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Abstract
In this paper, we consider a mixed dividend strategy in a dual risk model. The mixed dividend strategy is the
combination of a threshold dividend and a Parisian implementation delays dividend under periodic observation.
Given a series of discrete observation points, when the surplus level is larger than the predetermined bonus barrier
at observation point, the Parisian implementation delays dividend is immediately carried out, and the threshold
dividend is performed continuously during the delayed period. We study the Gerber-Shiu expected discounted
penalty function and the expected discounted dividend payments before ruin in such a dual risk model. Numerical
illustrations are given to study the influence of relevant parameters on the ruin-related quantities and the selection
of the optimal dividend barrier for a given initial surplus level.

1. Introduction

The dual risk model describes the surplus of a company with a fixed expense rate, and earns a random
amount of income at random times. Therefore, it might be appropriate to adopt this model for pharma-
ceutical, petroleum or any business with random growth. The dual risk model was introduced by Avanzi
et al. [4], who studied the expected discounted dividends until ruin for the dual model under the barrier
strategy, and showed that the optimal value of the dividend barrier under the dual model is indepen-
dent of the initial surplus. However, if such a barrier strategy is applied, the ultimate ruin probability
of the company is always to be 1. Ng [21] proposed a threshold dividend strategy to replace the barrier
dividend strategy. In a threshold strategy, excess surplus is paid at a constant rate 𝑐1 > 0 instead of a
single burst. For more studies on the barrier and threshold dividend strategy, see Cheung and Drekic
[7], Gerber and Smith [17], Avanzi et al. [5], Albrecher et al. [3], Yu et al. [31], Peng et al. [22], Zhou
et al. [36], Liu et al. [19], Wang et al. [24], among others.

Although the surplus flow evolves continuously, it is only checked periodically by the board of
directors or tax authority who decide on dividend payments to the shareholders of the insurance company.
These led Albrecher et al. [1,2] to first consider periodic observation of the classical compound Poisson
model. Because ruin and dividend can only be observed at random observation times {𝜈𝑖}∞𝑖=0, a lump
sum of dividend is payable at such discrete time points. Albrecher et al. [1,2] studied the expected
discounted dividend payments before ruin and the expected discounted penalty function, respectively.
For more related papers on this strategy, see Avanzi and Wong [5], Choi and Cheung [11], Cheung and
Zhang [9], Yu et al. [30] and the references therein.
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In addition to the above-mentioned continuous dividend and periodic dividend, recently, the Parisian
implementation delays dividend have become very popular in ruin theory. The Parisian implementation
delay idea originates from the concept of Parisian options, see Chesney et al. [6]. An example is the
owner of which loses the option if the underlying asset price down-crosses the level 𝑏 remains below
this level for a time interval longer than 𝑑. In particular, Dassios and Wu [14] first introduced Parisian
implementation delays in insurance risk models, if the surplus remains negative for a period of time,
then Parisian ruin occurs, and they obtained the Laplace transform of the Parisian ruin time under
the diffusion-perturbed classical model with exponentially distributed jumps. For more information on
Parisian ruin, we refer to Czarna and Renaud [13], Yang et al. [29], Loeffen et al. [20], Wang and Zhou
[25], Xu et al. [28] and so on. The Parisian implementation delays dividend has also attracted a lot of
interests recently. Cheung and Wong [8] considered the dual risk model with Parisian implementation
delays in dividend payments and derived the expression of the Laplace transform of the time of ruin and
the expected discounted dividends paid until ruin. Zhao et al. [34] studied a spectrally positive Lévy risk
process with Parisian implementation delays in dividend payments and derived the Laplace transform
of the ruin time. For more on the Parisian implementation delays in dividend payments, see Wong and
Cheung [26], Drekic et al. [16], Czarna et al. [12] and the references therein.

In principle, during the delay, the company still has access to the random amount of income at
random times. Due to the uncontrollability of the delay time, the company may experience significant
growth in-between delay dividend times and may wish to distribute a portion of the growth as dividends
immediately. It is assumed that dividend is payable only when the process has stayed above the barrier
for a certain amount of time 𝑑 > 0. If the process dips below the barrier during that interval, then the
decision is revoked and no dividend is paid. As a result, shareholders may never get a dividend. Motivated
by this, we propose a class of hybrid dividend strategies that allow continuous dividends within the
deferred dividend period. On the basis of Cheung and Wong [8], we add threshold dividend and periodic
observation. That is to say, for a pre-specified sequence of random observation times {𝜈𝑖}∞𝑖=0, when the
surplus is observed above the pre-given barrier level 𝑏 > 0, the Parisian implementation delays is carried
out, and dividends will be paid continuously at a fixed rate 𝑐1 > 0 in the process of delay (during the
delayed period, the surplus drops to 𝑏, and the threshold dividend stops correspondingly); if the level of
surplus remains above barrier level 𝑏 throughout the deferral period, the amount exceeding the barrier
level at the end of the delay will be paid as a lump sum dividend.

The outline of the paper is organized as follows. Section 2 gives an introduction to the model of
this paper, a definition of the function to be studied and also gives some results that will be used in
this paper. In Section 3, we provide the general expression of the expected discounted penalty function
𝜙𝑏 (𝑢), and derive the general result of the function 𝜙𝑏 (𝑢) by calculating the intermediate function in
the expression. In the same way, we give expression and derivation of the expected discounted dividend
function 𝑉𝑏 (𝑢) in Section 4. In Section 5, some numerical examples are given to analyze the effect of
relevant parameters on the ruin-related quantities and the selection of the optimal dividend barrier for a
given initial surplus.

2. The model

We consider companies with deterministic expenses and random gains, its available capital can be
described by the process {𝑈 (𝑡)}𝑡≥0 (in the absence of dividends) defined via

𝑈 (𝑡) = 𝑢 − 𝑐𝑡 + 𝑆(𝑡) = 𝑢 − 𝑐𝑡 +
𝑁 (𝑡)∑
𝑖=1

𝑋𝑖 , 𝑡 ≥ 0, (2.1)

where 𝑈 (0) = 𝑢 ≥ 0 is the initial surplus and 𝑐 > 0 is the constant expense rate per unit time. The
premium number process {𝑁 (𝑡)}𝑡≥0 is a homogeneous Poisson process with intensity 𝜆 > 0, and the
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gain amounts {𝑋𝑖}∞𝑖=1 are mutually independent and identically distributed (i.i.d.), and also independent
of {𝑁 (𝑡)}𝑡≥0. The time of ruin is given by 𝜏0 = inf{𝑡 ≥ 0; 𝑈 (𝑡) = 0}.

Inspired by the articles mentioned in Section 1, this paper aims to propose a mixed dividend strategy
with a Parisian implementation delays in the dual risk model (2.1), which extends the work by Cheung
and Wong [8]. Then, the surplus process is denoted by {𝑈𝑑

𝑏 }𝑡≥0. At the observation times {𝜈𝑖}∞𝑖=0, 𝜈0 = 0,
if the level of surplus 𝑥 is observed to exceed the previously given barrier 𝑏, then the dividend mixture
begins. Defining 𝑇𝑖 = 𝜈𝑖 − 𝜈𝑖−1 for 𝑖 = 1, 2, . . . , and assumed that the inter-observation times {𝑇𝑖}∞𝑖=1
are i.i.d. with same distribution as 𝑇 and are independent of {𝑁 (𝑡)}𝑡≥0 and {𝑋𝑖}∞𝑖=1. We use {𝑉𝑖}∞𝑖=1 to
denote the 𝑖th Parisian implementation delay when {𝑈𝑑

𝑏 }𝑡≥0 is observed for the 𝑖th time above 𝑏. It is
assumed that the delays {𝑉𝑖}∞𝑖=1 form a sequence of i.i.d. positive random variables that are independent
of {𝑁 (𝑡)}𝑡≥0, {𝑇𝑖}∞𝑖=1 and {𝑋𝑖}∞𝑖=1. Now, define the threshold dividend model𝑈𝑏 (𝑡) based on Model 2.1,
and the auxiliary process 𝑊𝑖 (𝑡), 𝑖 = 1, 2, . . .

𝑈𝑏 (𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑈 (𝑡), 0 ≤ 𝑡 < 𝜈1,
𝑈 (𝑡), 𝜈 𝑗 ≤ 𝑡 ≤ 𝜈+1 , 𝑗 = 1, 2, . . . ,

𝑈 (𝜈+1 ) − (𝑐 + 𝑐1)(𝑡 − 𝜈+1 ) +
𝑁 (𝑡)∑

𝑖=𝑁 (𝜈+1 )+1

𝑋𝑖 , 𝜈
+
1 < 𝑡 < 𝜂1,

𝑊𝑖 (𝑡) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑈𝑏 (𝑡), 𝑡 ≥ 0, 𝑖 = 1,

𝑏 − 𝑐(𝑡 − 𝜂𝑖−1) − 𝑐1(𝑡 − 𝜈+𝑖 ) +
𝑁 (𝑡)∑

𝑖=𝑁 (𝜂𝑖−1)+1

𝑋𝑖 , 𝑡 ≥ 𝜂𝑖−1, 𝑖 = 2, 3, . . . ,

where 𝜈+𝑖 = inf{𝜈 𝑗 ≥ 𝜂𝑖−1; 𝑊𝑖 (𝜈 𝑗) > 𝑏}, 𝑖 = 1, 2, . . . is the first time {𝑊𝑖 (𝑡)}𝑡≥𝜂𝑖−1 is above the dividend
barrier; 𝜂𝑖 = (𝜈+𝑖 +𝑉𝑖) ∧ 𝜃𝑖 for 𝑖 = 1, 2, . . ., with the starting point 𝜂0 = 0 (𝑥 ∧ 𝑦 = min(𝑥, 𝑦)); whereas
𝜃𝑖 = inf{𝑡 > 𝜈+𝑖 ; 𝑊𝑖 (𝑡) = 𝑏}, 𝑖 = 1, 2, . . . represents the first time {𝑊𝑖 (𝑡)}𝑡≥𝜈+𝑖 down-crosses level 𝑏 due
to the expense rate and threshold dividend. The surplus process {𝑈𝑑

𝑏 (𝑡)}𝑡≥0 can now be characterized by

𝑈𝑑
𝑏 (𝑡) = 𝑊𝑖 (𝑡), 𝜂𝑖−1 ≤ 𝑡 ≤ 𝜂𝑖 , 𝑖 = 1, 2, . . . . (2.2)

From the previous hypothesis, we noticed that if {𝑊𝑖 (𝑡)}𝑡≥𝜈+𝑖 stays above the dividend barrier continu-
ously for a period of 𝑉𝑖 such that 𝑊𝑖 (𝜈+𝑖 + 𝑉𝑖) > 𝑏 (or equivalently, 𝜈+𝑖 + 𝑉𝑖 ≤ 𝜃𝑖 so that 𝜂𝑖 = 𝜈+𝑖 + 𝑉𝑖),
then a dividend of 𝑊𝑖 (𝜂𝑖) − 𝑏 will be paid at time 𝜂𝑖 , dragging the process {𝑈𝑑

𝑏 (𝑡)}𝑡≥0 back to level
𝑏. On the other hand, if {𝑊𝑖 (𝑡)}𝑡≥𝜈+𝑖 drops below 𝑏 within a period of length 𝑉𝑖 (i.e. 𝜃𝑖 ≤ 𝜈+𝑖 + 𝑉𝑖) so
that 𝜂𝑖 = 𝜃𝑖 , then no Parisian dividend will be paid at time 𝜂𝑖 . The time of ruin in this modified model
{𝑈𝑑

𝑏 (𝑡)}𝑡≥0 is defined as 𝜏 = inf{𝜈𝑖; 𝑈𝑑
𝑏 (𝜈𝑖) ≤ 0}. For convenience, we let 𝑐 + 𝑐1 = 𝑐2.

To illustrate the features of {𝑈𝑑
𝑏 (𝑡)}𝑡≥0, we plot a sample path of it in Figure 1, where “type 1”

and “type 2” represent dividends generated by continuous dividend payments at rate 𝑐1 and Parisian
implementation delays dividend, respectively. In this paper, we are interested in the Gerber-Shiu expected
discounted penalty function that is defined as (classical risk model)

𝜙(𝑢) := 𝐸𝑢 [𝑒−𝛿𝜏𝜔(𝑈 (𝜏−), |𝑈 (𝜏) |)𝐼{𝜏<∞}], 𝑢 ≥ 0,

where 𝛿 ≥ 0 is the Laplace transform argument, and 𝐸𝑢 is the expectation of the initial surplus 𝑢, 𝐼{𝜏<∞}
is an indicator function,𝜔 : [0,∞)×[0,∞) → [0,∞) is a measurable penalty function of the𝑈 (𝜏−) and
|𝑈 (𝜏) |. It has become an important and standard risk measure in ruin theory since various quantities of
interests in ruin theory can be obtained for different values of the discount factor 𝛿 and different penalty
functions 𝜔. For recent research progress on the Gerber-Shiu function, we can refer to work by Lin et
al. [18], Yuen et al. [32], Zhao and Yin [35], Chi and Lin [10], Deng et al. [15], Zhang and Su [33], Xie
and Zhang [27], among others. In this paper, we consider the Gerber-Shiu expected discounted penalty
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Figure 1. Sample path of {𝑈𝑑
𝑏 (𝑡)}𝑡≥0.

function is simply (a constant multiple of) the Laplace transform of the time of ruin given by

𝐸𝑢 [𝑒−𝛿𝜏 𝐼{𝜏<∞}] = 𝐸𝑢 [𝑒−𝛿𝜏] = 𝜙𝑏 (𝑢) =
⎧⎪⎪⎨⎪⎪⎩
𝜙𝐿𝑏 (𝑢), 𝑢 < 0,
𝜙𝑀𝑏 (𝑢), 0 ≤ 𝑢 ≤ 𝑏,
𝜙𝑈𝑏 (𝑢), 𝑏 < 𝑢,

(2.3)

where the subscripts “L,” “M” and “U” stand for “lower,” “middle” and “upper” layers, respectively.
Note that we have omitted the indicator 𝐼{𝜏<∞} of the event {𝜏 < ∞} in the definition (2.3) because ruin
occurs with probability one in the presence of a barrier. In addition to the Laplace transform of the time
of ruin, we also defined about the expected discounted dividend payments before ruin, which is

𝐸𝑢

[ ∞∑
𝑖=1

𝑒−𝛿𝜂𝑖 [𝑈𝑑
𝑏 (𝜂−𝑖 ) − 𝑏 + 𝑐1

∫ 𝜈+𝑖

𝜂−
𝑖

𝑒−𝛿𝑡 𝑑𝑡] 𝐼{𝜂𝑖<𝜏 }
]

= 𝑉𝑏 (𝑢) =
⎧⎪⎪⎨⎪⎪⎩
𝑉𝐿𝑏 (𝑢), 𝑢 < 0,
𝑉𝑀𝑏 (𝑢), 0 ≤ 𝑢 ≤ 𝑏,
𝑉𝑈𝑏 (𝑢), 𝑏 < 𝑢.

(2.4)

Remark 2.1. Theoretically, the classical risk model and the dual risk model have great similarity, the
two are mutual reflection in nature. Through the duality principle, studying a problem in one model can
often provide ideas or even directly solve the problem in another model. Therefore, the classical risk
model and some corresponding existing results are introduced below which will be applied to calculate
Eqs. (2.3) and (2.4) later. We first introduce the classical compound Poisson insurance risk process
{𝑈𝑆 (𝑡)}𝑡≥0 which is defined by

𝑈𝑆 (𝑡) = 𝑢 + 𝑐𝑡 − 𝑆(𝑡) = 𝑢 + 𝑐𝑡 −
𝑁 (𝑡)∑
𝑖=1

𝑋𝑖 , 𝑡 ≥ 0, (2.5)

where 𝑈𝑆 (0) = 𝑢 ≥ 0 is the initial surplus, 𝑐 > 0 is now the incoming premium rate per unit time, 𝑆(𝑡)
represents the aggregate claim amounts by time 𝑡 and {𝑋𝑖}∞𝑖=1 is interpreted as the sequence of insurance
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claims. Considering the periodic observation {𝑇𝑖}∞𝑖=1, the model (2.5) becomes

𝑈𝑆 (𝜈𝑖) = 𝑈𝑆 (𝜈𝑖−1) + 𝑐𝑇𝑖 − [𝑆(𝜈𝑖) − 𝑆(𝜈𝑖−1)], 𝑖 = 1, 2, . . . . (2.6)

The time of ruin is defined by 𝜏𝑑 = 𝜈𝑘𝑏 , where 𝑘𝑏 = inf{𝑘 ≥ 1 : 𝑈𝑆 (𝜈𝑘 ) < 0} is the number of
observation intervals before ruin. Similarly, we define the moment when the surplus process first crosses
the barrier 𝑏 as 𝜏𝑏 = 𝜈𝑘∗𝑏 , where 𝑘∗𝑏 = inf{𝑘 ≥ 1 : 𝑈𝑆 (𝜈𝑘 ) ≥ 𝑏} is the number of observation intervals
before the first crossing barrier 𝑏. To derive the Gerber-Shiu expected discounted penalty function 𝜙𝑏 (𝑢)
and the expected discounted dividend payments before ruin 𝑉𝑏 (𝑢), we made the following assumption.

Assumption 1. We assume that the {𝑇𝑖}∞𝑖=1 form an i.i.d. sequence with common density 𝑓𝑇 (𝑡) = 𝛽𝑒−𝛽𝑡 ,
𝑡 > 0, where the scale parameter 𝛽 > 0.

Assumption 2. We assume that the distribution 𝑋 of single claim (gain) amount in this paper is
exponential distribution, and its density function is 𝑝 (𝑥) = 𝑎1𝑒

−𝑎1𝑥 , 𝑥 > 0.

Assumption 3. We assume that each Parisian implementation delay is deterministic such that 𝑉𝑖 = 𝑑
for all 𝑖 = 1, 2, . . ..

Let
𝜆[ 𝑓𝑋 (𝜀) − 1] + 𝑐𝜀 = 𝛿 + 𝛽, (2.7)

where 𝑓𝑋 (𝑥) is the density function of single claim quantity, let 𝑓𝑋 (𝑠) =
∫ ∞

0 𝑒−𝑠𝑥 𝑓𝑋 (𝑥) 𝑑𝑥 denote the
Laplace transform of the claim size density. Therefore, Eq. (2.7) can be simplified to

𝜀2 +
(
𝑎1 − 𝜆 + 𝛽 + 𝛿

𝑐

)
𝜀 − (𝛽 + 𝛿)𝑎1

𝑐
= 0. (2.8)

By Eq. (2.8) in Albrecher et al. [2], we known that it has a unique negative solution 𝜌1 < 0 and a positive
solution 𝜌2 > 0. Note that for 𝛽 = 0, Eq. (2.8) reduces to the well-known Lundberg fundamental equation
of the compound Poisson risk process. There is also a unique negative root 𝜌0

1 < 0, and the only positive
root 𝜌0

2 > 0.
We define the discounted density of the ruin deficit of {𝑈𝑆 (𝑡)}𝑡≥0 at random observation to be

ℎ+𝛿 (𝑦 | 𝑢), 𝑢 ≥ 0, ℎ−𝛿 (𝑦 | 𝑢), 𝑢 < 0. According to the Eqs. (2.16) and (2.17) of Albrecher et al. [2]

ℎ+𝛿 (𝑦 | 𝑢) = (𝜌0
1 − 𝜌1)𝑒𝜌0

1𝑢+𝜌1𝑦 , 𝑢 ≥ 0, (2.9)

ℎ−𝛿 (𝑦 | 𝑢) =
𝛽(𝑎1 + 𝜌2)(𝜌0

1 − 𝜌1)
𝑐(𝜌2 − 𝜌1)(𝜌2 − 𝜌0

1)
𝑒𝜌2𝑢+𝜌1𝑦 + 𝛽(𝑎1 + 𝜌2)

𝑐(𝜌2 − 𝜌1)
𝑒𝜌2 (𝑢+𝑦) 𝐼{𝑦≤−𝑢 }

+ 𝛽(𝑎1 − 𝜌1)
𝑐(𝜌2 − 𝜌1)

𝑒𝜌1 (𝑢+𝑦) 𝐼{𝑦>−𝑢 }, 𝑢 < 0. (2.10)

We calculate the dividend function 𝑉𝑏 (𝑥) by analyzing the discounted density of the increment of
the process {𝑈𝑆 (𝑡)}𝑡≥0 between continuous observation time points (see [2]). Due to the Markovian
structure of {𝑈𝑆 (𝑡)}𝑡≥0, this sequence of pairs is i.i.d. with generic distribution (𝑇,∑𝑁 (𝑇 )

𝑖=1 𝑋𝑖 − 𝑐𝑇) and
joint Laplace transform is

𝐸

[
𝑒
−𝛿𝑇 −𝑠

(∑𝑁 (𝑇 )
𝑖=1 𝑋𝑖−𝑐𝑇

) ]
= 𝐸 [𝑒−[𝜆+𝛿−𝑐𝑠−𝜆𝑀𝑋 (−𝑠) ]𝑇 ] =

∫ ∞

−∞
𝑒−𝑠𝑦𝑔𝛿 (𝑦) 𝑑𝑦, (2.11)
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Figure 2. Sample path before and after folding.

where 𝑔𝛿 (𝑦)(−∞ < 𝑦 < ∞) represents the discounted density of the increment
∑𝑁 (𝑇 )
𝑖=1 𝑋𝑖 − 𝑐𝑇 between

successive observation times, 𝑀𝑋 (𝑠) is the moment generating function of 𝑋 , discounted at rate 𝛿 with
respect to time 𝑇 . According to the Example (4.1) of Albrecher et al. [2], they gives

𝑔−𝛿 (𝑦) =
𝛽(𝑎1 + 𝜌2)
𝑐(𝜌2 − 𝜌1)

𝑒𝜌2𝑦 , 𝑔+𝛿 (𝑦) =
𝛽(𝑎1 + 𝜌1)
𝑐(𝜌2 − 𝜌1)

𝑒𝜌1𝑦 , 𝑦 > 0. (2.12)

3. The Laplace transform of the time of ruin

In this section, we study the Laplace transform of the time of ruin 𝜙𝑏 (𝑢). It can be seen from Eq. (2.3)
that the form of 𝜙𝑏 (𝑢) varies with the initial surplus 𝑢. Therefore, we first consider the case where the
initial surplus 0 ≤ 𝑢 ≤ 𝑏. The case where the initial surplus 𝑢 < 0 and 𝑢 > 𝑏 will be resolved later.

For 0 ≤ 𝑢 ≤ 𝑏, we need to distinguish whether ruin occurs before the process was first observed
above or below level 𝑏 (i.e. ruin occurs before or after 𝜈+1 )

𝜙𝑀𝑏 (𝑢) = 𝐸𝑢 [𝑒−𝛿𝜏 𝐼{𝜏<𝜈+1 }] + 𝐸𝑢 [𝑒−𝛿𝜂1 𝐼{𝜈+1 <𝜏 }]𝜙𝑀𝑏 (𝑏). (3.1)

Similarly, let 𝑢 = 𝑏 in the above equation and bring back to the above equation to get

𝜙𝑀𝑏 (𝑢) = 𝐸𝑢 [𝑒−𝛿𝜏 𝐼{𝜏<𝜈+1 }] +
𝐸𝑢 [𝑒−𝛿𝜂1 𝐼{𝜈+1 <𝜏 }]𝐸𝑏 [𝑒−𝛿𝜏 𝐼{𝜏<𝜈+1 }]

1 − 𝐸𝑏 [𝑒−𝛿𝜂1 𝐼{𝜈+1 <𝜏 }]
. (3.2)

It can be seen from Eq. (3.2) that the key to calculate the Laplace transform of the ruin time is to calculate
𝐸𝑢 [𝑒−𝛿𝜏 𝐼{𝜏<𝜈+1 }] and 𝐸𝑢 [𝑒−𝛿𝜂1 𝐼{𝜈+1 <𝜏 }] for 0 ≤ 𝑢 ≤ 𝑏. Next, we will calculate these two expressions
separately.

3.1. The discussion of 𝑬𝒖[𝒆−𝜹𝝉 𝑰{𝝉<𝝂+1 }], 0 ≤ 𝒖 ≤ 𝒃

When 0 ≤ 𝑢 ≤ 𝑏, the ruin occurred before the first observed surplus was above 𝑏, the surplus process
{𝑈𝑑

𝑏 (𝑡)}𝑡≥0 simply behaves like the process {𝑈𝑏 (𝑡)}𝑡≥0 prior to time 𝜈+1 . As a result, the quantity
𝐸𝑢 [𝑒−𝛿𝜏 𝐼{𝜏<𝜈+1 }] is independent of the distributional assumption on the Parisian implementation delay
for 0 ≤ 𝑢 ≤ 𝑏, so that we have Figure 2.

Theorem 1. When 0 ≤ 𝑢 ≤ 𝑏, we have

𝐸𝑢 [𝑒−𝛿𝜏 𝐼{𝜏<𝜈+1 }] =
(𝜌2 − 𝜌0

2)(𝜌2 − 𝜌0
1) [(𝜌0

2 − 𝜌1)𝑒𝜌0
2 (𝑏−𝑢) − (𝜌0

1 − 𝜌1)𝑒𝜌0
1 (𝑏−𝑢) ]

𝜌2(𝜌0
2 − 𝜌1)(𝜌2 − 𝜌0

1)𝑒𝜌
0
2𝑏 − (𝜌0

1 − 𝜌1)(𝜌2 − 𝜌0
2)𝑒𝜌

0
1𝑏

, 0 ≤ 𝑢 ≤ 𝑏. (3.3)
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Proof. From Figure 3 and Remark 2.1, we want to calculate the 𝐸𝑢 [𝑒−𝛿𝜏 𝐼{𝜏<𝜈+1 }], which can be
observed that the event {𝜏 < 𝜈+1 } in the process {𝑈𝑑

𝑏 (𝑡) |𝑈𝑑
𝑏 (0) = 𝑢}𝑡≥0 is equivalent to the event that

{𝑈𝑆 (𝑡) |𝑈𝑆 (0) = 𝑏−𝑢}𝑡≥0 reaches level 𝑏 before observation dropping below zero. Under such an event,
𝜏 in {𝑈𝑑

𝑏 (𝑡) |𝑈𝑑 (0) = 𝑢}𝑡≥0 is simply 𝜏𝑏 in {𝑈𝑆 (𝑡) |𝑈𝑏 (0) = 𝑏 − 𝑢}𝑡≥0. We have

𝐸𝑢 [𝑒−𝛿𝜏 𝐼{𝜏<𝜈+1 }] = 𝐸 [𝑒−𝛿𝜏𝑏 𝐼{𝜏𝑏<𝜏𝑑 } |𝑈𝑆 (0) = 𝑏 − 𝑢], 0 ≤ 𝑢 ≤ 𝑏, (3.4)

which can be seen as the Laplace transform of 𝜏𝑏 when {𝑈𝑆 (𝑡)}𝑡≥0 is above 𝑏 for the first time before
ruin. In the spirit of Albrecher et al. [1], suppose a penalty function 𝜔∗(·) is applied to the first overshoot
of {𝑈𝑆 (𝑡)}𝑡≥0 over level 𝑏 avoiding ruin until then and define the quantity

𝜒(𝑢) = 𝐸 [𝑒−𝛿𝜏𝑏𝜔∗ (𝑈𝑆 (𝜏𝑏) − 𝑏)𝐼{𝜏𝑏<𝜏𝑑 } |𝑈𝑆 (0) = 𝑢], 0 ≤ 𝑢 ≤ 𝑏. (3.5)

According to the Section 4 of Albrecher et al. [1], we have

𝜒(𝑢) =
∫ ∞

0
𝜔∗ (𝑦)ℎ𝛿 (𝑦 | 𝑢) 𝑑𝑦, 0 ≤ 𝑢 ≤ 𝑏, (3.6)

where ℎ𝛿 (𝑦 | 𝑢) is the discounted density of the overshoot above level 𝑏 avoiding ruin. Assume again
that both the claim sizes and the observation intervals are exponentially distributed with mean 1/𝑎1 and
1/𝛽, we have

ℎ𝛿 (𝑦 | 𝑢) =
𝑒−𝜌2𝑦 (𝜌2 − 𝜌0

2)(𝜌2 − 𝜌0
1) [(𝜌0

2 − 𝜌1)𝑒𝜌0
2𝑢 − (𝜌0

1 − 𝜌1)𝑒𝜌0
1𝑢]

(𝜌0
2 − 𝜌1)(𝜌2 − 𝜌0

1)𝑒𝜌
0
2𝑏 − (𝜌0

1 − 𝜌1)(𝜌2 − 𝜌0
2)𝑒𝜌

0
1𝑏

, 𝑦 > 0; 0 ≤ 𝑢 ≤ 𝑏. (3.7)

Therefore, when we consider the penalty function 𝜔∗ (·) = 1, we obtain

𝜒(𝑢) =
∫ ∞

0

𝑒−𝜌2𝑦 (𝜌2 − 𝜌0
2)(𝜌2 − 𝜌0

1) [(𝜌0
2 − 𝜌1)𝑒𝜌0

2𝑢 − (𝜌0
1 − 𝜌1)𝑒𝜌0

1𝑢]
(𝜌0

2 − 𝜌1)(𝜌2 − 𝜌0
1)𝑒𝜌

0
2𝑏 − (𝜌0

1 − 𝜌1)(𝜌2 − 𝜌0
2)𝑒𝜌

0
1𝑏

𝑑𝑦, 0 ≤ 𝑢 ≤ 𝑏. (3.8)

Consolidating the above observations, we arrive at Eq. (3.3). So replace 𝑢 in Eq. (3.8) with 𝑏 − 𝑢.
�

3.2. The discussion of 𝑬𝒖[𝒆−𝜹𝜼1 𝑰{𝝂+1<𝝉 }], 0 ≤ 𝒖 ≤ 𝒃

Theorem 2. When 0 ≤ 𝑢 ≤ 𝑏, we have

𝐸𝑢 [𝑒−𝛿𝜂1 𝐼{𝜈+1 <𝜏 }] =
∫ ∞

0

(
ℎ+𝛿 (𝑦 | 𝑏 − 𝑢) −

∫ ∞

0
𝐸 [𝑒−𝛿𝜏𝑏 𝐼{𝜏𝑏<𝜏𝑑 };𝑈𝑆 (𝜏𝑏) ∈ 𝑏 + 𝑑𝑥 |𝑈𝑆 (0) = 𝑏 − 𝑢]

ℎ+𝛿 (𝑦 | 𝑏 + 𝑥)
)
𝐸𝑏+𝑦 [𝑒−𝛿𝜂1] 𝑑𝑦, (3.9)

where

ℎ+𝛿 (𝑦 | 𝑢) = (𝜌0
1 − 𝜌1)𝑒𝜌0

1𝑢+𝜌1𝑦 , 𝑦 > 0. (3.10)

Proof. In model (2.1), when the level of surplus crosses barrier 𝑏, it can be analogous to the deficit at the
moment of ruin in model (2.5). Therefore, the deficit of ruin of surplus process {𝑈𝑑

𝑏 (𝑡)}𝑡≥0 is equivalent
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Figure 3. Sample path before and after folding.

to the part that the surplus process of {𝑈𝑆 (𝑡)}𝑡≥0 exceeds level 𝑏. It can be known from Eq. (2.9) that

ℎ+𝛿 (𝑦 | 𝑢) = (𝜌0
1 − 𝜌1)𝑒𝜌0

1𝑢+𝜌1𝑦 , 𝑦 > 0.

Note that for surplus process {𝑈𝑆 (𝑡)}𝑡≥0, we consider the discounted density of the ruin deficit ℎ+𝛿 (𝑦 | 𝑢).
One of the cases is that the time when the surplus level exceeds 𝑏 is observed for the first time before the
ruin, which is equivalent to that in the surplus process {𝑈𝑑

𝑏 (𝑡)}𝑡≥0, the ruin occurs before the surplus
level exceeds 𝑏 is observed for the first time which needs to be deducted. The sample trajectories of
surplus process {𝑈𝑑

𝑏 (𝑡)}𝑡≥0 and surplus process {𝑈𝑆 (𝑡)}𝑡≥0 are shown in Figure 3.
Such contribution can be removed by subtracting

∫ ∞
0 𝐸 [𝑒−𝛿𝜏𝑏 𝐼{𝜏𝑏<𝜏𝑑 };𝑈𝑆 (𝜏𝑏) ∈ 𝑏 + 𝑑𝑥 |𝑈𝑆 (0) =

𝑏 − 𝑢]ℎ+𝛿 (𝑦 | 𝑏 + 𝑥) from ℎ+𝛿 (𝑦 | 𝑏 − 𝑢). Thus, we can obtain Eq. (3.9). Since the functions∫ ∞
0 𝐸 [𝑒−𝛿𝜏𝑏 𝐼{𝜏𝑏<𝜏𝑑 };𝑈𝑆 (𝜏𝑏) ∈ 𝑏 + 𝑑𝑥 |𝑈𝑆 (0) = 𝑏 − 𝑢]ℎ+𝛿 (𝑦 | 𝑏 + 𝑥) can be obtained from the cal-

culation of 𝜒(𝑢), refer to Section 4 of Albrecher et al. [1] for details, it suffices to derive 𝐸𝑢 [𝑒−𝛿𝜂1] for
𝑢 > 𝑏 in order to have a full characterization of 𝜙𝑀𝑏 (𝑢). Finally, we consider 𝐸𝑢 [𝑒−𝛿𝜂1], 𝑢 > 𝑏.

According to the previous definition, when 𝑈𝑑
𝑏 (0) = 𝑢 > 𝑏, since the surplus was observed above

𝑏 at the initial moment, one has that 𝜂1 = 𝜃1 ∧ 𝑑. We found that during the delayed period, due to the
threshold dividend, the surplus level can only be continuously observed until the surplus again recover
to the obstacle level 𝑏. For the results of the 𝐸𝑢 [𝑒−𝛿𝜂1], 𝑢 > 𝑏, can directly be used, where Cheung and
Wong [8] Eqs. (4.5), (4.9) and (4.10)

𝐸𝑢 [𝑒−𝛿𝜂1 ] = 𝐸𝑢−𝑏 [𝑒−𝛿 (𝜏0∧𝑑) ] . (3.11)

If ruin occurs before the first gain, then 𝜏0 = 𝑢/𝑐2 with probability 𝑒−𝜆(𝑢/𝑐2) . In contrast, if there is at
least one gain before ruin, then 𝜏0 > 𝑢/𝑐2. From the Eq. (4.38) of Seal [23], we know that the density
function 𝑓𝑈 (𝑡 | 𝑢) at the time of ruin 𝜏0 is

𝑓𝑈 (𝑡 | 𝑢) =
∞∑
𝑘=1

𝜆𝑘 𝑡𝑘−1𝑒−𝜆𝑡 (𝑢)
𝑘!

𝑝∗𝑘 (𝑐2𝑡 − 𝑢), 𝑡 > 𝑢/𝑐2, (3.12)

where 𝑝∗𝑘 (·) is the 𝑘-fold convolution density of the gain density 𝑝(·) with itself. when 𝑢 ≥ 𝑐2𝑑, ruin
happens after 𝑢/𝑐2, which is 𝜏0 ≥ 𝑑, and we arrive at

𝐸𝑢 [𝑒−𝛿 (𝜏0∧𝑑) ] = 𝑒−𝛿𝑑 , 𝑢 ≥ 𝑐2𝑑. (3.13)
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For 0 < 𝑢 < 𝑐2𝑑, conditioning on 𝜏0 leads to

𝐸𝑢 [𝑒−𝛿 (𝜏0∧𝑑) ] = 𝐸𝑢 [𝑒−𝛿𝜏0 𝐼{𝜏0<𝑑 }] + 𝐸𝑢 [𝑒−𝛿𝑑 𝐼{𝜏0≥𝑑 }]

= 𝑒−(𝛿+𝜆)𝑢/𝑐2 +
∫ 𝑑

𝑢/𝑐2

𝑒−𝛿𝑡 𝑓𝑈 (𝑡 | 𝑢) 𝑑𝑡

+ 𝑒−𝛿𝑑
(
1 − 𝑒−𝜆𝑢/𝑐2 −

∫ 𝑑

𝑢/𝑐2

𝑓𝑈 (𝑡 | 𝑢) 𝑑𝑡
)
, 0 < 𝑢 < 𝑐2𝑑. (3.14)

Note that the density function 𝑝(𝑦) = 𝑎1𝑒
−𝑎1𝑦 , 𝑝∗𝑘 (·) is an Erlang(𝑘) density and hence Eq. (3.12)

becomes

𝑓𝑈 (𝑡 | 𝑢) =
∞∑
𝑘=1

𝜆𝑘 𝑡𝑘−1𝑒−𝜆𝑡𝑢
𝑘!

(
𝑎𝑘1 (𝑐2𝑡 − 𝑢)𝑘−1𝑒−𝑎1 (𝑐2𝑡−𝑢)

(𝑘 − 1)!

)
, 𝑡 > 𝑢/𝑐2. (3.15)

Then, the first integral in Eq. (3.14) is found to be∫ 𝑑

𝑢/𝑐2

𝑒−𝛿𝑡 𝑓𝑈 (𝑡 | 𝑢) 𝑑𝑡

=
∞∑
𝑘=1

(𝜆𝑎1)𝑘𝑢
𝑘!(𝑘 − 1)!

∫ 𝑑

𝑢/𝑐2

𝑡𝑘−1𝑒−(𝜆+𝛿)𝑡 (𝑐2𝑡 − 𝑢)𝑘−1𝑒−𝑎1 (𝑐2𝑡−𝑢) 𝑑𝑡

=
∞∑
𝑘=1

(𝜆𝑎1/𝑐2)𝑘
𝑘!

𝑘−1∑
𝑖=0

(𝑘 + 𝑖 − 1)!
(𝑖!(𝑘 − 𝑖 − 1)!)( 𝜆+𝛿𝑐2

+ 𝑎1)𝑘+𝑖

×
(
𝑢𝑘−𝑖𝑒−

𝜆+𝛿
𝑐2
𝑢 −

𝑘+𝑖−1∑
𝑗=0

[( 𝜆+𝛿𝑐2
+ 𝑎1)(𝑐2𝑑 − 𝑢)] 𝑗𝑒−( (𝜆+𝛿)/𝑐2+𝑎1)𝑐2𝑑

𝑗!
𝑢𝑘−𝑖𝑒𝑎1𝑢

)
. (3.16)

The remaining integral
∫ 𝑑
𝑢/𝑐2

𝑓𝑈 (𝑡 | 𝑢) 𝑑𝑡 in Eq. (3.14) is simply a special case of the above expression
with 𝛿 = 0, and because that

ℎ+𝛿 (𝑦 | 𝑏 − 𝑢) −
∫ ∞

0
𝐸 [𝑒−𝛿𝜏𝑏 𝐼{𝜏𝑏<𝜏𝑑 };𝑈𝑆 (𝜏𝑏) ∈ 𝑏 + 𝑑𝑥 |𝑈𝑆 (0) = 𝑏 − 𝑢]ℎ+𝛿 (𝑦 | 𝑏 + 𝑥)

= (𝜌0
1 − 𝜌1)𝑒𝜌0

1𝑏+𝜌1𝑦

(
𝑒−𝜌

0
1𝑢 + (𝜌2 − 𝜌0

2)(𝜌2 − 𝜌0
1) [(𝜌0

2 − 𝜌1)𝑒𝜌0
2 (𝑏−𝑢) − (𝜌0

1 − 𝜌1)𝑒𝜌0
1 (𝑏−𝑢) ]

𝜌0
1𝜌2(𝜌0

2 − 𝜌1)(𝜌2 − 𝜌0
1)𝑒𝜌

0
2𝑏 − (𝜌0

1 − 𝜌1)(𝜌2 − 𝜌0
2)𝑒𝜌

0
1𝑏

)
.

(3.17)

Application of Eqs. (3.11), (3.13) and (3.14) to Eq. (3.9) leads to

𝐸𝑢 [𝑒−𝛿𝜂1 𝐼{𝜈+1 <𝜏 }]

= (𝜌0
1 − 𝜌1)𝑒𝜌0

1𝑏

(
𝑒−𝜌

0
1𝑢 + (𝜌2 − 𝜌0

2)(𝜌2 − 𝜌0
1) [(𝜌0

2 − 𝜌1)𝑒𝜌0
2 (𝑏−𝑢) − (𝜌0

1 − 𝜌1)𝑒𝜌0
1 (𝑏−𝑢) ]

𝜌0
1𝜌2(𝜌0

2 − 𝜌1)(𝜌2 − 𝜌0
1)𝑒𝜌

0
2𝑏 − (𝜌0

1 − 𝜌1)(𝜌2 − 𝜌0
2)𝑒𝜌

0
1𝑏

)

×
{

1
𝜆+𝛿
𝑐2

− 𝜌1

(
1 − 𝑒

−( 𝜆+𝛿𝑐2
−𝜌1)𝑐2𝑑

)
− 𝑒−𝛿𝑑

[
1
𝜌1

+ 1
𝜆
𝑐2
− 𝜌1

(1 − 𝑒
−( 𝜆

𝑐2
−𝜌1)𝑐2𝑑)

]

+
∫ 𝑐2𝑑

0
𝑒𝜌1𝑦

∫ 𝑑

𝑦/𝑐2

𝑒−𝛿𝑡 𝑓𝑈 (𝑡 |𝑦) 𝑑𝑡 𝑑𝑦 − 𝑒−𝛿𝑑
∫ 𝑐2𝑑

0
𝑒𝜌1𝑦

∫ 𝑑

𝑦
𝑐2

𝑓𝑈 (𝑡 |𝑦) 𝑑𝑡 𝑑𝑦
}
, 0 ≤ 𝑢 ≤ 𝑏.

(3.18)
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Using Eq. (3.15), the first double integral above is evaluated as

∫ 𝑐2𝑑

0
𝑒𝜌1𝑦

∫ 𝑑

𝑦/𝑐2

𝑒−𝛿𝑡 𝑓𝑈 (𝑡 |𝑦) 𝑑𝑡 𝑑𝑦

=
∞∑
𝑘=1

(−𝜆𝜌1
𝑐2
)𝑘

𝑘!

𝑘−1∑
𝑖=0

(𝑘 + 𝑖 − 1)!
𝑖!(𝑘 − 𝑖 − 1)!

1
( 𝜆+𝛿𝑐2

− 𝜌1)𝑘+𝑖

{
(𝑘 − 𝑖)!

( 𝜆+𝛿𝑐2
− 𝜌1)𝑘−𝑖+1

× ���1 −
𝑘−𝑖∑
𝑗=0

[( 𝜆+𝛿𝑐2
− 𝜌1)𝑐2𝑑] 𝑗𝑒−(

𝜆+𝛿
𝑐2

−𝜌1)𝑐2𝑑

𝑗!
��� −

𝑘+𝑖−1∑
𝑗=0

(
𝜆 + 𝛿

𝑐2
− 𝜌1

) 𝑗

×𝑒−( 𝜆+𝛿𝑐2
−𝜌1)𝑐2𝑑 (𝑐2𝑑) 𝑗+𝑘−𝑖+1(𝑘 − 𝑖)!

( 𝑗 + 𝑘 − 𝑖 + 1)!

}
, (3.19)

and the second double integral in Eq. (3.18) can be directly set as 𝛿 = 0 in Eq. (3.19). With the Eqs.
(3.18) and (3.3) derived, 𝜙𝑀𝑏 (𝑢), 0 ≤ 𝑢 ≤ 𝑏 are determined by Eq. (3.2). �

The following two Remarks respectively give the results satisfied by 𝜙𝑈𝑏 (𝑢) and 𝜙𝐿𝑏 (𝑢).

Remark 3.1. When 𝑢 > 𝑏, at the time of the first observation, there are two scenarios for surplus 𝜙𝑈𝑏 (𝑢)
1. When the first observation is made, surplus 𝑈𝑑

𝑏 (𝑡) is already ruin (𝑈𝑑
𝑏 (𝜈1) < 0),

𝜒𝑈1 (𝑢) =
∫ ∞

𝑢

𝑔−𝛿 (𝑦) 𝑑𝑦. (3.20)

2. When the first observation is occurred, the surplus 𝑈𝑑
𝑏 (𝑡) is above 0 (𝑈𝑑

𝑏 (𝜈1) > 0),

𝜒𝑈2 (𝑢) =
∫ 𝑢

𝑢−𝑏
𝑔−𝛿 (𝑦)𝜙𝑀𝑏 (𝑢 − 𝑦) 𝑑𝑦 +

∫ 𝑢−𝑏

0
𝑔−𝛿 (𝑦)𝐸𝑢−𝑦−𝑏 [𝑒−𝛿 (𝜏0∧𝑑) ]𝜙𝑀𝑏 (𝑏) 𝑑𝑦

+
∫ ∞

0
𝑔+𝛿 (𝑦)𝐸𝑢+𝑦−𝑏 [𝑒−𝛿 (𝜏0∧𝑑) ]𝜙𝑀𝑏 (𝑏) 𝑑𝑦. (3.21)

So 𝜙𝑈𝑏 (𝑢) can be expressed as

𝜙𝑈𝑏 (𝑢) = 𝜒𝑈1 (𝑢) + 𝜒𝑈2 (𝑢)

=
∫ 𝑢

𝑢−𝑏
𝑔−𝛿 (𝑦)𝜙𝑀𝑏 (𝑢 − 𝑦) 𝑑𝑦 +

∫ ∞

𝑢

𝑔−𝛿 (𝑦) 𝑑𝑦 +
∫ 𝑢−𝑏

0
𝑔−𝛿 (𝑦)

× 𝐸𝑢−𝑦−𝑏 [𝑒−𝛿 (𝜏0∧𝑑) ]𝜙𝑀𝑏 (𝑏) 𝑑𝑦

+
∫ ∞

0
𝑔+𝛿 (𝑦)𝐸𝑢+𝑦−𝑏 [𝑒−𝛿 (𝜏0∧𝑑) ]𝜙𝑀𝑏 (𝑏) 𝑑𝑦, 𝑢 > 𝑏. (3.22)

Remark 3.2. When 𝑢 < 0, at the time of the first observation, there are also two scenarios for surplus
𝜙𝐿𝑏 (𝑢).
1. When the first observation is made, surplus 𝑈𝑑

𝑏 (𝑡) is already ruin (𝑈𝑑
𝑏 (𝜈1) < 0),

𝜒𝐿1 (𝑢) =
∫ ∞

0
𝑔−𝛿 (𝑦) 𝑑𝑦 +

∫ −𝑢

0
𝑔+𝛿 (𝑦) 𝑑𝑦. (3.23)
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2. When the first observation is occurred, the surplus 𝑈𝑑
𝑏 (𝑡) is above 0 (𝑈𝑑

𝑏 (𝜈1) > 0),

𝜒𝐿2 (𝑢) =
∫ 𝑏−𝑢

−𝑢
𝑔+𝛿 (𝑦)𝜙𝑀𝑏 (𝑢 + 𝑦) 𝑑𝑦 +

∫ ∞

𝑏−𝑢
𝑔+𝛿 (𝑦)𝐸𝑢+𝑦−𝑏 [𝑒−𝛿 (𝜏0∧𝑑) ]𝜙𝑀𝑏 (𝑏) 𝑑𝑦. (3.24)

Then 𝜙𝐿𝑏 (𝑢) can be expressed as

𝜙𝐿𝑏 (𝑢) = 𝜒𝐿1 (𝑢) + 𝜒𝐿2 (𝑢)

=
∫ ∞

0
𝑔−𝛿 (𝑦) 𝑑𝑦 +

∫ −𝑢

0
𝑔+𝛿 (𝑦) 𝑑𝑦 +

∫ 𝑏−𝑢

−𝑢
𝑔+𝛿 (𝑦)𝜙𝑀𝑏 (𝑢 + 𝑦) 𝑑𝑦

+
∫ ∞

𝑏−𝑢
𝑔+𝛿 (𝑦)𝐸𝑢+𝑦−𝑏 [𝑒−𝛿 (𝜏0∧𝑑) ]𝜙𝑀𝑏 (𝑏) 𝑑𝑦, 𝑢 < 0. (3.25)

4. The expected discounted dividends until ruin

In this section, we study the expected discounted dividend payments before ruin 𝑉𝑀𝑏 (𝑢). Similar to
Section 3, we first consider the case where the initial surplus 0 ≤ 𝑢 ≤ 𝑏. Since it is a Parisian
implementation delays in a dividend model with periodic observations, we note that dividend payment
is possible only if the process {𝑈𝑑

𝑏 (𝑡)}𝑡≥0 is observed above barrier 𝑏 before ruin, which leads to

𝑉𝑀𝑏 (𝑢) = 𝐸𝑢

[
𝑒−𝛿𝜂1

[
𝑈𝑑
𝑏 (𝜂−1 ) − 𝑏 + 𝑐1

∫ 𝜈+1

𝜂−
1

𝑒−𝛿𝑡 𝑑𝑡

]
𝐼{𝜈+1 <𝜏 }

]
+ 𝐸𝑢 [𝑒−𝛿𝜂1 𝐼{𝜈+1 <𝜏 }]𝑉𝑀𝑏 (𝑏), 0 ≤ 𝑢 ≤ 𝑏. (4.1)

Besides, Eq. (4.1) at 𝑢 = 𝑏 implies

𝑉𝑀𝑏 (𝑢) = 𝐸𝑢

[
𝑒−𝛿𝜂1

[
𝑈𝑑
𝑏 (𝜂−1 ) − 𝑏 + 𝑐1

∫ 𝜈+1

𝜂−
1

𝑒−𝛿𝑡 𝑑𝑡

]
𝐼{𝜈+1 <𝜏 }

]

+
𝐸𝑢 [𝑒−𝛿𝜂1 𝐼{𝜈+1 <𝜏 }]𝐸𝑏 [𝑒−𝛿𝜂1 [𝑈𝑑

𝑏 (𝜂−1 ) − 𝑏 + 𝑐1
∫ 𝜈+1
𝜂−

1
𝑒−𝛿𝑡 𝑑𝑡] 𝐼{𝜈+1 <𝜏 }]

1 − 𝐸𝑏 [𝑒−𝛿𝜂1 𝐼{𝜈+1 <𝜏 }]
. (4.2)

The calculation of Eq. (4.2) is same as the calculation of Laplace transform of the time of ruin
𝜙𝑀𝑏 (𝑢), and the final result is directly given here. The case where the initial surplus 𝑢 < 0 and
𝑢 > 𝑏 will be resolved later. Since 𝐸𝑢 [𝑒−𝛿𝜂1 𝐼{𝜈+1 <𝜏 }] is given in Eq. (3.18), we only need to calculate
𝐸𝑢 [𝑒−𝛿𝜂1 [𝑈𝑑

𝑏 (𝜂−1 ) − 𝑏 + 𝑐1
∫ 𝜈+1
𝜂−

1
𝑒−𝛿𝑡 𝑑𝑡] 𝐼{𝜈+1 <𝜏 }], 0 ≤ 𝑢 ≤ 𝑏.

Theorem 3. When 0 ≤ 𝑢 ≤ 𝑏, we have

𝐸𝑢

[
𝑒−𝛿𝜂1

[
𝑈𝑑
𝑏 (𝜂−1 ) − 𝑏 + 𝑐1

∫ 𝜈+1

𝜂−
1

𝑒−𝛿𝑡 𝑑𝑡

]
𝐼{𝜈+1 <𝜏 }

]

=
∫ ∞

0

(
ℎ+𝛿 (𝑦 | 𝑏 − 𝑢) −

∫ ∞

0
𝐸 [𝑒−𝛿𝜏𝑏 𝐼{𝜏𝑏<𝜏𝑑 };𝑈𝑆 (𝜏𝑏) ∈ 𝑏 + 𝑑𝑥 |𝑈𝑆 (0) = 𝑏 − 𝑢]ℎ+𝛿 (𝑦 | 𝑏 + 𝑥)

)
×

(
𝐸 𝑦

[
𝑒−𝛿𝑑

[
𝑈 (𝑑) − 𝑐1

∫ 𝑑

0
𝑒−𝛿𝑡 𝑑𝑡

] ]
− 𝐸 𝑦

[
𝑒−𝛿𝜏0𝑐1

∫ 𝜏0

0
𝑒−𝛿𝑡 𝑑𝑡𝐼{𝜏0<𝑑 }

]
+𝐸 𝑦

[
𝑒−𝛿𝑑

[
𝑈 (𝑑) − 𝑐1

∫ 𝑑

0
𝑒−𝛿𝑡 𝑑𝑡

]
𝐼{𝜏0≥𝑑 }

] )
𝑑𝑦.
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Proof. Analogous to Eq. (3.9), the former quantity can be expressed in terms of the latter one via

𝐸𝑢

[
𝑒−𝛿𝜂1 [𝑈𝑑

𝑏 (𝜂−1 ) − 𝑏 + 𝑐1

∫ 𝜈+1

𝜂−
1

𝑒−𝛿𝑡 𝑑𝑡] 𝐼{𝜈+1 <𝜏 }
]

=
∫ ∞

0

(
ℎ+𝛿 (𝑦 | 𝑏 − 𝑢) −

∫ ∞

0
𝐸 [𝑒−𝛿𝜏𝑏 𝐼{𝜏𝑏<𝜏𝑑 };𝑈𝑆 (𝜏𝑏) ∈ 𝑏 + 𝑑𝑥 |𝑈𝑆 (0) = 𝑏 − 𝑢]ℎ+𝛿 (𝑦 | 𝑏 + 𝑥)

)

× 𝐸𝑏+𝑦
[
𝑒−𝛿𝜂1 [𝑈𝑑

𝑏 (𝜂−1 ) − 𝑏 + 𝑐1

∫ 𝜈+1

𝜂−
1

𝑒−𝛿𝑡 𝑑𝑡]
]
𝑑𝑦. (4.3)

According to the definitions in Section 3.2, when𝑈𝑑
𝑏 (0) = 𝑈 (0) = 𝑢 > 𝑏, it gives that 𝜂1 = 𝜃1 ∧ 𝑑 as the

surplus was observed above 𝑏 at the initial moment. Hence, 𝐸𝑢 [𝑒−𝛿𝜂1 [𝑈𝑑
𝑏 (𝜂−1 ) − 𝑏 + 𝑐1

∫ 𝜈+1
𝜂−

1
𝑒−𝛿𝑡 𝑑𝑡]]

can be written as

𝐸𝑢

[
𝑒−𝛿𝜂1 [𝑈𝑑

𝑏 (𝜂−1 ) − 𝑏 + 𝑐1

∫ 𝜈+1

𝜂−
1

𝑒−𝛿𝑡 𝑑𝑡]
]

= 𝐸𝑢−𝑏
[
𝑒−𝛿 (𝜏0∧𝑑) [𝑈 (𝜏0 ∧ 𝑑) − 𝑐1

∫ 𝜏0∧𝑑

0
𝑒−𝛿𝑡 𝑑𝑡]

]
, 𝑢 > 𝑏. (4.4)

In order to obtain 𝑉𝑀𝑏 (𝑢), we need to compute 𝐸𝑢 [𝑒−𝛿 (𝜏0∧𝑑) [𝑈 (𝜏0 ∧ 𝑑) − 𝑐1
∫ 𝜏0∧𝑑

0 𝑒−𝛿𝑡 𝑑𝑡]], 𝑢 > 0. It
is similar to Eq. (3.13), ruin occurs after 𝑢/𝑐2 when 𝑢 ≥ 𝑐2𝑑, which is 𝜏0 ≥ 𝑑, and we arrive at

𝐸𝑢
[
𝑒−𝛿 (𝜏0∧𝑑) [𝑈 (𝜏0 ∧ 𝑑) − 𝑐1

∫ 𝜏0∧𝑑

0
𝑒−𝛿𝑡 𝑑𝑡]

]
= 𝐸𝑢

[
𝑒−𝛿𝑑 [𝑈 (𝑑) − 𝑐1

∫ 𝑑

0
𝑒−𝛿𝑡 𝑑𝑡]

]
= 𝑒−𝛿𝑑

[
𝑢 + (𝜆𝐸 [𝑋1] − 𝑐)𝑑 − 𝑐1

𝛿
(1 − 𝑒−𝛿𝑑)

]
. (4.5)

For 0 < 𝑢 < 𝑐2𝑑, conditioning on 𝜏0 leads to

𝐸𝑢
[
𝑒−𝛿 (𝜏0∧𝑑) [𝑈 (𝜏0 ∧ 𝑑) − 𝑐1

∫ 𝜏0∧𝑑

0
𝑒−𝛿𝑡 𝑑𝑡]

]
= 𝐸𝑢

[
𝑒−𝛿𝑑 [𝑈 (𝑑) − 𝑐1

∫ 𝑑

0
𝑒−𝛿𝑡 𝑑𝑡] 𝐼{𝜏0≥𝑑 }

]
− 𝐸𝑢

[
𝑒−𝛿𝜏0𝑐1

∫ 𝜏0

0
𝑒−𝛿𝑡 𝑑𝑡𝐼{𝜏0<𝑑 }

]
. (4.6)

For the first term to the right of Eq. (4.6), we have

𝐸𝑢
[
𝑒−𝛿𝑑 [𝑈 (𝑑) − 𝑐1

∫ 𝑑

0
𝑒−𝛿𝑡 𝑑𝑡] 𝐼{𝜏0≥𝑑 }

]
= 𝐸𝑢

[
𝑒−𝛿𝑑 [𝑈 (𝑑) − 𝑐1

∫ 𝑑

0
𝑒−𝛿𝑡 𝑑𝑡]

]
− 𝐸𝑢

[
𝑒−𝛿𝑑 [𝑈 (𝑑) − 𝑐1

∫ 𝑑

𝑑−𝜏0

𝑒−𝛿𝑡 𝑑𝑡] 𝐼{𝜏0<𝑑 }

]
= 𝑒−𝛿𝑑

(
𝑢 + (𝜆𝐸 [𝑋1] − 𝑐)

{
𝑑 −

∫ 𝑑

𝑢/𝑐2

(𝑑 − 𝑡) 𝑓𝑈 (𝑡 | 𝑢) 𝑑𝑡 −
(
𝑑 − 𝑢

𝑐2

)
𝑒
−𝜆( 𝑢

𝑐2
)
}

−𝑐1

𝛿
(1 − 𝑒−𝛿𝑑) + 𝑐1

∫ 𝑑

𝑑−𝑢/𝑐2

𝑒−𝛿𝑡𝑒−𝜆
𝑢
𝑐2 𝑑𝑡 + 𝑐1

∫ 𝑑

𝑢/𝑐2

𝑓𝑈 (𝑡 | 𝑢)
∫ 𝑑

𝑑−𝑡
𝑒−𝛿𝑧 𝑑𝑧 𝑑𝑡

)
. (4.7)
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The other term in Eq. (4.6)

𝐸𝑢
[
𝑒−𝛿𝜏0𝑐1

∫ 𝜏0

0
𝑒−𝛿𝑡 𝑑𝑡𝐼{𝜏0<𝑑 }

]
= 𝑒

−𝛿 𝑢
𝑐2
𝑐1

𝛿
(1 − 𝑒

−𝛿 𝑢
𝑐2 ) +

∫ 𝑑

𝑢/𝑐2

𝑒−𝛿𝑡𝑐1

∫ 𝑡

0
𝑒−𝛿𝑧 𝑑𝑧 𝑓𝑈 (𝑡 | 𝑢) 𝑑𝑡. (4.8)

Then

𝐸𝑢

[
𝑒−𝛿𝜂1

[
𝑈𝑑
𝑏 (𝜂−1 ) − 𝑏 + 𝑐1

∫ 𝜈+1

𝜂−
1

𝑒−𝛿𝑡 𝑑𝑡

]
𝐼{𝜈+1 <𝜏 }

]

= 𝑒−𝛿𝑑 (𝜌0
1 − 𝜌1)𝑒𝜌0

1𝑏

(
𝑒−𝜌

0
1𝑢 + (𝜌2 − 𝜌0

2)(𝜌2 − 𝜌0
1) [(𝜌0

2 − 𝜌1)𝑒𝜌0
2 (𝑏−𝑢) − (𝜌0

1 − 𝜌1)𝑒𝜌0
1 (𝑏−𝑢) ]

𝜌0
1𝜌2(𝜌0

2 − 𝜌1)(𝜌2 − 𝜌0
1)𝑒𝜌

0
2𝑏 − (𝜌0

1 − 𝜌1)(𝜌2 − 𝜌0
2)𝑒𝜌

0
1𝑏

)

×
{
𝑐1𝑒

−( 𝛿
𝑐2

−𝜌1)𝑐2𝑑 − 𝑐1

𝛿( 𝛿𝑐2
− 𝜌1)

+ 𝑐1 − 𝑐1𝑒
−( 2𝛿

𝑐2
−𝜌1)𝑐2𝑑

𝛿( 2𝛿
𝑐2

− 𝜌1)
+ 𝑒𝜌1𝑐2𝑑

𝜌1
𝑒−𝛿𝑑

𝑐1

𝛿
(1 − 𝑒−𝛿𝑑)

−
∫ 𝑐2𝑑

0
𝑒𝜌1𝑦

∫ 𝑑

𝑦
𝑐2

𝑒−𝛿𝑡𝑐1

(
1
𝛿
− 𝑒−𝛿

𝛿

)
𝑓𝑈 (𝑡 | 𝑢) 𝑑𝑡 𝑑𝑦 −

∫ 𝑐2𝑑

0
𝑒𝜌1𝑦

{ 𝑐1

𝛿
(1 − 𝑒−𝛿𝑑)

+𝑐1

∫ 𝑑− 𝑦
𝑐2

0
𝑒−𝛿𝑡𝑒−𝜆

𝑦
𝑐2 𝑑𝑡 + 𝑐1

∫ 𝑑

𝑦
𝑐2

𝑓𝑈 (𝑡 | 𝑢)
∫ 𝑑−𝑡

0
𝑒−𝛿𝑧 𝑑𝑧 𝑑𝑡

}
𝑑𝑦 + 1

𝜌2
1
−

(
𝜆

𝜌1
+ 𝑐2

)

×
[
− 𝑑

𝜌1
− 𝑑

∫ 𝑐2𝑑

0
𝑒𝜌1𝑦

∫ 𝑑

𝑦
𝑐2

𝑓𝑈 (𝑡 |𝑦) 𝑑𝑡 𝑑𝑦 +
∫ 𝑐2𝑑

0
𝑒𝜌1𝑦

∫ 𝑑

𝑦
𝑐2

𝑡 𝑓𝑈 (𝑡 |𝑦) 𝑑𝑡 𝑑𝑦 − 1
𝜆 − 𝑐2𝜌1

×
(
𝑐2𝑑 − 1

𝜆
𝑐2
− 𝜌1

(
1 − 𝑒

(𝜌1− 𝜆
𝑐2

)𝑐2𝑑
))]}

, 0 ≤ 𝑢 ≤ 𝑏. (4.9)

Using Eq. (3.19), the double integral above is evaluated as∫ 𝑐2𝑑

0
𝑒𝜌1𝑦

∫ 𝑑

𝑦
𝑐2

𝑡𝑒−𝛿𝑡 𝑓𝑈 (𝑡 |𝑦) 𝑑𝑡 𝑑𝑦 =
∞∑
𝑘=1

(−𝜆𝜌1)𝑘
(𝑘 − 1)!𝑐𝑘+1

2

𝑘∑
𝑖=0

(𝑘 + 𝑖 − 1)!
𝑖!(𝑘 − 𝑖)!

1
( 𝜆+𝛿𝑐2

− 𝜌1)𝑘+𝑖

×
⎧⎪⎪⎨⎪⎪⎩

(𝑘 + 1 − 𝑖)!
( 𝜆+𝛿𝑐2

− 𝜌1)𝑘−𝑖+2
���1 −

𝑘+1−𝑖∑
𝑗=0

[( 𝜆+𝛿𝑐2
− 𝜌1)𝑐2𝑑] 𝑗𝑒−(

𝜆+𝛿
𝑐2

−𝜌1)𝑐2𝑑

𝑗!
��� −

𝑘+𝑖−1∑
𝑗=0

(
𝜆 + 𝛿

𝑐2
− 𝜌1

) 𝑗

×𝑒−( 𝜆+𝛿𝑐2
−𝜌1)𝑐2𝑑 (𝑐2𝑑) 𝑗+𝑘−𝑖+2(𝑘 − 𝑖)!

( 𝑗 + 𝑘 − 𝑖 + 2)!

}
, (4.10)

and the second double integral in Equation (4.9) can be directly set as 𝛿 = 0 in Eq. (3.19), the third
double integral in Eq. (4.9) can be directly set as 𝛿 = 0 in Eq. (4.10). With Eqs. (3.18) and (4.9) derived,
𝑉𝑀𝑏 (𝑢), 0 ≤ 𝑢 ≤ 𝑏 are determined by Eq. (4.2). �

The following two Remarks respectively give the results satisfied by 𝑉𝑈𝑏 (𝑢) and 𝑉𝐿𝑏 (𝑢).

Remark 4.1. When 𝑢 > 𝑏, at the time of the first observation, there are two scenarios for surplus𝑉𝑈𝑏 (𝑢)
1. When the first observation is made, surplus 𝑈𝑑

𝑏 (𝑡) is already ruin (𝑈𝑑
𝑏 (𝜈1) < 0),

𝜒∗
𝑈1
(𝑢) =

∫ ∞

𝑢

𝑔−𝛿 (𝑦) 𝑑𝑦. (4.11)
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2. When the first observation is occurred, the surplus 𝑈𝑑
𝑏 (𝑡) is above 0 (𝑈𝑑

𝑏 (𝜈1) > 0),

𝜒∗
𝑈2
(𝑢) =

∫ 𝑢

𝑢−𝑏
𝑔−𝛿 (𝑦)𝑉𝑀𝑏 (𝑢 − 𝑦) 𝑑𝑦

+
∫ 𝑢−𝑏

0
𝑔−𝛿 (𝑦)

{
𝐸𝑢−𝑦−𝑏

[
𝑒−𝛿 (𝜏0∧𝑑)

[
𝑈 (𝜏0 ∧ 𝑑) − 𝑐1

∫ 𝜏0∧𝑑

0
𝑒−𝛿𝑡 𝑑𝑡

] ]
+𝐸𝑢−𝑦−𝑏 [𝑒−𝛿 (𝜏0∧𝑑) ]𝑉𝑀𝑏 (𝑏)

}
𝑑𝑦 +

∫ ∞

0
𝑔+𝛿 (𝑦)

{
𝐸𝑢+𝑦−𝑏

[
𝑒−𝛿 (𝜏0∧𝑑)

[
𝑈 (𝜏0 ∧ 𝑑)

−𝑐1

∫ 𝜏0∧𝑑

0
𝑒−𝛿𝑡 𝑑𝑡

] ]
+ 𝐸𝑢+𝑦−𝑏 [𝑒−𝛿 (𝜏0∧𝑑) ]𝑉𝑀𝑏 (𝑏)

}
𝑑𝑦. (4.12)

So 𝑉𝑈𝑏 (𝑢) can be expressed as

𝑉𝑈𝑏 (𝑢) = 𝜒∗
𝑈1
(𝑢) × 0 + 𝜒∗

𝑈2
(𝑢)

=
∫ 𝑢−𝑏

0
𝑔−𝛿 (𝑦)

{
𝐸𝑢−𝑦−𝑏

[
𝑒−𝛿 (𝜏0∧𝑑)

[
𝑈 (𝜏0 ∧ 𝑑) − 𝑐1

∫ 𝜏0∧𝑑

0
𝑒−𝛿𝑡 𝑑𝑡

] ]
+𝐸𝑢−𝑦−𝑏 [𝑒−𝛿 (𝜏0∧𝑑) ]𝑉𝑀𝑏 (𝑏)

}
𝑑𝑦 +

∫ ∞

0
𝑔+𝛿 (𝑦)

{
𝐸𝑢+𝑦−𝑏

[
𝑒−𝛿 (𝜏0∧𝑑)

[
𝑈 (𝜏0 ∧ 𝑑)

−𝑐1

∫ 𝜏0∧𝑑

0
𝑒−𝛿𝑡 𝑑𝑡

] ]
+ 𝐸𝑢+𝑦−𝑏 [𝑒−𝛿 (𝜏0∧𝑑) ]𝑉𝑀𝑏 (𝑏)

}
𝑑𝑦

+
∫ 𝑢

𝑢−𝑏
𝑔−𝛿 (𝑦)𝑉𝑀𝑏 (𝑢 − 𝑦) 𝑑𝑦, 𝑢 > 𝑏. (4.13)

Remark 4.2. When 𝑢 < 0, at the time of the first observation, there are two scenarios for surplus𝑉𝐿𝑏 (𝑢).
1. When the first observation is made, surplus 𝑈𝑑

𝑏 (𝑡) is already ruin (𝑈𝑑
𝑏 (𝜈1) < 0),

𝜒∗
𝐿1
(𝑢) =

∫ ∞

0
𝑔−𝛿 (𝑦) 𝑑𝑦 +

∫ −𝑢

0
𝑔+𝛿 (𝑦) 𝑑𝑦. (4.14)

2. When the first observation is occurred, the surplus 𝑈𝑑
𝑏 (𝑡) is above 0 (𝑈𝑑

𝑏 (𝜈1) > 0),

𝜒∗
𝐿2
(𝑢) =

∫ 𝑏−𝑢

−𝑢
𝑔+𝛿 (𝑦)𝑉𝑀𝑏 (𝑢 + 𝑦) 𝑑𝑦

+
∫ ∞

𝑏−𝑢
𝑔+𝛿 (𝑦)

{
𝐸𝑢+𝑦−𝑏

[
𝑒−𝛿 (𝜏0∧𝑑)

[
𝑈 (𝜏0 ∧ 𝑑) − 𝑐1

∫ 𝜏0∧𝑑

0
𝑒−𝛿𝑡 𝑑𝑡

] ]
+𝐸𝑢+𝑦−𝑏 [𝑒−𝛿 (𝜏0∧𝑑) ]𝑉𝑀𝑏 (𝑏)

}
𝑑𝑦. (4.15)

So 𝑉𝐿𝑏 (𝑢) can be expressed as

𝑉𝐿𝑏 (𝑢) = 𝜒∗
𝐿1
(𝑢) × 0 + 𝜒∗

𝐿2
(𝑢)

=
∫ ∞

𝑏−𝑢
𝑔+𝛿 (𝑦)

{
𝐸𝑢+𝑦−𝑏

[
𝑒−𝛿 (𝜏0∧𝑑)

[
𝑈 (𝜏0 ∧ 𝑑) − 𝑐1

∫ 𝜏0∧𝑑

0
𝑒−𝛿𝑡 𝑑𝑡

] ]
+𝐸𝑢+𝑦−𝑏 [𝑒−𝛿 (𝜏0∧𝑑) ]𝑉𝑀𝑏 (𝑏)

}
𝑑𝑦 +

∫ 𝑏−𝑢

−𝑢
𝑔+𝛿 (𝑦)𝑉𝑀𝑏 (𝑢 + 𝑦) 𝑑𝑦, 𝑢 < 0. (4.16)
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Remark 4.3. The key computational procedure for 𝜙𝑏 (𝑢) and 𝑉𝑏 (𝑢) is summarized in below:

1. Since the initial surplus 𝑈𝑑
𝑏 (0) = 𝑢 can be any value, 𝜙𝑏 (𝑢) can be expressed as 𝜙𝐿𝑏 (𝑢) for 𝑢 < 0,

𝜙𝑀𝑏 (𝑢) for 0 ≤ 𝑢 ≤ 𝑏 and 𝜙𝑈𝑏 (𝑢) for 𝑏 < 𝑢. In the same way, 𝑉𝑏 (𝑢) can be expressed as 𝑉𝐿𝑏 (𝑢)
for 𝑢 < 0, 𝑉𝑀𝑏 (𝑢) for 0 ≤ 𝑢 ≤ 𝑏 and 𝑉𝑈𝑏 (𝑢) for 𝑏 < 𝑢.

2. Through simplification of Eqs. (3.2) and (4.2), it is found that 𝜙𝑀𝑏 (𝑢) and 𝑉𝑀𝑏 (𝑢) is only related
to 𝐸𝑢 [𝑒−𝛿𝜏 𝐼{𝜏<𝜈+1 }], 𝐸𝑢 [𝑒−𝛿𝜂1 𝐼{𝜈+1 <𝜏 }] and 𝐸𝑢 [𝑒−𝛿𝜂1 [𝑈𝑑

𝑏 (𝜂−1 ) − 𝑏 + 𝑐1
∫ 𝜈+1
𝜂−

1
𝑒−𝛿𝑡 𝑑𝑡] 𝐼{𝜈+1 <𝜏 }] for

0 ≤ 𝑢 ≤ 𝑏 as well as 𝐸𝑢 [𝑒−𝛿𝜂1 ] for 𝑢 > 𝑏.
3. Use Eq. (3.3) to get 𝐸𝑢 [𝑒−𝛿𝜏 𝐼{𝜏<𝜈+1 }] for 0 ≤ 𝑢 ≤ 𝑏.
4. Determine 𝐸𝑢 [𝑒−𝛿𝜂1 𝐼{𝜈+1 <𝜏 }] for 0 ≤ 𝑢 ≤ 𝑏 by Eq. (3.18), where the first double integrals therein is

evaluated by Eq. (3.19) (with the second double integral in Eq. (3.18) can be directly set as 𝛿 = 0 in
Eq. (3.19)).

5. Determine 𝐸𝑢 [𝑒−𝛿𝜂1] for 𝑢 > 𝑏 by Eq. (3.11), it can be broken down into Eqs. (3.13) and (3.14),
where the two integrals therein are evaluated by Eq. (3.16) (the remaining integral

∫ 𝑑
𝑢/𝑐2

𝑓𝑈 (·) 𝑑𝑡 in
Eq. (3.14) is simply a special case of the above expression with 𝛿 = 0).

6. Get 𝐸𝑢 [𝑒−𝛿𝜂1 [𝑈𝑑
𝑏 (𝜂−1 ) − 𝑏 + 𝑐1

∫ 𝜈+1
𝜂−

1
𝑒−𝛿𝑡 𝑑𝑡] 𝐼{𝜈+1 <𝜏 }] for 0 ≤ 𝑢 ≤ 𝑏 by Eq. (4.9), where the first

double integral is Eq. (4.10), and the second double integral in Eq. (4.9) can be directly set as 𝛿 = 0
in Eq. (3.19), the third double integral in Eq. (4.9) can be directly set as 𝛿 = 0 in Eq. (4.10).

Remark 4.4. When the observation interval 𝑇 is 𝐸𝑟𝑙𝑎𝑛𝑔(𝑛) distributed and the single claim (gain)
amount 𝑋 has a rational Laplace transform, we can also obtain the results of 𝜙𝑏 (𝑢) and 𝑉𝑏 (𝑢). As
can be seen from step 2 of Remark 4.3, to calculate 𝜙𝑏 (𝑢) and 𝑉𝑏 (𝑢), we must know the values of
ℎ+𝛿 (𝑦 | 𝑢), ℎ−𝛿 (𝑦 | 𝑢), 𝑔+𝛿 (𝑦), 𝑔−𝛿 (𝑦) and 𝜒(𝑢). When the observation interval 𝑇 is 𝐸𝑟𝑙𝑎𝑛𝑔(𝑛) distributed
and the single claim (gain) amount 𝑋 has a rational Laplace transform, we can refer to Section 4 of
Albrecher et al. [1], Sections 3.2 and 4 of Albrecher et al. [2] and Remark 3 of Cheung and Wong [8] for
the results of these formulas. After the solutions of the above five expressions are obtained, we proceed
with the steps of the Remark 4.3 and the results of 𝜙𝑏 (𝑢) and 𝑉𝑏 (𝑢) after the relaxed Assumption
1 and Assumption 2 are obtained. For detailed calculations, interested readers can refer to references
Albrecher et al. [1], Albrecher et al. [2] and Cheung and Wong [8].

Remark 4.5. Note that with 𝛽 → ∞, 𝑐1 = 0, the model in this paper becomes the dual risk model with
Parisian implementation delays in dividend payments (the surplus process is observed continuously).
Similarly, ℎ+𝛿 (𝑦 | 𝑢) also degenerates into the expected discounted deficit at ruin for the classical com-
pound Poisson risk model with continuous observation. Both the Laplace transform of the time of ruin
and the Expected discounted dividends until ruin can degenerate to the result of Cheung and Wong [8].

5. Numerical illustrations

This section aims at providing some numerical examples to study the effect of Parisian implementation
delays under a mixed dividend strategy on the Gerber-Shiu expected discounted penalty function and
the expected discounted dividend payments before ruin. The optimal dividend barrier that maximizes
𝑉𝑏 (𝑢) with respect to b will also be discussed. In all examples, it is assumed that the constant expense
rate is 𝑐 = 0.5, the fixed continuous dividend interest rate is 𝑐1 = 0.25, the periodic observation with
𝛽 = 1 and the Laplace transform argument is 𝛿 = 0.1. All numbers are generated using the software
package Mathematica (Specific reference Cheung and Wong [8]).

The functions 𝜙𝑏 (𝑢) and 𝑉𝑏 (𝑢) are computed for the initial surplus levels 𝑢 = 2, 6, 8, 10 and fixed
barrier level 𝑏 = 10, and that’s the case of 0 < 𝑢 ≤ 𝑏. When the initial surplus 𝑢, the amount of income
is subject to the exponential parameter 𝑎1 and the deterministic delays 𝑑 = 10 are also fixed, the higher
the revenue intensity parameter 𝜆 of Poisson arrival rate, the higher the total 𝑉𝑏 (𝑢) of the expected
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Table 1. 𝑐 = 0.5, 𝑐1 = 0.25, 𝛽 = 1, 𝑎1 = 1, 𝑑 = 2, 𝑏 = 10, 𝛿 = 0.1.

𝜙10(𝑢) 𝑉10(𝑢)
𝜆 𝑢 = 2 𝑢 = 6 𝑢 = 8 𝑢 = 10 𝑢 = 2 𝑢 = 6 𝑢 = 8 𝑢 = 10

1 0.043389 0.000198 0.000014 0.000002 1.51882 3.51092 4.72591 6.35823
0.9 0.064976 0.000060 0.000062 0.000011 1.29783 1.58336 2.23002 3.13839
0.8 0.095988 0.001754 0.000232 0.000024 0.22002 0.72001 1.07673 1.60664
0.7 0.139022 0.021035 0.000878 0.000121 0.12266 0.49653 0.80351 1.29533

Table 2. 𝑐 = 0.5, 𝑐1 = 0.25, 𝛽 = 1, 𝜆 = 1, 𝑑 = 2, 𝑏 = 10, 𝛿 = 0.1.

𝜙10(𝑢) 𝑉10(𝑢)
𝑎1 𝑢 = 2 𝑢 = 6 𝑢 = 8 𝑢 = 10 𝑢 = 2 𝑢 = 6 𝑢 = 8 𝑢 = 10

1 0.043389 0.000198 0.000014 0.000002 1.51882 3.51092 4.72591 6.35823
1.2 0.061386 0.000507 0.000048 0.000008 0.72883 2.04065 3.04647 4.54500
1.4 0.084452 0.001199 0.000140 0.000012 0.32592 1.15171 1.95184 3.30516
1.6 0.112468 0.015661 0.000389 0.000041 0.05704 0.26698 0.52773 1.04242

Table 3. 𝑐 = 0.5, 𝑐1 = 0.25, 𝛽 = 1, 𝑎1 = 1, 𝜆 = 1, 𝑏 = 10, 𝛿 = 0.1.

𝜙10(𝑢) 𝑉10(𝑢)
𝑑 𝑢 = 2 𝑢 = 6 𝑢 = 8 𝑢 = 10 𝑢 = 2 𝑢 = 6 𝑢 = 8 𝑢 = 10

1 0.043391 0.000198 0.000014 0.000002 1.43257 3.31155 4.45754 5.99716
2 0.043389 0.000198 0.000014 0.000002 1.51882 3.51092 4.72591 6.35823
3 0.043389 0.000198 0.000014 0.000002 1.51989 3.51339 4.72923 6.36269
4 0.043389 0.000197 0.000013 0.000001 1.53849 3.55638 4.78710 6.44055

Table 4. 𝑐 = 0.5, 𝑐1 = 0.25, 𝛽 = 1, 𝑎1 = 1, 𝑑 = 2, 𝑏 = 10, 𝛿 = 0.1.

𝜙10(𝑢) 𝜙10(𝑢)
𝜆 𝑢 = 10 𝑢 = 11 𝑢 = 15 𝑢 = 20 𝑢 = −1 𝑢 = −3 𝑢 = −5 𝑢 = −10

1 0.0000019 0.0000015 0.0000014 0.0000014 0.76063 0.86271 0.89460 0.90830
0.9 0.0000109 0.0000089 0.0000081 0.0000081 0.78218 0.87158 0.89801 0.90857
0.8 0.0000236 0.0000201 0.0000175 0.0000175 0.80367 0.87976 0.90093 0.90876
0.7 0.0001211 0.0001035 0.0000901 0.0000656 0.81026 0.88159 0.90144 0.90878

discounted dividend is. Because more positive earnings a company has, the more dividends it pays.
Similarly, the expected discounted penalty function 𝜙𝑏 (𝑢) will decrease as 𝜆 increases.

The findings on Table 2 is same as that in Table 1. The income intensity parameter 𝜆 in Table 1 is
replaced by the exponential parameter 𝑎1 of the single income amount, and then the relationship among
𝑎1 and the expected discounted penalty function 𝜙𝑏 (𝑢) and the expected discounted dividend function
𝑉𝑏 (𝑢) is discussed. As it can be seen from the results in Tables 1 and 2, both 𝜆 and 𝑎1 influence the total
amount of earnings 𝑆(𝑡) at time 𝑡. Therefore, the impact of the change in parameter 𝑎1 on 𝜙𝑏 (𝑢) and
𝑉𝑏 (𝑢) of the single return is the same as that in Table 1.
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Table 5. 𝑐 = 0.5, 𝑐1 = 0.25, 𝛽 = 1, 𝜆 = 1, 𝑑 = 2, 𝑏 = 10, 𝛿 = 0.1.

𝜙10(𝑢) 𝜙10(𝑢)
𝑎1 𝑢 = 10 𝑢 = 11 𝑢 = 15 𝑢 = 20 𝑢 = −1 𝑢 = −3 𝑢 = −5 𝑢 = −10

1 0.0000019 0.0000015 0.0000014 0.0000014 0.76063 0.86271 0.89460 0.90830
1.2 0.0000080 0.0000065 0.0000060 0.0000060 0.79497 0.88158 0.90246 0.90890
1.4 0.0000119 0.0000099 0.0000088 0.0000088 0.82283 0.89317 0.90615 0.90905
1.6 0.0000405 0.0000337 0.0000302 0.0000301 0.84487 0.90009 0.90783 0.90908

Table 6. 𝑐 = 0.5, 𝑐1 = 0.25, 𝛽 = 1, 𝑎1 = 1, 𝜆 = 1, 𝑏 = 10, 𝛿 = 0.1.

𝜙10(𝑢) 𝜙10(𝑢)
𝑑 𝑢 = 10 𝑢 = 11 𝑢 = 15 𝑢 = 20 𝑢 = −1 𝑢 = −3 𝑢 = −5 𝑢 = −10

1 0.0000021 0.0000018 0.0000018 0.0000018 0.76063 0.86271 0.89460 0.90830
2 0.0000019 0.0000015 0.0000014 0.0000014 0.76063 0.86271 0.89460 0.90830
3 0.0000016 0.0000012 0.0000012 0.0000012 0.76063 0.86271 0.89460 0.90830
4 0.0000007 0.0000011 0.0000010 0.0000010 0.76063 0.86271 0.89460 0.90830

With the extension of the certainty time 𝑑 of the delay, the Parisian implementation delays dividend
becomes more stringent, which leads to a later ruin time and hence a smaller value of 𝜙𝑏 (𝑢). As the
delay gets longer, there are three effects on the expected discounted dividend function 𝑉𝑏 (𝑢):
1. A longer delay time makes the duration of threshold dividend longer. However, when 𝑑 reaches a

certain length, the surplus process has passed through the barrier 𝑏 and dropped below 𝑏, which
will no longer affect the total threshold dividend.

2. The longer the delay, the lower the probability of ruin. The longer the company survives, the more
potential dividend opportunities will be generated by the company’s long surplus growth.

3. The longer delay means that early Parisian implementation delays dividend are more unlikely.

The numerical results in Table 3 suggest that the above first two effects dominates.
The left side of Tables 4–6 considers the case where the initial surplus are greater than the dividend

barrier 𝑏 = 10. It can be seen from the table that similar findings of Tables 1–3 are still retained. In
each of Tables, for fixed 𝜆, 𝑎1 and 𝑑, it is observed that 𝜙𝑏 (𝑢) decreases and converges as 𝑢 increases.
Intuitively, when u is considerably larger than the dividend barrier 𝑏 = 10, although the threshold
dividend is being paid, the initial surplus is so large that it is likely the surplus process will remain above
the dividend barrier 𝑏 during the entire delay period. In such a case, the surplus will drop to dividend
barrier 𝑏 upon payment of a dividend at the end of the delay period, and the time remaining until ruin
is just the time of ruin with initial surplus level 𝑏. Therefore, any further increase in 𝑢 virtually does not
affect the ruin time but merely increases the amount of the first dividend.

Similarly, the right side of Tables 4– 6 considers the case where the initial surplus are less than the
dividend barrier 𝑏, which is also shown in Tables 1–3. By comparing Tables 1 and 4, it can be seen
that the smaller the initial surplus 𝑢 is, the smaller the impact of revenue intensity parameter 𝜆 on the
expected penalty function 𝜙𝑏 (𝑢) is. Besides, from Tables 2 and 5, it can be seen that the smaller the
initial earnings 𝑢 is, the smaller the impact of exponential parameter 𝑎1 of the single income amount on
the expected penalty function 𝜙𝑏 (𝑢) is. This is because the smaller the initial surplus is, the more likely
ruin will occur and it will converges to a constant of 1.

In addition to the effects of various parameters on the expected discounted penalty function 𝜙𝑏 (𝑢)
and the expected discounted dividend function 𝑉𝑏 (𝑢), we are also interested in the optimal barrier
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Figure 4. 𝑉 (𝑥) for u = 2 with parameters 𝑐 = 0.5, 𝑐1 = 0.25, 𝛽 = 1, 𝑎1 = 1, 𝜆 = 1, 𝑑 = 2, 𝛿 = 0.1.

Figure 5. 𝑉 (𝑢) for 𝑢 = 12 with parameters 𝑐 = 0.5, 𝑐1 = 0.25, 𝛽 = 1, 𝑎1 = 1, 𝜆 = 1, 𝑑 = 2, 𝛿 = 0.1.

maximizing the expected discounted dividend function 𝑉𝑏 (𝑢). The results are given in Figures 4–6 and
are explained as follows. The three cases of initial earnings 𝑢 = 2,𝑢 = 12 and 𝑢 = −2 are considered here.
The value range of dividend barrier 𝑏 is 2 to 9, which is corresponding to three cases of initial surplus
between 0 and 𝑏, greater than 𝑏 and less than 0, respectively. It can be seen from Figures 4–6 that when
the initial earnings 𝑢 and the delay time 𝑑 are determined, it might not be the case that the smaller the
dividend barrier 𝑏 is, the better. A smaller dividend barrier will make it easier to distribute the dividend,
but it will also be more likely to cause a ruin of a company. Similarly, it is not the case that the bigger
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Figure 6. 𝑉 (𝑢) for 𝑢 = −2 with parameters 𝑐 = 0.5, 𝑐1 = 0.25, 𝛽 = 1, 𝑎1 = 1, 𝜆 = 1, 𝑑 = 2, 𝛿 = 0.1.

the dividend barrier 𝑏 is, the better. A large dividend barrier will reduce the probability of ruin, but the
dividend will occur later, and the total dividend amount will be reduced.The relationship between all
dividend barriers 𝑏 and the expected discounted total dividend 𝑉𝑏 (𝑢) is shown in Figures 4–6.
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