015; Meyer-Wolfarth
et al. 2017). Fusarium culmorum symptoms appear as brown necrotic discolouration, root
browning, and necrosis, resulting in stand loss, reduced yield, and decreased grain quality.
It can also spread throughout a plant’s crown and infect the stems (Beccari et al. 2011).

In the present study, we assessed the potential for a native B. bassiana isolate for use as an
endophyte in wheat to enhance plant growth and confer protection against Sunn pest and
F. culmorum. We first examined methods to optimise endophytic establishment of the isolate
in host plants. We then assessed the direct effect of the endophyte on plant growth.
In greenhouse and field studies, we subsequently tested the effect of inoculations on the egg
hatch of Sunn pest and the incidence of root and crown disease.

Materials and methods
Fungal isolates and inoculum

Beauveria bassiana TV, isolated from soil in Karaj County, Alborz, Iran in 2017 (Seyedtalebi
et al. 2017, 2020), was obtained from the collection of entomopathogenic fungi at the Biological
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Control Laboratory, College of Agriculture and Natural Resources, University of Tehran, Karaj,
Iran. The fungus was cultured on Sabouraud dextrose agar (dextrose (40 g), peptone (10 g), agar
(15 g), and distilled water (1 L)) with 1% yeast extract in Petri plates and kept in the dark at
25 ± 1 °C and 65 ± 10% relative humidity for 14 days. Conidia were harvested by scraping the
surface of each culture with a sterile spatula and were transferred into a sterilised 100-mL
glass beaker containing 50 mL of 0.01% Tween 80 (Merck, Darmstadt, Germany;
Gurulingappa et al. 2010). The conidial suspension was stirred, filtered, and adjusted to
1× 107 conidia mL–1, which was used to inoculate the plants and soil, as described below.
The viability of conidia was assessed following the method described by Parsa et al. (2013).

Fusarium culmorum isolated from wheat in Varamin County, Iran, in 2003 was obtained from
the Iranian Research Institute of Plant Protection, Tehran, Iran, cultivated on potato dextrose
agar, and kept at 25 ± 1 °C and 65 ± 10% relative humidity in darkness for seven days. The
F. culmorum inoculum for infecting the test plants was prepared as described by Chekali
et al. (2011).

Greenhouse experiments

Fungal treatments. Seeds of the wheat cultivar “Pishtaz” were obtained from the Gene Bank,
Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran. In order to
study the possible establishment of B. bassiana isolates in wheat, different inoculation
methods – soil drench, foliar spray, seed soaking in conidial suspension, and seed treatment
in conidial powder – in two sterile versus nonsterile conditions were applied. The soil drench
and foliar spray treatments were carried out according to Parsa et al. (2013), with slight
modification. Briefly, 15 mL of fungal suspension at a concentration of 1× 107 conidia mL–1

were used to drench the soil, and 10 mL of the same were used to spray the leaves (foliar
spray). The wheat foliage was sprayed using a manual atomiser at 14 days after planting. For
the foliar and soil sterile treatments and control, the seeds were surface sterilised before fungal
inoculation by immersion in sodium hypochlorite (2% v/v) for two minutes followed by one
wash with sterile distilled water, immersion in ethanol (70% v/v) for two minutes, and then
three rinses with sterile distilled water. The sterilised seeds then were placed on sterile filter
paper to dry, and 20 seeds were planted in each polyvinyl chloride pot (8 and 10 cm in
diameter and height, respectively) in sterile soil (400 g per pot). In the nonsterile treatments,
the wheat seeds were planted in polyvinyl chloride pots without sterilisation of seeds, soil, and
water. In general, eight pots were considered for each treatment, with four pots for sterile
treatments and four pots for nonsterile treatments.

For seed inoculation, wheat seeds (approximately 160 seeds) were treated either by soaking in
the B. bassiana conidial suspension for 12 and 24 hours, depending on the seed-soaking-in-
conidial-suspension treatment, or by inoculating the seeds with fungal conidial powder (6 mg,
equivalent to 3.1× 107 conidia/mL). For conidial powder inoculation of seeds, 0.1 g of fungal
conidia powder was obtained by scraping the surface of each culture with a sterile spatula and
was stirred with 160 seeds for two minutes in a microtube, and then the seeds were planted in
eight pots. In the seed-soaking treatment, the inoculated seeds were transferred to an
incubator at 25 °C ± 1 °C and 65% ± 5% relative humidity in darkness, dried on sterile tissue
paper for 30 minutes under the laminar hood, and then planted in eight pots, as described below.

Re-isolation of Beauveria bassiana from tested plants. The presence of B. bassiana within the
treated wheat plants was verified through fungal isolation from different parts of the plant and
plant extract and through detection of B. bassiana DNA.

Following Parsa et al. (2013), 15 days after inoculation, four wheat plants were removed from
each pot (each treatment consisted of eight pots, with four pots for sterile treatments and four pots
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for nonsterile treatments) and washed with running tap water for one minute. For each plant, two
parts of the leaf (sampled randomly from the first true leaf), two parts of the root (sampled from
the middle of the root and near the root tip), and two parts of the stem (3-cm-long samples
taken from the middle of the stem length) were excised, surface sterilised in sodium
hypochlorite (2% v/v) and ethanol (70% v/v), and washed three times with sterile distilled
water. The six samples of plant material obtained from each plant were then plated together
on a 90-mm Petri dish with Sabouraud dextrose agar medium supplemented with the
antibiotics tetracycline and penicillin at 2 mg/L each. Plates were sealed with parafilm and
incubated in the dark at 25 °C. Every 2–3 days for 2 weeks, fungal outgrowth was recorded
and verified as B. bassiana morphologically, as described by Humber (1997). To ensure
efficacy of the disinfection process, water samples of the last disinfection step were spread
onto Sabouraud dextrose agar medium and incubated for 10 days at 25 °C. No fungal growth
was observed in any of the last-rinse water from the surface-sterilisation procedure. Ultimate
estimation of the presence of endophytic B. bassiana was recorded after 14 days and was
calculated as colonisation percentage, per the formula:

Colonization percentage � Number of plant samples exhibiting fungal growth
Total number of plated plant samples

× 100

The intensity of endophytic establishment of B. bassiana TV applied through the different
treatments was evaluated following Abdel-Hafez et al. (2015), with some modifications.
Fifteen days after the inoculations, three pots were selected, and 10 plants were uprooted from
each pot, with tissues separated into aerial (leaf and stem) and ground (root) parts. Ground
parts (1 g) and the aerial parts (3 g) were surface sterilised, as described above, and added to
sterilised distilled water (10 and 30 mL, respectively). The extract of the plant was prepared
by blending the plant material in distilled water (1 mL) with a Waring® blender (Waring
Commercial Products, McConnellsburg, Pennsylvania, United States of America) until the
solution became homogeneous. The plant extract obtained from each pot was cultured on a
Sabouraud dextrose agar medium supplemented with penicillin and tetracycline (2 mg/L
each). The numbers of B. bassiana colonies were counted and recorded every 2–3 days for 2 weeks.

Detection of Beauveria bassiana by two-step nested polymerase chain reaction. To document
the presence of infections in wheat plants inoculated with B. bassiana, plant tissues were further
analysed with polymerase chain reaction. The fungal DNA and genomic plant DNA from aerial
parts (leaf and stem) and roots were separately extracted by the cetyltrimethylammonium
bromide method provided by Saghai-Maroof et al. (1984). Quantity and quality of DNA were
determined by the spectrophotometric method, using Thermo Nanodrop (Thermo Fisher
Scientific, Waltham, Massachusetts, United States of America) and agarose gel
electrophoresis (1%). The amplification process of the first polymerase chain reaction was
carried out in a reaction mixture (50 μL) containing universal primers ITS1-F (1 μM;
Gardes and Bruns 1993) and ITS4 (1 μM; White et al. 1990), Taq DNA polymerase (1.0 unit),
Taq polymerase buffer (1×), deoxynucleoside triphosphate (dNTP; 50 μM), and DNA template
(100 ng/μL). The reaction was performed in a C1000 thermocycler (Bio-Rad, Hercules,
California, United States of America). The first polymerase chain reaction products were used in
two-step nested polymerase chain reaction protocols by designing B. bassiana–specific primers
BB.fw (5´–GAACCTACCTATCGTTGCTTC–3´) and BB.rv (5´–ATTCGAGGTCAACG
TTCAG–3´), as described by Landa et al. (2013). The nested polymerase chain reactions were
conducted in 25-μL solutions of primers (1.0 μM each), reaction buffer (10×), dNTP (50 μM),
DNA polymerase (1.5 units), magnesium chloride (1.5 mM), and the template DNA (1 μL of
20 ng/μL). Polymerase chain reaction was performed with the following cycling profile:
2 minutes of initial denaturation at 95 °C, followed by 35 cycles of amplification with 1 minute
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denaturation at 94 °C, 1 minute annealing at 65 °C, 1 minute extension at 72 °C, and an extra
extension step of 5 minutes at 72 °C.

Analysis of plant growth index. To measure the growth index, at 15 days after inoculation of each
treatment, wheat plants were removed from each of eight pots per treatment, washed with running
tap water, and then dried. The height of the wheat plant from the base to the apical meristem was
recorded. The wet weight and the dry weight of the whole plant after drying at 70 °C for 48 hours
were also measured.

Sunn pest bioassay. The pathogenicity of the endophyte B. bassiana TV isolate was assessed
against E. integriceps. Based on the results of the endophytic activity of B. bassiana, the best
wheat plant inoculation method was used in the bioassay experiments. When the wheat plants
began the heading stage, the inoculated plants were kept in a cylindrical steel cage (50 cm
diameter × 23 cm height), with one opening on top and three openings on the sides covered
with fine mesh for ventilation. In each cage, six females and four males of E. integriceps were
placed on a pot of wheat plants for four days to mate and lay eggs. The insects were then
removed, and the numbers of hatched and nonhatched eggs were counted to calculate the
percentage of egg hatching. The numbers of nymphs were recorded. This process continued
until adult eclosion.

Effect of endophytic Beauveria bassiana on Fusarium plant pathogen. Fourteen days after
planting the Beauveria-inoculated seeds, soil from the crown of each plant was removed, and
4–5 seeds contaminated with F. culmorum were placed next to the crown. For controls, five
oat (Poaceae) seeds without Fusarium inoculation were placed alongside the wheat plants.
After two weeks, the emergence of Fusarium disease was assessed in the wheat plants that had
been treated with B. bassiana and in controls, following Yuan et al. (2017). Briefly, a scale of
0–4 (0 = healthy plant or plant without symptoms; 1= 1 – 33% of the plant affected;
2= 34 – 66% of the plant affected; 3= 67 – 99% of the plant affected; 4 = dead plant) was
used to rank plants according to the percentage of plant tissue affected by chlorosis, leaf
necrosis, or defoliation. Disease incidence was then calculated.

Field trial

Field experiments were conducted at the Agricultural Science and Education Farm, University
of Tehran, Karaj, Iran during the 2018 and 2019 crop years. An area of approximately 500 m2 was
selected, and operations such as ploughing, tilling, levelling, and irrigation were carried out in the
selected area each year before planting. The wheat seeds were cultivated in four blocks, or
replicates, in a randomised complete block design. Each block had four plots of 12-m2 area
each. Six rows of wheat were sown in each plot. Distance between rows was 20 cm, and seed
spacing in each row was 3 cm. The seeds were treated with B. bassiana conidia for treatment
plots before planting, as described above, and a similar number of seeds without inoculation
were planted in control plots.

The endophytic effect of B. bassiana on E. integriceps was studied under field conditions.
Within each replicate, two plots (a control and a treatment plot) were used to introduce
E. integriceps at the heading stage of the wheat plants. In each plot, three points were
randomly selected, and a steel cage-like net-covered frame was placed over wheat plants.
Twelve female and eight male E. integriceps were placed in each cage for mating. The field
experiments continued, as is described in the Greenhouse experiment section above.

Another plot was used to determine the endophytic effect of B. bassiana on F. culmorum. After
reaching the tillage stage, 4–5 seeds inoculated with F. culmorum conidia were planted at the foot
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of each plant. For control plants, the same number of seeds without Fusarium inoculation was
placed next to the crown. After the plants reached the heading stage, the rate of disease
incidence was assessed in the same way as is described in the greenhouse bioassay above.

Statistical analysis

Analysis of variance for each variable was used for data analysis. The endophyte-confirmation
test of wheat by B. bassiana under greenhouse conditions consigned to a factorial design with
three replicates and other greenhouse tests was conducted, based on a completely randomised
design with three replicates. Field data for two years were based on a randomised complete
block design. A two-sample t-test was used to compare the differences between the Sunn pest
parameters on control and treated plants. Post analysis of variance means comparisons was
done using Tukey’s test. SAS version 9.0 software (SAS Institute Inc., Cary, North Carolina,
United States of America; https://www.sas.com/en_us/software/iml-sas9.html) was used for
statistical analysis.

Results
Re-isolation of Beauveria bassiana from plants

The presence of B. bassiana as an endophyte in wheat plants was confirmed in all of the tested
treatments after 14 days of initial inoculation, and none of the control plants were found to be
colonised by the fungus. The recovery of B. bassiana as an endophyte from different plant organs –
leaf (F9,30= 88.58, P< 0.001), stem (F9,30= 40.04, P< 0.001), and root (F9,30= 35.54, P< 0.001)
– differed significantly among the different inoculation methods. The highest percentage of
B. bassiana re-isolation was obtained in the conidial powder seed inoculation under both
sterile and nonsterile conditions from the leaf (91.7% and 62.5%, respectively) and the stem
(91.7% and 45.8%, respectively; Fig. 1). In the case of root inoculation, both the conidial
powder–inoculated seed treatment (95.8% and 83.3% for sterile and nonsterile conditions,
respectively) and foliar spray treatment under nonsterile conditions (58.3%) showed the
highest rate of fungal recovery (Fig. 1). Beauveria bassiana was not recovered in any of the
plant tissues in the conidial suspension–soaked seed treatment after 12 hours under nonsterile
conditions. Also, no fungal growth was observed for the foliar spray and seed soaking in
conidial suspension 24-hour treatments under nonsterile conditions among leaf samples
(Fig. 1). Sterile and nonsterile soil drench, sterile foliar spray, and sterile seed soaking in
conidial suspension 24-hour treatments showed the lowest percentages of stem endophytism.
As shown in Figure 1, the sterile and nonsterile seeds soaking in conidial suspension 12-hour,
sterile foliar spray, nonsterile soil drench, and nonsterile seed soaking in conidial suspension
24-hour treatments showed the lowest endophytic root growth compared to other treatments.

Due to the absence of endophytism in the seed soaking in conidial suspension treatment after
six hours and severe fungal contamination in the seed soaking in conidial suspension at 48 hours,
these two treatments were excluded from the tests. The root endophyte intensity differed
significantly according to the amount of inoculum (F3,12= 18.73; P< 0.001). According to the
colony-forming unit value, the best endophyte was achieved by inoculation of 0.1 g conidia
powder with the wheat seeds (equivalent to 3.1× 107 conidia/mL per seed; data not shown).

In the next step, the intensity of endophytic presence in plant extracts was investigated by
counting colony-forming units. An interaction was observed between all three variables,
treatment (F4,21= 567.8, P< 0.001), plant tissues (F4,21= 259.6, P< 0.001), and experimental
conditions (F1,21= 14.4, P< 0.0005) on the intensity of B. bassiana endophyte in wheat plants
(Fig. 2). The highest percentage of fungal recovery was obtained in roots after the seed
inoculation in conidial powder under sterile and nonsterile conditions. The lowest-intensity
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Fig. 1. Mean (± standard error) colonisation percentages of Beauveria bassiana TV in different wheat plant parts (leaf, stem,
and root) with different inoculation methods under sterile and nonsterile conditions in the greenhouse (1, SD; 2, FS; 3, SSS
12 hours; 4, SSS 24 hours; and 5, SCP treatments). No Beauveria bassiana was present in control leaves. SD, soil drench;
FS, foliar spray; SCP, inoculation of seed with conidia powder; SSS, seeds soaking in fungal suspension; SSS 12 hours, seeds
soaking in fungal suspension for 12 hours; SSS 24 hours, seeds soaking in fungal suspension for 24 hours.

Fig. 2. The effect of endophyte inoculation of Beauveria bassiana TV (1, SD; 2, FS; 3, SSS 12 hours; 4, SSS 24 hours; and
5, SCP treatments) on the intensity of fungal colonisation in aerial (leaf and stem) and root tissues of wheat variety Pishtaz
under sterile and nonsterile conditions in the greenhouse. SD, soil drench; FS, foliar spray; SCP, inoculation of seed with
conidia powder; SSS, seeds soaking in fungal suspension; SSS 12 hours, seeds soaking in fungal suspension for 12 hours;
SSS 24 hours, seeds soaking in fungal suspension for 24 hours; CFU, colony-forming units
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endophytic presence was found in the aerial parts in the seed soaking in conidial suspension 12-
hour treatment under both sterile and nonsterile conditions. Moreover, a significant difference
occurred between the endophytic intensity in aerial tissues (stem and leaf) and root
(F1,21= 259.6; P< 0.001). Significant differences were also observed among the different
fungal treatments. The highest and lowest values for fungal endophytic intensity were
observed in the seed inoculation in conidial powder and seed soaking in conidial suspension
12-hour treatments, respectively (F4,21= 567.8; P< 0.001).

Endophytic intensity in aerial parts and root of wheat plants was affected by inoculation
method: the highest amount in roots was obtained by treating seeds in conidial powder, and
the lowest value was recorded in the seed soaking in conidial suspension 12-hour treatment
(F4, 21= 164.9; P< 0.001).

In the field trials, significant differences were observed in root endophytic intensity among the
different growth stages (F4,21= 201.6, P< 0.0001), but in the aerial plant parts, endophytic
intensity was not affected by growth stages (Fig. 3). Endophytic fungus was recovered from all
vegetative organs, but its re-isolation from seed was not successful.

The presence of B. bassiana in wheat plants was also confirmed by performing polymerase
chain reaction and amplifying the ITS1-5.8S-ITS2 sequences. Accordingly, in all treatments,
an amplicon with the expected size was observed, but the target sequence was not amplified
in the control plants (Fig. 4).

Growth index

The effect of endophytic B. bassiana on growth promotion of wheat plants under different
inoculation methods in comparison with control plants was analysed under both sterile and
nonsterile conditions (Table 1). Height and wet and dry weights differed significantly in the
inoculated plants compared to the controls. The most significant differences from the control
plants in three parameters were recorded in the seeds treated with conidial powder under
nonsterile conditions. The seed treatment in conidial powder under sterile conditions showed
a significant difference in height and wet weight. Soil inoculation, or soil drench, led to
increased height and dry weight under sterile conditions. Only the wheat plants’ height
increased in the seed soaking in conidial suspension 12-hour treatment in both sterile and
nonsterile conditions.

In contrast to the greenhouse results, no significant differences were observed in the growth
factors of inoculated plants compared to that of control plants in the field study.

Bioassay

The endophytic effect of B. bassiana was determined on life parameters of Sunn pest (Table 2).
The egg-hatch percentages (t= 3.02, df= 6, P< 0.05) and nymphmortality rates (t= 5.23, df= 6,

Fig. 3. The effect of inoculation of seed with conidia powder
treatment on the intensity of Beauveria bassiana TV
colonisation in aerial (leaf and stem) and root tissues of
wheat variety Pishtaz under different stages of growth
(1, shooting; 2, tilling; 3, stem elongation; and 4, head
emergence) in the field. CFU, colony-forming units
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P< 0.01) were affected significantly by endophytism under greenhouse conditions: 60.9% of the
eggs laid by the adults that were fed on the endophyte-treated plants hatched, whereas the
hatchability percentage in the controls was an estimated 89.4%. In the treatment under
greenhouse conditions, nymphs were unable to complete their life cycle and enter the adult stage.

Interestingly, pooled data from the field trials showed the same results as in greenhouse studies
for egg hatching. The mean hatching percentage for adults in control plants was higher than that
for adults reared on inoculated plants (t= 6.49, df= 6, P< 0.0001). The percentage of adult
emergence from control plants was higher than that from inoculated plants (t= 5.45, df= 6,
P= 0.001; Table 2).

Endophytic effect of Beauveria bassiana on plant disease

Significant differences between disease incidence in inoculated and control plants were noted
(t= 5.149, df= 8, P< 0.001). Disease incidence in inoculated plants was significantly lower
(36% ± 4.58%) than that in control plant (63.5% ± 2.55%). Presence of B. bassiana as an
endophyte in wheat plants decreased 42% of the root and crown rot disease caused by
F. culmorum in the greenhouse experiment.

Discussion
The wheat variety “Pishtaz” released in 2002 for temperate regions of Iran has good baking

properties, shows resistance to yellow rust and wart, and is tolerant to brown rust. Different
insect pests, particularly E. integriceps, which is the most destructive pest, threaten Iran’s
wheat production. Another critical agent reducing the production of Pishtaz-variety wheat is
Fusarium spp. The nonchemical control of these pests sensu lato is of particular importance.

Fig. 4. Detection of Beauveria bassiana TV with two-step
nested polymerase chain reaction in A, wheat variety Pishtaz
aerial parts and B, in the root. (N = negative control; FS1
and FS2= FS R1 and R2; SD1 and SD2= SD R1 and R2; SCP1
and SCP2= SCP R1and R2; C1 and C2 = control R1 and R2;
L = ladder; S24; and S242= SSS 24 hours R1 and R2; and
P = positive control). SD, soil drench; FS, foliar spray;
SCP, inoculation of seed with conidia powder; SSS, seeds
soaking in fungal suspension; SSS 12 hours, seeds soaking in
fungal suspension for 12 hours; SSS 24 hours, seeds soaking
in fungal suspension for 24 hours.
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Taking advantage of the pathogenic potential of naturally occurring B. bassiana against insects
and its recent discovery for endophytic effects against pests and plant diseases is worth
consideration.

The endophytic potential of the B. bassiana isolate TV was investigated in wheat plants under
greenhouse and field conditions. Of the different inoculation methods tested, the seed treatment in
conidial powder showed the highest percentage of B. bassiana recovery in all three plant tissues
(leaf, stem, and root). Admittedly, soaking seeds in conidial suspension (for 24 hours) and the
foliar spray treatment (in all the tested time intervals) showed the lowest percentage of fungal
recovery. Achieving the highest recovery rate of B. bassiana after inoculation in particular
host plants is affected by the fungal inoculation method (Donga et al. 2018; Jaber and
Ownley 2018). Direct injection of inoculant into coffee (Rubiaceae) (Posada et al. 2007) and
corn leaves (Wagner and Lewis 2000), stem injection (Bing and Lewis 1991), tomato seed
coating (Ownley et al. 2008), banana plant immersion (Akello et al. 2008b), seed inoculation
in other plants (Griffin 2007; Ownley et al. 2008), and poppy (Papaveraceae) leaf or seed
coating (Quesada-Moraga et al. 2006) resulted in high recovery rates of B. bassiana after

Table 1. The effect of endophytic Beauveria bassiana TV on growth promotion of wheat variety Pishtaz plants with different
inoculation methods in comparison with control plants under sterile and nonsterile conditions in the greenhouse.

Experiment con-
dition Treatmenta

Net increase in height
(cm)b

Net increase in wet
weight (mg)c

Net increase in dry
weight (mg)d

Nonsterile SD 0.62 0.00 0.00

FS 0.00 0.00 0.00

SSS 12 hours 3.25* 0.00 0.01

SSS 24 hours 0.75 0.01 0.01

SCP 4.00** 0.08** 0.01*

Sterile SD 7.75** 0.00 0.04**

FS 0.88 0.07 0.01

SSS 12 hours 2.75* 0.02 0.01

SSS 24 hours 3.12 0.00 0.00

SCP 3.62** 0.04* 0.01

aSD = soil drench; FS = foliar spray; SCP = inoculation of seed with conidia powder; SSS= seeds soaking in fungal suspension;
SSS 12 hours = seeds soaking in fungal suspension for 12 hours; SSS 24 hours = seeds soaking in fungal suspension for 24 hours.
b, c, dThe data show the difference between absolute values of the growth parameter for fungus-treated and control plants.
* The significant difference, P< 0.05.
** The significant difference, P< 0.01.

Table 2. Mean (± standard error) percentages of Sunn pest egg hatching and adult emergence after feeding on endophyte-
treated and control plants in greenhouse and field. Percentage values are based on the recovery of eggs from four cages per
treatment as follows: greenhouse (endophyte-treated plants: average 46 eggs/cage; control plants: average 43 eggs/cage);
field (endophyte-treated plants: average 33 eggs/cage; control plants: average 35 eggs/cage).

Experimental conditions

Mean (%) ± standard error

Greenhouse Field

Parameter Egg hatching Adult emergence Egg hatching Adult emergence

Endophyte-treated plants 60.9 ± 7.8 00.0 22.8 ± 3.4 15.1 ± 3.9

Control plants 89.4 ± 5.2 14.1 ± 2.6 65.5 ± 5.6 31.5 ± 1.6
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inoculation. According to Sánchez-Rodríguez et al. (2018), soil inoculation and seed coating were
the most effective inoculation methods for B. bassiana endophytic establishment in wheat plants,
and the foliar spray treatment rarely resulted in fungal recovery from plant tissue. Also, Posada
et al. (2007) reported that leaves are a poor route for fungal colonisation in the plants. It should be
considered that those authors referred to coffee plants, which have stomata within only one
surface of their leaves, whereas wheat and other grasses have stomata within both surfaces of
leaves. However, we found that the fungus could establish in all parts of wheat by inoculation
of seed treatment, soil drench, and foliar spray. Beauveria bassiana could successfully be
recovered from parts of the plant that were not directly treated with the fungus. This ability
may depend on the capacity of B. bassiana to reach the plant’s xylem and to spread from
there throughout the plant (Wagner and Lewis 2000).

The presence of B. bassiana in the treated plants was also confirmed using specific primers and
two-step nested polymerase chain reaction. Using a combination of different detection methods
for the re-isolation of B. bassiana leads to accurate detection of endophytic fungus in the plant
(Rondot and Reineke 2018). We were able to recover endophytic fungus from all vegetative
organs, but we were unsuccessful in re-isolating B. bassiana from seed. However, the presence
of an endophyte in a specific tissue does not necessarily elicit a measurable effect (Lopez
et al. 2014).

We demonstrated that B. bassiana has potential to improve plant growth parameters such as
height and wet and dry weights, and that a relation exists between the inoculation method and
plant growth. Plant-associated endophytes can promote plant growth directly through the
production of plant hormones or indirectly through antimicrobial activity, ammonia
production, and synthesis of deteriorating enzymes that inhibit pathogens (Hassan 2017). Our
results support earlier investigations that showed improved wheat growth following
inoculation with B. bassiana (Gurulingappa et al. 2011; Sánchez-Rodríguez et al. 2018).
In contrast, Mantzoukas et al. (2015) found that growth of sorghum was not influenced by
the endophytic treatment with B. bassiana and Metarhizium robertsii (Clavicipitaceae).

In addition to their ability to promote plant growth, entomopathogenic fungal species’
insecticidal activity is of special importance. Endophytic B. bassiana establishment in wheat is
shown to negatively affect mortality and egg hatching of Sunn pest. This effect on insect pests
can be attributed to the chemical mechanisms B. bassiana induces in the plant (Lopez
et al. 2014); for example, the destructive effects of endophytic fungi were observed to affect
growth and fertility of Acyrthosiphon pisum and Aphis fabae (both Hemiptera: Aphididae)
nymphs. The numbers of nymphs reared on the treated plants were significantly lower than
those fed on the control for two continuous generations (Akello and Sikora 2012), which is
consistent with our results showing a significant reduction in egg hatching of Sunn pest fed
on B. bassiana–inoculated plants.

No sign of fungal infection was detected in dead adults and nymphs in the current study,
similar to previous studies (Cherry et al. 2004; Lopez and Sword 2015). This suggests that the
insect-killing mechanism may be due to feeding inhibition, antibiosis, or alteration in host-
plant metabolites. Therefore, host-plant quality, not the fungus itself, affects the insects
(Quesada-Moraga et al. 2009; Akutse et al. 2013; Lopez et al. 2014; Reddy et al. 2014;
Mantzoukas et al. 2015; Yan et al. 2015; Jaber and Ownley 2018; Rondot and Reineke 2018).
Reduction in insect populations or damage caused by insect pests such as Cosmopolites
sordidus (Coleoptera: Curculionidae) (Akello et al. 2008a), Iraella luteipes (Hymenoptera:
Cynipidae) (Quesada-Moraga et al. 2009), Ostrinia nubilalis (Lepidoptera: Crambidae) (Bing
and Lewis 1991), and Sesamia calamistis (Lepidoptera: Noctuidae) (Cherry et al. 2004) has
been attributed to the toxicity of endophytic metabolites of B. bassiana for the mentioned insects.

In addition to biocontrol of Sunn pest, endophytic B. bassiana was able to reduce F. culmorum
infection by up to 42%. Similar results have been previously reported: for example, Jaber and
Ownley (2018) reported that endophytic colonisation of wheat with B. bassiana
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(NATURALIS) resulted in a significant reduction in percentage disease incidence of
F. culmorum, with up to 51.5% of B. bassiana–colonised plants having no visible symptoms of
disease, whereas all Fusarium-infected noncolonised plants (control) showed visible disease
symptoms after 24 days. The interaction between endophytic fungi and plant pathogens could
be through fungal parasitism, competition for ecological and nutritional niches, or the
production of secondary metabolites (Jaber and Ownley 2018). After seed treatment, the
initial endophytic colonisation may induce a defence mechanism in the plant by producing
lignin or cell wall, leading to the reduction of pathogen contamination or prevention of the
disease occurrence (Jaber and Ownley 2018).

In conclusion, our results demonstrate the potential endophytic activity of an
entomopathogenic isolate of B. bassiana for promoting growth of wheat and contributing to
control of E. integriceps and Fusarium pathogen. Beauveria bassiana can be commercially
produced and used in wheat cultivation, along with other elements to successfully control
E. integriceps and Fusarium-caused diseases and to promote wheat growth and performance.
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