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Darmon’s Points and Quaternionic Shimura
Varieties

Jéréme Gartner

Abstract. In this paper, we generalize a conjecture due to Darmon and Logan in an adelic setting.
We study the relation between our construction and Kudla’s works on cycles on orthogonal Shimura
varieties. This relation allows us to conjecture a Gross—Kohnen—Zagier theorem for Darmon’s points.

1 Introduction

The theory of complex multiplication gives a collection of Heegner points on ellip-
tic curves over Q, which are defined over class fields of imaginary quadratic fields.
These points led to the proof of the Birch and Swinnerton-Dyer conjecture over Q
for analytic rank 1 curves, thanks to the work of Gross, Zagier, and Kolyvagin.

Let us briefly recall the construction of Heegner points. If E is an elliptic curve over
Q, then we know that E is modular. Let N be the conductor of E. There exists a mod-
ular form f € S,(N) such that L(E,s) = L(f,s). Denote by ®x: I'o(N)\H — E(C)
the modular uniformization that is obtained by taking the composition of the map
z0EHm—=c flioo 2mi f(z)dz (here ¢ denotes the Manin constant) with the Weierstrass
uniformization. Let K /Q be an imaginary quadratic field. A Heegner point is a point
Dy (zp), where zg € H N K. It is the Abel-Jacobi image of zy in C/Ag ~ E(C). The
theory of complex multiplication shows that these points are defined over class fields
of K.

In [[7], Darmon gives a conjectural construction of Stark—Heegner points, which is
a generalization of classical Heegner points. These points should help us to under-
stand the Birch and Swinnerton-Dyer conjecture on one hand, and Hilbert’s twelfth
problem on the other.

In more concrete terms, assume that F is a totally real number field of degree
d over Q and narrow class number 1. Let 7; be its archimedean places and K/F
some quadratic “ATR” extension (i.e., K has exactly one complex place). Darmon
defines a collection of points on elliptic curves E/F that are expected to be defined
over class fields of K. In this case, the (conjectural, but partially proved by Skinner
and Wiles) modularity of E gives the existence of a Hilbert modular form f on H?
whose periods appear, under some conjecture due to Oda, as a tensor product of
periods of E;, = E®p, C. The construction explained in [8] can be seen as an exotic
Abel-Jacobi map.

In this paper, we generalize Darmon’s construction by removing the hypothesis
“ATR” on K (but we assume that K is not CM) and the technical hypothesis that
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F has narrow class number 1. We replace the Hilbert modular variety used in the
“ATR” case by a general quaternionic Shimura variety and define a suitable Abel—
Jacobi map. We are able to specify the invariants of the quaternion algebra using local
epsilon factors and to give a conjectural Gross—Zagier formula for these points. We
conclude the paper by establishing a relation to Kudla’s study of cycles on orthogonal
Shimura varieties, in order to give a Gross—Kohnen—Zagier type conjecture.

Let us summarize the main construction of this paper. Let F be a totally real
field of degree d and let 71,. .., 74 be its archimedean places. Fix r € {2,...,d},
and a quadratic extension K/F such that the set of archimedean places of F that
split completely in K is {73, ..., 7, }. Let B/F be a quaternion algebra that splits at
Ti, ..., 7, and ramifies at 7,41, .. ., 74. Let G = Resp/q B*. We will denote by Shy(G)
the quaternionic Shimura variety of level H (a compact open subgroup of G(Ay))
whose complex points are given by

Shy(G)(C) = GIQ\(C ~R)" x G(Af)/H,

where Ay is the set of finite adeles over Q.

Fix an F-embedding q: K < B. There is an action of (K ® R) /(F ® R)* on
(C \ R)". By considering a suitable orbit of this action, we obtain for any b € G(Ay)
areal cycle g}, of dimension r — 1 on Shy(G)(C). Using the theorem of Matsushima
and Shimura, we deduce that there exists an r-chain Aj, on Shy(G)(C) such that A,
is an integral multiple of .7;,.

Let E/F be an elliptic curve, assumed modular, i.e., there exists a Hilbert modular
eigenform @ satisfying L(E,s) = L(, s). We will assume that this form corresponds
to an automorphic form ¢ on B by the Jacquet—Langlands correspondence. There ex-
ists a holomorphic differential form w,, of degree r on Shy(G)(C) naturally attached
to ¢. In general, the set of periods of w,, is a dense subset of C. Fix some character 5
of the set of connected components of (K ® R){* /(F ® R)*. Following Darmon we
define a modified differential form wg whose periods are, assuming Yoshida’s period
conjecture, a lattice, homothetic to some sublattice of the Neron lattice of E.

The image of (a suitable multiple of) the complex number |’ A wj in C/Agisinde-
pendent of the choice of A,. Hence it defines by Weierstrass uniformization a point
Pf in E(C). More precisely, denote by ®: C/A — E(C) the Weierstrass uniformiza-
tion given by a fixed embedding 7 x: K — C, which extends 7,: F — C. We have
the following conjecture.

Conjecture (5.1lbelow) Pf =0 (fAb wg) € E(C) lies in E(K) and

Vae (K@Z)*  recx(a)P) = Blase)P)

Let us assume this conjecture is true and denote by K/ the field of definition of
Pf . Let m = () be the automorphic representation generated by (; fix a character
x: Gal(K}/K) — C*. Denote by e(7 x x, %) the sign in the functional equation
of the Rankin-Selberg L-function L(7 X X, s) and by nx: F /F* Ng/p(Ky) — {£1}
the quadratic character of K/F. The following proposition proves that B is uniquely
determined by K and the isogeny class of E/F.
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Proposition (5.Zbelow) Let b € B and assume Conjecture[5.1) If

ex(P)= > x(0)®P, € EK))® Zlx]
o€Gal(K; /K)

is not torsion, then

Yvioo nK‘V(fl)s(m, X Xvs %) =inv,(B,) and 6(7‘( X X, %) = —1.

The last part of this paper is focused on a conjecture in the spirit of the Gross—
Kohnen-Zagier theorem. Assume that E(F) has rank 1. Denote by P, some generator
modulo torsion. For each totally positive t € Op such that (¢) is square free and prime
to the relative discriminant di /r of K, denote by K[t] the quadratic extension K[t] =
F(\/—Dyt), where Dy € F satisfies 7j(Dg) > Oifand onlyif j € {1,r+1,...,d}. Let
P;, be Darmon’s point obtained for K[t], b = 1 and 8 = 1, and set

Py = Trgpept/p Prae

The point P; is in E(F) under Conjecture [5.I} and it is assumed that there exists
some integer [P;] € Z such that P, = [P;]Py. In the spirit of [9, Conjecture 5.3] we
conjecture the following.

Conjecture ([6I1lbelow) There exists a Hilbert modular form g of level 3/2 such that
the [P,]s are proportional to some Fourier coefficients of g.

In our attempt to adapt Yuan, Zhang, and Zhang’s proof in the CM case [31] to
prove this conjecture, we obtained a relation between Darmon’s points and Kudla’s
program; see Proposition[6.8l

2 Quaternionic Shimura Varieties

In this section we recall some properties of Shimura varieties associated with quater-
nion algebras. The standard references are [21]] and Reimann’s book [25]]. The con-
tent of this section is more or less the transcription to Shimura varieties of what is
done for curves in [5,22]].

Let F be a totally real field of degree d = [F : Q] and let 7,..., 74 be its
archimedean places. Denote by Q C C the algebraic closure of Q in Cso 7;: F — Q.
Fix r € {2,...,d} and a finite set Sg of non-archimedean primes satisfying

|Sg| = d — r mod 2.

Let B be the unique quaternion algebra over F ramified at the set

Ram(B) = {741, ..., 7a} U Sp.
For each j € {1,...,d} we put B;, = B ®g,, R. It is not necessary but more
convenient to fix for each j € {1,...,r} an R-algebra isomorphism B, 5 My(R).
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The constructions given in this paper are independent of the choice of these isomor-
phisms, as in the author’s Ph.D. thesis [11].

Let G be the algebraic group over Q satisfying G(A) = (B ®q A)* for every com-
mutative Q-algebra A. We will denote by nr: G(A) — (F®qA)* the reduced norm
and by Z the center of G. For j € {1,...,d} let G; be the algebraic group over R
given by G; = G @, R; thl/l\s, Gr = GQ®p R/glecomposes as G| x --- x Gg. For any
abelian group A, denote by A the group A ® Z.

Let X be the G(R)-conjugacy class of the morphism h: § = Resc/r(Gmc) —
GR) = G1(R) x - - - x G4(R) defined by

X+iyr— (x y),...,(x y),l,...,l.
-y x -y x) L

d—r times

r times

The set X has a natural complex structure [20], and the following map is an holo-
morphic isomorphism between X and (C \ R)":

1 s N ai+ b a,i+b,
ghg™ — g (l"“’l)_(cli+d17“.’cri+dr)’
where g = (g1,...,8) € G(R)and for j € {1,...,r}, g; isidentiﬁedwith(:j Zj)

Quaternionic Shimura Varieties Let H be an open-compact subgroup of B*. The
quaternionic Shimura varieties considered in this paper are algebraic varieties
Shu (G, X), whose complex points are given by

Shy(G, X)(C) = B*\(X x B*/H),
where the left-action of B* and the right-action of H are given by
Vk € BX Vh € HY(x,b) € X x BX k- (x,b) - h = (kx, kbh).

Such Shimura varieties are defined over some number field called the reflex field.
In our case this number field is

F’_Q<er(a), aGF) cQcc.

j=1

We will denote by [x, b]y the element of Shy (G, X)(C) represented by (x, b) and
by [x, bl 5« the corresponding element of the modified variety Shy(G/Z, X)(C) =
B*\(X x BX/HZ).

Remark 2.1 All automorphic forms that appear in this article have trivial central

character. Thus the choice of using the quotient variety Shy(G/Z, X)(C) rather than
Shi (G, X)(C) is made to simplify computations.
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Remark 2.2 The complex Shimura varieties are compact whenever B # M, (F).
The Hilbert modular varieties used by Darmon in [7, Chapters 7-8] are the quotient
varieties obtained when B = M,(F) and r = d.

The Shimura varieties form a projective system {Shy (G, X)}y indexed by open
compact subgroups in B*. The transition maps pr: Shy(G,X) — Shy/(G,X) are
defined on complex points by [x, bly — [x, b]u-.

There is an action of BX on the projective system {Shy (G, X) }. The right multi-
plication by g € B* induces an isomorphism

[g): {Shu(G.X)}rr — {Shir(G, X) bg-1prg,
defined on complex points by [-g][x, b]ly = [x, bglg-1p-

Complex conjugation Fix j € {1,...,r}. Let hj: S — G be the morphism ob-
tained by composing k with the j-th projection G — Gjr and X; the G;(R)-con-
jugacy class of hj. For x; = gjh]-gj_l € Xj, the set Im(gjhjgj_l) is a maximal
anisotropic R-torus in Gjg. The map ¢;: xj — Im(x;) satisfies |€j_1(€j(xj))| =2,
thus there exists a unique antiholomorphic and G; r-equivariant involution ¢;: X; —
X such that for all x; € X;,

() = {xj, 16}

More precisely, under the identification X; = C \ R, the map /; satisfies

Ej(x+iy):{<_xy §>} and g;l(fj(x+iy)):{x+iy,x—iy}.

Note that the map ¢; can be extended to complex points of the Shimura varieties by
ti([x, bly) = [tj(x), bly; t; acts trivially on X; for k # j.

Differential forms In this section we recall some facts concerning differential forms
on Shimura varieties. We will denote by 2y = Qp/p/ the sheaf of differentials
of degree r on Shy(G, X) and by O3} the sheaf of holomorphic r-differentials on
Shy (G, X)(C), provided that Shy (G, X) is smooth. Recall that the GAGA principle
gives us the following isomorphism between global sections:

I'(Shy (G, X), ) ®p C — T'(Shy (G, X)(C), %) .

Notice that in general, Shy (G, X) is not smooth. In this last case we will fix some
integer n > 3 such that for each p in Ram(B) we have p{nOf and for each v| nOp,
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isomorphisms ¢, : B, — M;(FE,). The group

H' = {(hv) € H, s.t. Vv | nOp 1,(h,) = <(1) ?) mod nOpv}
is of finite index in H, and Shy/ (G, X) is smooth. The map Shy/ (G, X) — Shy(G, X)
is a finite covering. We define Qy = ﬁ ZJEH/H, oQy = (Qn/)H. By abuse of
language, we shall call an element of

I'(Qp) = I(Shy (G, X), Q) = ( > a> I'(Shy (G, X), Q)

oc€H/H'

a global r-form on Shy (G, X). Remark that the space of global holomorphic r-forms
lii>n I'(Q3) is equipped with a canonical action of B* given by pull-backs [-g]*.

H

Let e € {£1}" and denote by I'((Q23)°) the space of r-forms on Shy(G, X)(C)
that are holomorphic (resp. anti-holomorphic) in z; if ; = +1 (resp. if e; = —1).
The maps t; pulled-back on I'((£257)°) satisfy

D7) — (),
whereg; = gxfork # jand e} = —¢;.
When o € [];_,{%1} we will define ¢; € {0,1} by o; = (~1)% and t; by
[T, (). Let B: T[T, {1} — {£1} be a character and w € I'(2f}). We shall
denote by w” the element w” = de{il},,l Bo)ty(w) of @ T'((QF)°).

Automorphic forms Let S5 be the space S,

@:BX:G(R)XEX—>C

satisfying the following properties:

(1) Vg € B* Vb € By o(gh) = @(b);

(2) Vg € R*)" X Gy 1(R) x -+ x Gg(R) C G(R) Vb € By p(bg) = p(b);
(3) Vh € HVb € B} p(bh) = ¢(b);

(4) Vg € B V(by,...,6,) €R’

cosf; —sind, cosf, —sinb, | ! _
P8 sinf; cos@; )’ 7 \sinf, cosf, )T -

6721'61 N e*ZiG,@(g);

1 yiox Ve X
(el 1) (7))

is holomorphic on H", where H denotes the Poincaré upper-half plane.

(5) Forall g € B, the map

(xl +iy1,...,xr+iyr) —
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Remark that we do not need any assumption to obtain cuspidal forms as B will be
assumed to differ from M, (F).
There is an action of B* on S, = | J; S5 defined by

Vg€ BX, Vo € S, Vx € BY, g p(x) = p(xg);

thus S is the space of H-invariant functions in S,.
By modifying properties (4) and (5) above we obtain the following new definition.

Definition 2.3 Lete: {r,... ,Tr/} — {#1} and &; = &(7;). The space (S5) is the
space of maps ¢: By ~ +G(R) x B* — C satisfying 1-3 above and

(4) forallg € By and (6, ...0,) € R
cosf, —sinb, cosf, —sin6, ] ] _
LA sinf; cosf; /> " \sinf, cosO, ) T -

(5) forall g € By, the map

1 yiox Ve X
()0 7))

is holomorphic (resp. anti-holomorphic) in z; = x; +iy; € Hife; = 1 (resp.
gj= -1).

(.Xfl +iy1,...,x,+iyr) —
Y

We will denote by Sf - (resp. (SE)F ) ) the space of elements in S, (resp. S5) that are
[ -invariant.

We are now able to affirm the existence of relations between automorphic forms
and r-forms on Shy (G, X)(C).

Proposition 2.4 There exist bijections compatible with the B*-action between the

following spaces:
INCO5! and S
T((Q2)7) and (S

T(Shu(G/Z,X)(C), (U)7) and (S5

This statement is completely analogous to [5, Section 3.6]; see [L1, Propositions
1.2.2.4 and 1.2.2.5] for more details.

Matsushima—-Shimura Theorem The decomposition of the cohomology of quater-
nionic Shimura varieties given by Matsushima—Shimura theorem will be useful in the
following sections. Let us recall this result when B # M, (F) [10,[19]. Denote by hj;
the narrow class number of F.
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Theorem 2.5 Letm € {0,...,2r}. We have the following decomposition:

H"(Shy (G, X)(C),C) ~

dz; Adzy\ ¢ )
(Vect Nicac1...r—1} 5 ) ifm#r,
la|l=m/2 d Vi d
zi Ndz;\ $ .
(Vect Nicacq1,...r—1} T) D @56{i1}f(S§)H ifm=r,
la|=m/2 i

and

dz; Ndz;\ ¢ )
(Vect Nicacii,..r—1} 3 ) ifm#r,
la|=m/2 Vi
dz; Adzi\ Cax .
(Vect /\i@ﬁl,...,rﬂ} T) S2) @EE{il}f(Si)HF ifm=r,
al=m/2 i

where s (resp. s') is the number of connected components of Shy (G, X)(C) (resp. of
Shy(G/Z,X)(C)).

3 Periods
3.1 Yoshida’s conjecture

Let E/F be an elliptic curve, assumed modular in the sense that there exists a cuspi-
dal, parallel weight two Hilbert modular form @ € S,(GL,(Fa)) satistying L(E, s) =
L(®,s). We shall assume that the automorphic representation generated by ¢ is ob-
tained by the Jacquet—Langlands correspondence from ¢ € Séﬂ? “(BY).

Denote by 7 = 7o, ® 7y the automorphic representation of By /F, generated by
. We shall assume until Section[3.3} only for simplicity, that dim Tl'? =1

The motivic conjecture of Yoshida is the following.

Conjecture 3.1 (Yoshida [30]) Let M = h'(E) be the motive over F with coefficients
in Q associated with E. The motive M" = @, Resp/pr M over F' is isomorphic

to the motive associated with the part H*(Shyz (G, X))® of the cohomology for which
Hecke eigenvalues are the same as E.

Remark 3.2 Is the isomorphism between M’ and H*(Shyz. (G, X))® canonical?
This is an excellent question. In general, if such an isomorphism exists, it need not
be unique up to a multiplicative constant (e.g, if E is defined over a proper subfield
of F). However, there should always exist a canonical isomorphism between M’ and
H*(Shypx (G, X ), which can be characterized geometrically. This will be shown
in a forthcoming paper by Cornut and Nekovar.
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While looking at the /-adic realization, this conjecture is in fact the Langlands
cohomological conjecture. This case is known, up to semi-simpliﬁcation thanks to
Brylinski and Labesse in the case B = M, (F) [2]], Langlands in the case B # M;(F)
for primes of good reduction, [18], and Reimann and Zink [2526]] for a more general
case.

Recall the following decompositions given by Yoshida in [30} Section 5.1], when
we focus on 7/: F/ < Cinduced by 7/: Q — C.

Betti cohomology There exists an isomorphism of Q-vector spaces
~ r
I Mé — ®MB77—]..
j=1

de Rham cohomology The map

, o~ r _ N Gal(Q/F")
M (@(Mar @, Q))
j=1

is an isomorphism of F'-vector-spaces. The right-hand side is a tensor product of
Q-vector spaces, and the action of o € Gal(Q/F’) is given by

® (%s QF;s as) — ® (xs QFos U(as)) .
s€{T1,,r } s€{T1,,r }

r

Comparison isomorphisms Let [ = ®j:1

I, where

17—] : MB,T)' ®Q C ; MdR ®F-,Tj C
are isomorphisms of C-vector spaces, and I’ is the following isomorphism over C:
I's M}, ©q C — Mg ®p C.
The maps I o (£ ®qidc) and (_# &g/ idc) o I’ are known to satisfy
(%) Io(F ®qide) = (F ®p idc) oI': M} ®q C —+ @ (Mg ®f, C).
=1

Yoshida’s period conjecture consists of the existence of the isomorphisms .%, ¢,
I,and I'. It is the Hodge—de Rham realization of the motivic conjecture above.

Complex conjugation Let ¢, be the complex conjugation on Mg ;. We will need the
following hypothesis, which allows us to compare c; with ¢ on Mg, ®ps C.

Hypothesis 3.3 The action of t7 on M, ir ®r C corresponds via the isomorphism
(F @qide) o (I') "1 Mlg ©p C — ML, ©q C — (®MM) ®q C,
k=1

to the action of ¢;; on Mg ;.

ISince the Galois action on H 7(Shypx (G, X 1B is semi-simple, the phrase “up to semi-simplification”
can be omitted. This fact will be proved in a forthcoming paper by Cornut and Nekovi.
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3.2 Lattices and Periods

Fix some w,, # 0 in F"Mjp. By definition of M’, there exists a finite set of places S of
Fsuch that forv ¢ S, Tyw,, = a,(E)w,, where T, is the Hecke operator at the place v
(these operators are defined in [5 Section 3.4] for quaternionic Shimura curves; the
general case is completely analogous).

Let Qg/p be the sheaf of differentials on E/F. Fix n # 0 € H(E, Qg/r) = F'Mg.
For j € {1,...,n},let

nj="mn ®Fv”fj le H' (E ®F'TJ 6’ Q(E®E.Tj6)/6) - (FlMdR) ®F‘TJ 6

Then _
r r . __\ Gal(Q/F")
® 1€ (@ (F'Ma 2, Q) )
j=1

=1

= /(FrMc/lR)

and there exists &« € F'* such that _# (aw,) =m @ - - Q@ 1.
Let j € {1,...,r} and E; = E ®fr; C. We shall denote by Hl(Ej,Z)i the
eigenspaces of the complex conjugation action on H; (E;j, Z). Then

{/Tm, T eHl(Ej,Z)i} - Z07,

where 7 € R~ {0} and Q; € iR~ {0} are determined up to a sign. We fix the
signs by imposing, e.g., Re (Q;) > 0and Im (Q;) > 0.
Fix a character 5: {1} x H;ZZ{il} — {%1}, and write 8 = H;:z 8. We set

wg: ( Z B(U)t;> Wy = ﬁ(“’ﬁj(—l)t}k)ww
oe{1}x[Tj_{£1} j=2

and

r B.(—
QS _ H QA?]( 1).

=

The following identities

(@MB,H) %o C = & Homg(H, (E;, Z),C) = Homz<® HI(E]-,Z),C)

j=1 j=1 j=1

and Yoshida’s conjecture show that the image of awg under the map
(F ®qidc) o I'"' =T"" o (_F @psidc): Mi @ C — (®MB.T,‘> ®qC
=

is identified with the linear form

Gy (BmED G
T ® -7, — le@"‘®Tr ®;:1(1+6i(_1)t;)77j'
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Hypothesis[3.3]allows us to be more explicit. Let

,
T -0 e QHIE;,2),

j=1

then
/ é(l +Bi(=1)tf) mj = (/ 771) ﬁ (1+B;(=Dtj)n;
T1®--®T, j=1 T j=2J7;

.
= </ 771> I1 nj-
T, =20 48 (= e, T,

and the linear form (3.)) takes values in A, Q7 = (ZQf + 2O )Q°.
Under the dual isomorphism .#* of .#, the lattices

ézHl(Ej,Z) C ;é@lQMgTj and Im(H,(Shy(G/Z,X)(C),Z) — (Mg)*)
are commensurable. Thus there exists £ € Z ~\. {0} such that

&Im(H,(Shy(G/Z,X)(C),Z) — (Mp)*) C 7+ (]gé@lel (E;, Z)) .
This proves the following proposition.

Proposition 3.4 Under the hypothesis made in this section (E is modular, the multi-
plicity one in Yoshida’s motivic conjecture and HypothesisB.3)), there exist « € F'* and
& € Z ~ {0} such that

Vv € Hr(ShH(G,X)(C),Z), V3 ﬁ{il} — {£1}, f/awg S AIQB.
j=2 v

3.3 General Case

When my(m) = dim WfH (¢) > 1 Yoshida’s conjecture reads as follows.
Conjecture 3.5 The motive H (Shy(G, X)) B is isomorphic to
mpy ()
( ® RCSF/F/ M) .
{71, }

In general the motive H'(Shy(G, X))® has rank # 2. We shall provide Betti
and de Rham realizations of a submotive M’ C H'(Shy(G, X))® of rank 2" and an

We need 0 # w, € F'H;(Shy(G/Z,X)/F')®) satistying the following condi-
tions:
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* de Rham cohomology: The F’-vector space

Mg == ( D Ctiw,® 1)) N Hix(Shy(G/Z,X)/F)®
oe{£1}’

has dimension 2".
Thus,

F'My := Mg N F'Hp(Shu(G/Z, X)/F)E = Flw,.
* Betti cohomology: Fix an isomorphism
I': Hy(Shu(G/Z,X)(C),Q) ¥ ©q € — Hig (Shy(G/2,X)/F') ¥ @p C.
The Q-vector space

/ 1— r (E)
Mf ==1""' (M} ®@p C) N Hy(Shy(G/Z,X)(C),Q)

has dimension 2".

Definition 3.6 An element w, € F'Hj,(Shy(G/Z, X)/F")® is said to be rational
if it satisfies the conditions above.

¢ Comparison isomorphisms: There exist isomorphisms

~ r
I My — Q@ Mg,
j=1

)

, o~ r N Gal(Q/F")
F i Mg — (®(MdR ®Fr Q))
j=1

I‘rj : MB.,T)' ®q C — Mg ®F~,Tj C.
Set] = ®;:1 I;,. We have

(*) Io (ﬂ@Q ldc) = (/ (241 ldc> OI’:Mé ®QC;) é(MdR ®F7Tj C)
j=1

As in Proposition 3.4 we have the following proposition.

Proposition 3.7 Letw, € F'H(Shy(G/Z,X)/F')E) be rational. If E is modular
and if Yoshida’s conjecture is true, then there exist o € F'* and & € Z ~. {0} such that

Vv € H,(Shy(G/Z,X)(C),Z), Vg: ﬁ{:l:l} — {£1}, f/awg e Q.
j=2 Y
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Example Let Hy, H, C B* be compact open subgroups such that there exists g €
B* satisfying ¢g7'Hyg C H,. Letw,, € F'H(Shy,(G/Z,X)/F")'® be rational. Let
us explain a way to obtain w,, € F'H,(Shy,(G/Z,X)/F')'F) rational.
Let
pr: Shy-11,4(G/Z, X) —> Shy,(G/Z, X)

be the map given by [x, b]g—1p,, — [x, b]n, and let
[-g]: Shy, (G/Z,X) — Shg-1p,,(G/Z, X)

be given by [x, by, +— [x, bgly-1p,e- Let pry: Shy, (G/Z,X) — Shy,(G/Z, X) be the
composition of pr with [-g].
Choose 0, € Q. Set

Wy, 1= Z by pry(wy,),

g€B>
s.t. g7 'HigCH,

(M{)ar = (Z Oy Pr;) (M3)ar,
g

0t = (60 o3 ) 0D
g
Proposition 3.8 Ifw,, # 0, then the map

Z 0 pry

gEBX
s.t. g7 'HigCH,

is injective on P, ¢ 11y Ct7(wy, ® 1), and wy, € F'Hyp(Shy, (G/Z, X)/F")® is ra-
tional.

Proof Assume thatw = de{il}, Aotyy, € ®Ue{i1}r Ct;(wy, ® 1) (where A, €
C) is such that 6, pry (w) = 0. We have the following equalities:

Z O pry w = Z O pry Z Aotiwy, = Z Aoty Z O¢ pry Wy,
4 g a o g
= Z Aot iWe, -

Thus,
Y Atiwy, =06 @D Ctiw,,
. oe{xl1}"
and Vo € {£1}", Ast}iw,, = 0. Hence for all o € {£1}", A\, € 0. The map

Z 0 pry

gE§>< s.t. g7 'H1gCH,
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commutes with T,,, v ¢ S and is an isomorphism @ Ct;w,, — @ Ct}w,,. Hence,

we € ( ?i} Cti(wp, ® 1)) N F i (Shir (G/2,X)/F')
oE 1}

is rational. [ |

4 Toric Orbits

Let K/F be a quadratic extension satisfying the following properties:
(1) the places 7, ..., 7, of F are split in K;

(2) the places 71, Ty41, . - . , T4 are ramified in K;

(3) the places p € Sp are inert in K.

Thanks to the Albert—Brauer—Hasse—Noether theorem, there exists an F-embed-
ding q: K — B, unique up to conjugacy. We will denote by g; (resp. g,4qa) the
induced embedding K < B, (resp. K — B, Ka < Ba). For each place v of F, set
K, = K @ F,.

4.1 Cycles on X
Let T = Resg/q(Gum)/ Resp/q(G). Thanks to Hilbert’s Theorem 90 we have

T(A) = (K®qA)* /(F®qA)~

for every Q-algebra A.

By abuse of notation, let us denote by g: T — G/Z(G) the embedding induced
by q: K < B. The group T(R) is identified with H‘j:l K /F}. We denote, by abuse
of notation, q;: K /FY — Gjr.

Let mo(T(R)) be the set of connected components of T(R) and denote by T(R)°
the component of the identity. Fix a multi-orientation on T(R)° = H‘;:l (KX /Fr)°
(i.e., an orientation of each factor (Ké / FTX]_ )°) and remark that

7o(T(R)) = T(R)/T(R)° ~ ﬁz{il}-
1

We will focus on the orbits in X under the action of g(T(R)°) by conjugation.

Proposition 4.1 Let 7° be an orbit of q(T(R)°) in X. Then 7 ° decomposes into a
product of orbits in X; under q;(T(R)°) and is multi-oriented.

Proof The first part of this assertion follows from the natural decomposition X =
X; X -+ X X,. The orbit .7° decomposes into orbits under qj((KTf /FTX])O). For
j=1 qj((KTf /FTX] )°) =~ S! or a point and the orientation does not change. For
je{2, . rh g (KX /FY)°) =~ R}. The action of R} on itself by multiplication
does not change the orientation. Hence the multi-orientation induced on .7° by
T(R)® is well defined. [ |
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In the following sections we shall fix some g(T(R)°)-orbit .7°, whose projection
on X; is a point.

Proposition 4.2 .7° is a connected multi-oriented submanifold of real dimension
r— 1L

Proof Recall that .77° is decomposed as .7° = {z1} x %, X - - - X Z,. Fixx € X such
that 7° = q(T(R)°-x. Thenfor j € {2,...,r} wehave 7} = qj((KTf/FTXj )O)-prj(x).
The group q;((K7 /F)°) is naturally identified with R} and Jj is a connected ori-
ented manifold of real dimension one. [ |

As a corollary, we have the following decomposition:
T°={z} X1 XX,

where z; is one of the two fixed points in the action of g;(T(R)°) on X; and ; is an
oriented connected submanifold of real dimension one in X;.

When we use the identification of X with (C ~\ R)’, the action of T(R) on X by
conjugation is an action of PGL,(R) on (C \. R)" by homography. Let z € K \ F. For
j € {2,...,r} the matrix q;(2) is hyperbolic with exactly two fixed points in P'(R),
zjand z]’-. The manifold +y; is then a circle arc in the Poincaré upper half-plane joining
z; to z]f (or aline if zJ’~ = 00). Figure[Ilgives some examples of what could the ;s be
in the case of circle arcs.

Figure I: Case of circle arcs.

4.2 Tori on Shy(G/Z,X)(C)
Let b € BX. We will denote by 7,° the following subset of Shy;(G/Z, X)(C)

g, = {[x,b]HﬁX,xG ﬁo}.

Proposition 4.3 .J,° is an oriented torus of real dimension r — 1.

Proof Letx,x’ € 7°andb € BX; we know that

[x, bl e = [x',b] e <= Ik € BXandh € HF*  (kx’, kbh) = (x,b)

<= Jk € B* NbHE*b™! kx' = x
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Since the projection of .7° on X is a point, we have k € BN ¢q1(K;,) = q1(K) and

k € q(K*) NbHF*b™".

Thus the stabilizer % of .7,° under the action of g(K*) is
W = q(K*)N (bHE*b™Y),

which is commensurable with Oy , /OF. This quotient has rank r — 1 over Z as a

consequence of Dirichlet’s units theorem
0% . /Ox ~ torsion x Z'" !,
and the torsion is finite. The action of T(R)® on .7 ° is given by H;:Z(Ké / FTX] )°, and
there is an isomorphism
r ~
[T(KY/F)° — R
j=2
The image O of 0%, /0% in R"~! is isomorphic to Z* with s < r — 1. Denote by O}

the image of OF in (K ® R)* Nee=!, As
(K ® R)* Neje=1
A I1 KTT /FTX] and —_—

JE{2,0r} 0

are compact, R"!/ O is compact. Thus, the image of OF , /O in R"™! is a lattice.

The set .J,° is a principal homogeneous space under
qK*)/# ~ (R/Z)".
It is a real torus in Shy(G/Z, X)(C) of dimension r — 1, which is oriented by the fixed
multi-orientation on .7 °. [ |
For each u € mo(T(R)) and b € B let
%u = {[q(u)'xab]Hﬁxa x € yo}.
It is a real oriented torus of dimension r — 1.

Proposition 4.4 The set
{F"| beB*, uemn(TR)}

does not depend on the choice of the F-embedding q: K — B.
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Proof Let §: K — B be another F-embedding. Thanks to the Skolem—Noether
theorem there exists @ € B such that for all k € K, g(k) = ag(k)a~!. Let x; € X,
and assume that 7° = g(T(R)®) - x9. We have 7° := G(T(R)°) - a(xy) = - T°,
and for each u € mo(T(R)),

a-q(u)- 7°=4uT(R)®) -« - xp.
Leth € BX. Asa € B*, we have

:7;” = [q(u)ﬁvo,b] X = [aoq(u)oyo,b] = [q(u)oyo,a*Lﬂ Hix = Ty

Fx HEX

Themap b+ o 'bisa bijection. Thus,
{F", be B, uem(TR)} = {F" beB*, ucm(TR)}. ]

Action of Gal(K*/K)

Let us denote by K* the maximal abelian extension of K and by recg: K /K* —
Gal(K® /K) the reciprocity map normalized by letting uniformizers correspond to

geometric Frobenius elements. R
The group K, actson {7, | b € B*, u € mo(T(R))} by

- N (aso)
Va = (a0, ay) € K = K x K* Vb € B* a-fbuzﬂq}lﬂj)b“.

The action of k € K* is trivial; as q(k) € B*, the definition of Shy(G/Z, X)(C)
gives

k-7 = [qkqw) T°,  qblyz. = [qw)T°, blypx = T

The action of Fy is trivial. For a = (as,ay) € Fy and b € BX, qlag)b = bqlay)
and q(ao0)q(u) 7 ° = q(u).7°, hence

a-J = [q(as)qw) T, qap)b] o = [q) T, b] 45 = T

4.3 Special Cycles on Shy(G/Z,X)(C)

In this section we construct some r-chain on Shy(G/Z, X)(C).

Proposition 4.5 The homology class [Z,°] € H,_1(Shu(G/Z,X)(C),Z) of F° is
torsion.

Proof Let us denote by pr the map
pr: X x {b} — Shy(G/Z,X)(C).
0 is in the image of pr and

prfl(ﬁbc’) ={a} xy x - xv) x {b}.
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Letw € H ' (Shy(G/Z,X)(C),C). Asr — 1 # r we know thanks to the Matsu-
shima—Shimura theorem that

dzi ndz\*
we(vw A )

y;

s Ifr — 1is odd, then H"~'(Shx(G/Z, X)(C), C) = {0}.
e Ifr — 1 = 2sis even, w is the pull-back of /\;:2 w7, where

dx; A dy;

W =1 or 5
Vi

With the notations of the proof of Proposition 43} .7,° is a principal homogeneous
space under #'. Fix a fundamental domain # of # iny, X - - - X 7,. The incompat-

ibility of degrees gives
/ w:/~w(2)/\~-~/\w(’)20,
Te V4

Vw € H'(Shy(G/Z,X)(C), C) / w =

=7
This proves that
[7,°] = 0 € H,(Shu(G/Z,X)(C),C)
and that
[7°] € H,(Shu(G/Z,X)(C),Z)
is torsion. u

Definition 4.6 Letn € Z-, be the exponent of H,_;(Shy(G/Z, X)(C), Z)ors. We
will denote by A} any piece-wise differentiable r-chain verifying that n[ 7,°] = 0A}.

Proposition 3.7l proves that the value of

1 3
(ot [ ) <
b
modulo A, does not depend on the particular choice of Ap. If T(R)® is fixed, then

we have the following proposition.

Proposition 4.7 Let T° and T '° be two special cycles such that pr,(7°) =
pr, (7)) = {z1}. Assume that prj(yo) and prj(ﬂ’o) lie in the same con-
nected component of X; for each j € {2,...,r}. Let n be the exponent of
H,_1(Shy(G/Z,X)(C), Z)ors and let Ay and A[° satisfy

nlZ,°] = 0A, and n[7,°]1 = 0A°.

Then we have

/ wg:// w] (mod ¢ o 1QPAY).
b b
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Proof Our hypothesis allows us to decompose A;° — A} into

AP — Ay =pr({z1} x €) + D,
where D is a cycle with 0D = 0 and pr is the map

{x —»  Shy(G/Z,X)(C)
pr:
x > [x,blyp«

oy A
>
9,0
b vs pr({z1} x C)

L how th o no W “la1QPA,.
et us show t athb 7Abw¢€£ a 1
We have

=Y we P T(shu(G/Z.X)C),©OF)),

e: {rm,. = {£1}

Each w. € T'(Shy(G/Z, X)(C), (Q231)°) satisfies pr*(w.) = dz; A w.. We have

/ ws=/ dz; Aw! =0,
pr({zi} xC€) {z1}x€

B —
thus f{zl}xe%: =0.
Thanks to Proposition[3.7] we have

/Dwg S E_loz_lﬂﬂAl,

and the result follows. [ |

Corollary 4.8 The value modulo A; of

(Qlﬂfa/AEwg) c€C

depends neither on the choice of 7 ° whose projection on X, is {z,} nor on A} satisfying
n[Z,°] = 0A;.
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Remark 4.9 The value of (l/Qﬁfaonwﬁ) € C depends on the choice of the em-
bedding g. We make no further mention of this dependence, nor of the dependence
on z, as those objects are fixed in the whole paper.

Definition 4.10 We set
- % (mod A,) € C/A
b — @ga N W, (Mo 1 1
b

the image of .7,° by an exotic Abel-Jacobi map.

Properties of J;

For each u € m(T(R)) let A be some piece-wise differentiable chain satisfying
n[[q(u) . ﬂo,b]fo] = 0A;.

Proposition 4.11 We have

o Y Bw / w, (mod Ay),

uemo(T(R))

Proof Let us identify mo(T(R)) with H;:z{ +1} and assume that the image of T(R)°
is(1,...,1). Then

wi= Y B (w,).

u€m(T(R))

The chains t,A} and A} are in the same connected component. Thus, using Propo-

sition[4.7] we have
/ Wp = / We
Ay b

and the result follows. |
Recall that z; € X; is fixed by q(K*).

Proposition 4.12 Let 7° and T'° be two q(T(R)°)-orbits such that pr (T °) =
pr,(F'°) = {z1}. There exists a unique u € mo(T(R)) such that, forall j € {2,...,r},

prj(flo) and  pr;(q(u) - T°)

are in the same connected component of X;.
If]b/‘8 € C/A, denotes the value obtained from 7 '°, we have ];’3 = 5(u)]5.

Proof Letx,x’ € X be such that 7° = g(T(R)°) - x (resp. 7 '° = q(T(R)°) - x').
There exists u € m(T(R)) such that for all j € {1,...,r}, prj(q(u) - x) and prj(x’)
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are in the same connected component of X;. As .7'° = g(u) - .7°, the chain A}°,
whose boundary up to torsion is [.7'°, b] 4« , equals A}. Thus,

SooBwh [ we= > B[ w,

H/ UH,
u’ €mo(T(R)) Ay u’ €mo(T(R)) Ay

u’’€mo(T(R))

Letq,q’: K — Bbe two embeddings of F-algebrasand x € X, 7° = g(T(R)°) -x
(resp. 7'° = q'(T(R)°) - x’). There exists a € B* such that g’ = aga™! thanks to
the Skolem-Noether theorem. For each j € {1,...,r}, pr;(7°) and pr;(.7"°) are
in the same connected component of X; if and only if 7;(nr(a)) > 0.

Using Proposition [£.12] we obtain the following.

Proposition 4.13 Ifa = (sgno7;(nr(a))) e, € {£1}771, then ]l;“g = B(a)]ff.

Let Nzx (K*) be the normalizer of K* in B*. Let a € Npx (K*) ~ K*. After
multiplying a by an element in K* we may assume forall j € {2,...,r}, 7j(nr(a)) >
0.

We have pr,(q(a) - 7°) = ti(z;) and for all j € {2,...,r}, prj(q(a) - T°) =
prj(ﬂo), but the orientations of prj(q(a) - 7°)and prj(ﬁo) are not the same.

Thus,

(6.7°,b] 5 = (@) 7°, By = [7°,8(@) " bl

but the orientations differ by (—1)"~!. Hence we have the following proposition.

Proposition 4.14 The tori J,° and t, %?a)b are the same up to orientation.

5 Generalized Darmon’s Points
5.1 The Main Conjecture

Let ®,: C/A; = E;(C) be the Weierstrass uniformization; i.e., the inverse of ®; is
the Abel-Jacobi map for the differential 77;. For each as € K, fix some r-chain
q(aso) - Af satisfying n[q(as) - ﬂb‘d] = 0q(as) - Af and denote by B(a,) the sign

Blas) = ]ﬁzﬁ(sgn< I1 aoo,w)> .

w|T;

Conjecture 5.1 The point
« 1 s
P =01 e [ wp) = 00 €B(©
Qf N

lies in E(K*®) and for all a = (a., as) € Ky,

«
recK(a)Pf = ®d, ( ?2!’ /( w Wso) = »B(QOO)Pqﬁ(af)b'
qdcc )

alag)b
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Remark 5.2 The choice of z; € Xfl ) fixes a morphism h;: S — Gig, hence
a morphism C* = S(R) — Gir(R) = B} = (B ®g,, R)* satisfying h;(C*) =
q1(K). This fixes an embedding 71 x : K < C such that the diagram

hy
C* ——— (B®g, R

(K ®ET1 R)X

commutes. We may fix 7, : K < C above 71,k such that

1

F R C
A
T1.K :
: 5
K Kab

commutes. Moreover the isomorphism

1

Gal(K®/K) —  Gal(71(K™) /7 (K))
o —> Ti00O0T

does not depend on the choice of 7. If 7/ is another embedding above 71 g, then
7 = 7 o o' with o’ € Gal(K®/K) and for all ¢ € Gal(K*/K),
_/ =1 _ - =1 =1 _ . -1
Flooof ~ =Tfoc'oo of =T o007 ,

because Gal(K® /K) is commutative. Hence the Galois action of Conjecture 5.1ldoes
not depend on the particular choice of 7.

Remark 5.3 Using Conjecture[5.1] we obtain
Vas € KX, recK(aoo)Pbﬁ = ﬂ(aoo)Pbﬂ.

Va € F{, recK(a)Pf = Pf.

5.2 Field of Definition

Let BY = {b e B* |Vje{2,...,r}, 7j(nr(b)) > 0}. It is diagonally embedded in
(B®R)*. Set

Kl:r _ (Kab)recx(qzl(hHﬁxh_le)) and Kb = (Kab)recK(qzl(bHﬁxb_lBX)) c Kb+

Note that Kj, and K; depend on the choice of the F-embedding q: K — B.
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Proposition 5.4 Assuming Conjecture 5.1] the point P‘f is defined over K Pf €
E(K)).
Proof Leta = (loo,bhfb™ ") (a0, 1f) € qy (PHE*b™'BY) with f € F* and h €
H. We have

rec(a)Pf = rec(q;l((l007 bhfb_l)) P: = Pfhfb,lb = Ehf = P‘f. [ |

Remark that recg induces a surjection

(K @qR)* ~ [[{£1} - Gal(K} /K}).

R: T(R)) =
) = R (Ko Rr 1

Thus, we have the following proposition.

Proposition 5.5 Assuming Conjecture[5.1) the points P; lie in K; = (K;)RKer B),

Remark 5.6 As Kerf3 has index 2 in J;_, {1}, the field K} has degree 1 or 2 over
K.

Assume that the conductor N of E decomposes as N = N,N_ with N_ =
P1... D p; distinct prime ideals of O and t = d — r mod 2. If

Ram(B) = {7141, ..., 74} U{p1,...,0} and H= (R®zZ)*,

where R C Bisan Eichler order of level N, then Kj, is a ring class field of conductor f;,
and K a ring class field of conductor fjfoo, where fo = H;:z Tj.

5.3 Local Invariants of B

Let 7 be the irreducible automorphic representation of By generated by ¢ and
nk = Mkyrt Fy J[F*Ngp(Kg) — {1}
the quadratic character of K/F. For each place v of F let inv,(B,) € {£1} be the

invariant ofAB: inv,(B,) = l ifand only if B, ~ M,(F,).
Fix b € B* and a character x: Gal(K;/K) — C*, which will be identified with

KX =5 Gal(K™ /K) — Gal(K} /K) — C*.

Let L(m X ¥, s) be the Rankin-Selberg L function, see [13} p. 132] and [14} Sec-
tion 12]. This function admits, since 7 has trivial central character, a holomorphic
extension to C satisfying

L(w X x,s) =e(m x x,s)L(m x x,1 —s).

In this section, we prove the following proposition.
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Proposition 5.7 Letb € B* and assume Conjecture[5.1] If
P = Y x(0)®P €EK)®Zlx]

o€Gal(K; /K)

is not torsion, then 3 = Xoo, for allv # T,

1 1
77K,u(*1)€<7fv X X, E) = inv,(B,) and 6(7r X X, E) = —1.

We shall use the following theorem ([27,128]).

Theorem 5.8 The equality Nk ,(—1)e(m, X Xy, %) = inv,(B,) holds if and only if
there exists a non-zero invariant linear form 0,: m, X x, — C unique up to a scalar
satisfying for all a € K* and for allu € ,,

Co(gu(@)u) = x,(a) "4, (u)

i.e., £, is (K )-invariant.

Proof of Proposition[5.7] We follow the proof of [T}, Proposition 2.6.2].

Let S’ be a finite set of finite places of F containing the places where B, 7, or
K /F ramify, and such that the map r = (r,: K — Gal(K}/ /K)),es obtained by
composition

re T1 KX — KX 5 Gal(K®/K) — Gal(K} /K)
ves’

is surjective.
For eachv € S’ let

. JK, = B
Yk o blg (b,

and

j: (jv)vES’: H K‘V — H Bv-
veSs’ ves’

As §’ does not contain any archimedean place of F, foralla € [] K,

veSs’
[ﬂo,?l(a)b} HEX — [‘70’ bj(a)] HFX
and foralla € vg/ K and forallb € B, recK(a)Pf = P%a)b = Pfj(a).
Let (K*)° C KX be the inverse image of (K /O;YV)GE‘[(K/F) C K)/O%,.

We have
0 if visinertin K/F,

K /Og Fr = Z/2Z if v ramifies in K /F,
Z if v splits in K/F,
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the quotient (K*)°/F) is compact and

Z ifvsplitsin K/F,
0 otherwise,

D, = KX /(KX)° — {

~ | Z/2Z ifvramifies in K/F,
(KVX )O/OI><<VF5< — / . /
' 0 otherwise.

For each v € §', C, = Og, N Ker(r,) is an open subgroup of Oy , and V) =
(K))°/FXC, is finite.

Let V, be the following subset of K* /F,*C,:
e ifvdoes not splitin K/F, VY = K /F}C,and V, := V;
e If v splits in K/F, we fix some section of KX — K¢ /(K)})° = Z.
Hence K = (K;*)° x D, and there exists n, > 1 such that Ker(r, |p,) = n,D,.

Fix a set of representatives D, C D, of D, /n,D, and setV, = VD, C K} /F)}C,.
Let V. = [[,ee Vo C Il,es KX /F)C,, which is stable under multiplication

T

by the abelian group V° = [[,cs Vy and such that V. — [] .o KX/EXC, —
Gal(K} /K) is surjective with fibers of cardinality % We have

V| 8 \4 8
e P = e Y X(0)® 0P
|Gal(K;f /K)| Gal(K /KON ke

=D X@® Py,
acVv

Fix some open-compact subgroup H; C (), j(a)Hj(a)~". Using the maps

[-j(a)] pr
Shﬂl(G/Z,X) — Shj(a)*lHlj(a)(G/Z7X) — ShH(G/Z,)()7

we have
Sx@ [ wl=3x@ [ L
aev Adja acVv a5
— [ S x@tj@rsd = [ o
A7 aev Ap
where
Wi = Zx(a)[-j(a)]*wg.
agVv
Whenever

‘V| _(pBy 5 +
Gl ) = uezvxw ® P, € ZIx] ©2 E(K}) C Z[x] ®2 C/A
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is not torsion, there exists o: Z[x] < C such that

g% /Ao > x@l-j@)]*w] ¢ QX - A,

b acV

where %y = o o x. The vector

wy = Z”X(a)[j(a)]*ww enhn F(ShHl(G/Z,X),QHl)

acV

is non-zero and invariant under j([ ], (K;)°). Moreover, foralla € [, (K)})®,
j@w = XN a)w.

Let

ves’ veS’

Usr: @ m=& m — Cx )
veS’ veS’

be the j(HVGS’ (K*)°)-invariant projection on Cw.
Assume that v € S’ does not split in K. In this case (K*)° = K;© and %/ induces
a q,(K)-invariant linear form %,: m, — C(%x;'). We have %, (w; ,) # 0, where

wip = Y X onla)ljua)] w,.

a, eV,

As g, (T, X7 Xy, %) is independent of o: Z[x] < C, Theorem [5.8 shows that

1 .
Mko(=De (7 X X005 ) = invi(B,).

When v € §' splitsin K or v ¢ S’ U S, the equality

1 .
nKﬁv(_l)e(ﬂ'v X Xy, E) =1 =inv,(B,)

follows from calculations that can be found, for example, in [23} Prop. 12.6.2.4].

Global sign If v = 7; is an archimedean place, then e(m, X X, %) = 1. More-
over Ng,(—1) = 1ifandonlyif j € {2,...,r} and inv,(B,) = 1l ifand onlyif j €
{1,...,r}. Thus,
—1x1 ifj =1,
nK‘v(*l)ian(Bv) =4q1x1 lf] S {2,...,1’},
—1x -1

and forall j € {1,...,d},

1 -1 ifj=1,
Ev| Ty X Xy, 2| = v -1 il’lVV Bv X .
( Xz) (1) vy (By) {1 if > 1.
Hence,
1
5(7r><x, E) = — [ nk,(—1)inv,(B,) = —1. [ |
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5.4 Global Invariant Linear Form and a Conjectural Gross-Zagier Formula

For any open subgroup H' C H, b € BXandu e mo(T(R)) fix
Afyry € C'(Shu (G/Z,X)(C),Q)

such that 0AY, |, = [F, ], where 71, , = {[q(u)x, bl .-, x € T°}.

Recall that for all u’ € mo(T(R)), tur Ay, = Al
Let Moo be the archimedean part of 7. Fix ¢, € 7o a lowest weight vector of
weight (2,...,2,0,...,0) of T, and w,, such that
——

Wy = Poo ® Pf € Moo ®7Tf C SQ(B:)
Let us denote by ¢ the sub Q[B*]-module of 7 7 generated by ¢ .

Proposition 5.9 The space o7y is a Q-vector space and qmy ®q C — y is surjective.

Proof The space Im(qms®qC — 7y) is a zero subvector space of 77 invariant under
Bj. As 7y is irreducible, we have Im(q7f ®q C — 7f) = 7y, and gy ®q C — 7y
is surjective. |

Fixn # 0 € H(E, Qg/r). There exists a € F"* such that ¢ (aw,) = 7. Fix
a continuous character of finite order x: K /K*F\ — Z[x]*. Let H' C H be
any open compact subgroup of B satisfying x(q, '(H'FY)) = 1. Assume that there
exists by € B* such that bng’bO C H. Let pr, be the map Shy/ (G/Z,X) —
Shy(G/Z, X) defined on complex points by

[X, b]H/ﬁx — [xa be]Hﬁx .

Proposition 5.10 If by'H'by C H for some by € B, then for all Z' €
Cr(ShH'(G/Z7X)(C)7Z)7

/ pry, (W3>) € Qa1 A, .
ZI
Proof LetZ = prbO(Z’) € C"(Shy(G/Z,X)(C), Z). We have
/ pry, wi> = deg(pr, : Z' — Z)/w;(“.
z z
Thanks to Proposition[3.7] we have fz wi= € Qa~1OX~ Ay, hence

/ prZO wg"" € QuIOX=A;. [ |
Z/
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Denote by pr: Shy/(G/Z,X) — Shy(G/Z,X) the natural projection and by
(K ® R)Y the set of elements in (K ® R)* whose norm to F is positive at each place

_ (KQR)*
of F. We have mo(T(R)) = FoR> KSRX "

The formula

INGRES ! o Z x(a) ®/ w’

(H : H']deg(Iy p — gH‘bl ”a’o:(:f

N <H/FA KRR

(mod Q(x) ®q Qo 'Q¥<A,),

where

oALS=) = [T ]

H/A(af H' A(af

is independent of the specific choice of A?{(‘,“i‘%a we can assume that w’ = pr} (w,)

for some by € B* ; decompose each
a €Ky /gy (H'FX)(K @ R)Y

asa = (af, 1o0)(1y, oo ). Remark that
K Jax (H'FOK @R = K* /g ' (H'F) x (KoR) /(K@ R)],

hence as € K* /g " (H'F*) and as € (KQR)* /(K @ R)}.
Thanks to Proposition[5.10] the formula

Xoo(aoo)/ sa XOO(aOO) tq(doo) png wiﬁ

Aoo EKX H' 'Taf) oo EKX AH’.ZI‘(af)

:/ wE (mod Qo 'Q¥=A;)
A

Hglap)

: : 9(aso)
does not depend on the specific choice of A}, Fap

Thus, the expression of £, (w’) above defines a linear form

l: SE N QIB* Jw, — Q(x) ®q (C/Qa™'QX=A,).

To simplify the notations, let

Sirp = deg( Ty — Tiy)  and Wi = K /Jar (H'EX)(K @ R)X.
Thus,
1
L) = e X(a)®/ w'.

/ (a00)
[H H ]5 aEW Z’.q(af)
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Proposition 5.11 (i) Let H' C H’' C H be open compact subgroups such that
x(qy ' (H'FY)) = 1 and pr* the map pr*: SIZLI,(BK) — S’;{”(BK).
Ifw' € S’;I/(B:) n Q[I?X]ww then {,(w') = £, (pr*(w’)) and ¢, defines a linear
form on Q[EX Jw,.

(ii) We have foralla € KX Vw e Q[I?X]ouw7

O ([gap) w) = xp(@) "y (w).

(iii) If x factors through Gal(K,/ /K) and 1'fPf =, (fAH,b wg) ® 1€ C/QA,, then

ex(Pf=)= Y x(0)®0c(P™) € Qlx) ®q E(K)) C Q(x) ®q (C/QA)
Gal(K} /K)

= q)l(‘gx([b]*w¢))7
up to a non-zero rational factor.
Proof (i) Leta € K*. We have pr(An gap) = An gy and

/ pr*w’ = deg( Ty — 9H/7b)/ w' =8y g / w’.
AH”,Z) AH’,b A

H’ b

As x(qy ' (H'FY)) = 1, we have (thanks to Proposition [5.10)

* 1 *
EX(pr w’) = 4[H:H//]6H//H Z X(a)®/Aq(uoo) pr w’

T aeWy H”ﬁ(uf)
(mod Q(x) ®q Qa~ '~ A;)
(5 R
— H'H Z X(a)@/ w’
6H”H Alfl(ﬂoo)
T agWy H' qlay)

(mod Q(x) ®q Qo 'QX=A,)

_ 5H”-,H’ rLogl! /
N [HZH”](SH//’H Z [H HH ]X(a)® q(aco) v

acWy H' qay)

(mod Q(x) ®q Qu ™ 'QX*A,)

_ [H':H"] ,
~ [H:H"16n'm Z X(a)®/q<uoo> w

acWy AH/.Tj(af)
(mod Q(x) ®q Q™ ' QX< A)
=l (w").
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(ii) Assume H'' is sufficiently small such that [-g(as)]* pr* w € 51211”. We have

L ([qlap)]*w) = £, ([-qlap)]” pr' w)

1 / ~ * *
= T D X(")®/w/ [G(ap)])” prw
[HH ]5H”‘H a’€Wyrr AI-I(’?.OqA()a’)
(mod Q(x) ®q Qo™ 'QX=A,)
1

Z X((/)@/q(a,) priw
A o0

a'EWyrr H'/ qaa’)

- [H:H"1éy u

(mod Q(x) ®q Qa ™'Y~ A;)

> owatae [, e
Aq(uoo)

u”GWH// H'! g’

(mod Q(x) ®q Qa~'Q¥>~A,)

YDIRCEEY

a’’ €Wy H'! Ga’’)

1
~ [H:H")ourn

1
_ —1
=) H o

(mod Q(x) ®q Qo™ 'QX=A,)
= xr(@) ' (pr*w) = x (@) (w)

(i) Asw, € Si(BY) = Uy S¥(BY), there exists H' sufficiently small such that
wy € sH" and [-b]*w, € SH' Let

m = [KS/qy (H'F{)(K @ R) : Gal(K; /K)]
and v = 1/[H : H']deg(J — Ji1). We have

Gelblw)=v Y Xf(“f)Xw(“‘”)@/ )

K: H' {lag)
ac—F————x
—1 X X
4y (HFZ)(KQR)]

[-b]"w,

(mod Q(x) ®q Qo™ 'Q¥=A))

= VZXf(af) & ZXoo(aoo)reCK(af) : /A Treck (200 ) Wep
uf Aoo

H' b

(mod Q(x) ®q Qa ™'~ Ay)

—um Z x(o) ® / Z X oo (Goo ) treck (a00) W

s€Gal(K; /K) Aurp as

(mod Q(x) ®q Qo 'QX=A))
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=vm Z x(o) ®/ w,jg“’
s€Gal(K} /K) Aurp

(mod Q(x) ®q Qo 'Q¥<A,),

hence
eY(Pl)f"o) = <I>1(€X([b]*w¢)) . |

Let us consider the Néron-Tate height hxr: E(K by  E(K?®) — R extended to an
hermitian form
hnr: E(K®) ® C x E(K®) ® C — C.

Recall the condition for all v # 74,
1 .
6(7@ X Xvs 5) nky(—1) = inv,(B)

from Proposition[5.8t if[5.4lfails, then Py> € E(K aby is torsion.
In general, there should be some k(b,w,,) € Csuch that forall o: Q(x) — C,

1
(e (Py)) = K(b,w, )L (7 %, 3 )

as in Gross—Zagier, Zhang, and Yuan—Zhang—Zhang [12}[31}[33]].
This formula explains the following conjecture.

Conjecture 5.12 Let K, = (K®)X0 pe the extension of K trivializing x. If for all
v 7é T1,
1 .
E(WV X Xvs E) nxy(—1) = invy(B),

then there exists b € B such that k(b, wy) 7# 0, and we have the following equivalences:

0 #£0
<= 3b € By such that K, C K; and eg(P>) € Z[x] ® E(K}}) is not torsion

< Jo: Q(x) — C LI<7T><UX,%) £0

= Vo:Q(x) — C U(wx”x,%) £ 0.

6 A Relation to Kudla’s Program

The theorem of Gross—Kohnen—Zagier asserts that the positions of the traces to Q
of classical Heegner points are given by the Fourier coefficients of some Jacobi form.
The geometric proof of Zagier explained, for example, in [[32]] has been recently gen-
eralized by Yuan, Zhang, and Zhang in [31]] using a result of Kudla and Millson [17]].
In this section we establish a relation between Darmon’s construction and Kudla’s
program. This is a first step in an attempt to apply the arguments of Zagier [32]] and
Yuan, Zhang, and Zhang’s [31]] to Darmon’s points.
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6.1 Some Computations

Let us fix a modular elliptic curve E/F of conductor N = N,N_. Assume that
Ram(B) = {7/11,...,74} U {v|N_} and that the quadratic extension K/F satisfies
the following hypothesis:

Vv | Ny splits in K Vv |N_ isinert in K.

In particular, the relative discriminant dg ¢ is prime to N. Let R be an Eichler
order of B oflevel N,. Identify K with its image in B by g and assume that KNR = Ok,
H = R* (which implies that dimw? =1).

Recall that b defines an embedding 7 x: K < C and denote by ¢ the non-trivial
element of Gal(K/F). Assume that Conjecture 5.1]is true for 5 = 1 and let P =
TrK;r/K P} S E(K)

Proposition 6.1 If e is the global sign of E/F, i.e., A(E/F,s) = eA(E/F, 2 — s), where
A is the completed L-function of E/F, then c¢(P) = —¢eP.

Proof Assume that K = F(i) and B = K(j), withi? = a € FX, j2 =D € F* and

ij = —ji. Recall that 7,° = [7°, 1]ypx with 7° = {z;} x 72 X -+ X 7,. Thus,
o(7°) = {ha} Xy X - X Ugpe = (D' 7H(T°), Uy s
o(7°) = (=D)"'T°, jlyex s

since j € B*. This shows that ¢(P;) = (fl)rfle. We will write P; using only P;.

We will make the following abuse of language. For each place v of F, j, shall denote
the element (1,...,1, j, ,1...) € By, and we will use the following lemma.
<~

v

Lemma 6.2 Letb € BX andv a place of F. When v| N, setk, € K)* corresponding

to
1 0
0 wg"dv(N+) ’

where w, is an uniformizer of K. If b, = 1, then

—e,Py ifv|N_
Pyj, = < e reck(k; 1P, if v Ny
P, ifviN.

Proof of thelemma For each v inert in K /F we have

inv,(B) = 1 «= B, ~ M,(F,)
<= b € Ng 5, (K)) = OF F)?

<= 2] ord,(b)
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As j = —j, we have nr(j) = —j> = —band
inv,(B) = 1 <= 2| ord,(nr(j,)).

If v|N_, then H, = Oy, where Op, is the unique maximal order in B,, hence
H, < B and B /H)* ~ Z by choosing some uniformizer. As H, is normal in B¢,
the map

[-jv]: Shu(G/Z,X)(C) — Sh;-1y; (G/Z,X)(C)

is well defined on Shy(G/Z, X)(C). Thus [.7°,bj, ] ypx = [-jy][.T°, bl ypx and

/ Wy :/ ['jv]*wg, :/ Wv(jv)ww
Ag, A A

Decompose m = () = ®,m,. We have

nr rd, ~
7y B — Ff Nz Z/27 — {+1}.

Let us denote by « the following unramified character

ord, ~
a:F —Z— Z7/2Z — {+1}

satisfying m, = oo nr.

As v | N_, E has multiplicative reduction in v. The character « is trivial if and only
if E has split multiplicative reduction in v, i.e., €, = —1.

Hence,

. . W ifa=1,
gufw, = a(nr(jy)w, = .
[] ] ® ( (] )) 4 {(_l)ordv(nr(]))wQ otherwise.
As v|N_, v € Ram(B) is inert in K/F and inv,(B) = —1, thus 24 ord,(nr(j)).
Hence,
Wy = —EWy ifa=1,

—Ww, = —&,W, otherwise

[jv]*w, = a(nr(j,)w, = {

and Pyj, = —&,Py.
If v | N4, then we fix some uniformizer @, of F, and an isomorphism B, ~ M,(F,)
that identifies K, with the set of diagonal matrices and R, with

b o
{(Z d) € M (Opy) | @y C}'

Asinv,(B,) = 1, j, isalocal norm. There exists k, € K, such that j, = Ng /, (k).
We may assume that j2 = 1. Moreover, since j, is in the normalizer of K in B}, we
thus identify j, to (¢1).
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0 1 1 0 0 1 .
Wv - <w3rdv(N+) 0) - (0 ZE}([)rdv(l\h)) (1 0) — kv]v~

This matrix is in the normalizer of R, in B,. As W, normalize H,,

Set

[(T°,bjylupx = [T°, bk, "W, ypx = [WI1T°, bk, e
Decompose w, = ®V‘N+ w, ® w’, where w, satisfies[-W,]*w, = e,w,; then

[ owe=af w.
e A

: o
bjy !

Asb, =1,Py;, = ¢, recg (k; 1)Py.
If v{ N, then by a similar calculation we obtain Py, = reck (k; ')Ps. [ |

End of the proof of Proposition[6.1] Lemmal[6.2]implies that

c(P) = (=1)"" [T (&) T & reck(k; )P,

v|N_ v|Ny
and foralla € K,

c(recg(a)Py) = (=1)""" [T (—&,) [1 evreck(k; ") reck(a)P;.
vIN_ v|Ny

As P € E(K), we know that recx (k~1)P = P. Thus

(6.1) c(P) = (=1 ] (=) [T &P = (=) (=)W= T ¢,P.

v|N_ v|Ny vfoo

We have to show that (—1) ! HV\N, (—&,) Hv\m g, = —e. For each v| oo we
have e, = —1. Since [ [, = (—1)4, the sign in equation (6.1)) is

(D) TTe (1) (=N},
N

=c
Recall that {v|N_} = Ram(B) N Sy. As | Ram(B)| is even, we have

(_1)|{V|N_}| — (_1)\Ram(B)F‘|Soo| — (_l)dfr.

Hence
c(P) = (—1)e(=1) " H(=)IIN-}p = _cp -

Remark 6.3 The above computations are a particular case of a result of Prasad,
[24, Theorem 4], which asserts that if Homy x (my,1) # {0}, then the nontrivial
element in Npx (K))\K* acts on Hom (my, 1) by multiplication by inv,(B)e, =
inv,(B)e(m,, %) e {£1}
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6.2 Orthogonal Shimura Manifolds

Until the end of this paper we shall assume that hf = 1.

Let us recall some definitions used by Kudla [15]] in the particular case r = 1. Let
n € Z>¢ and let (V, Q) be a quadratic space over F of dimension # + 2. We assume
that the signature of V ®q R is

(1,2) X (n+1,1)"" x (n+2,0)9".

Denote by D the symmetric space of G = Resg/q GSpin(V'). D is the product of the
oriented symmetric spaces of V; = V @, p R. Thus D = Dy X ... Dy, where Dj is

the set of oriented positive subspaces in V; of maximal dimension. For each x € V

let x; be the image of x in V;. Assume that Q(x) is totally positive. Set V, = xt,

Gy = Resp/q GSpin(Vy), and for each j € {1,...,d},
Dy, ={zeDjz L xj}.
We shall focus on the following real cycle on the Shimura manifold G(Q)\D x
G(Q)/H.

Definition 6.4 Let H be an open compact subgroup in G(CA)) and g € G(a). The
cycle Z(x, g; H) is defined to be the image of the map

Zoe iy | GHLQ\D X GUQ/HE — GQ\D x GQ)/H
T Gy, w)HE —  G(Q)(y, ug)HE"

where HS denotes G,(Q) N gHg L.
Example (including Proposition[6.5) Fix Dy € F satisfying

Ti(Do) >0 ifje {1,r+1,...,d},
Ti(Dy) <0 ifje{2,...,r}.
Set (V, Q) = (B™°, Dy - nr). Then (V ®Er; R, 7j 0 Dy - nr) has signature
(L,2) ifj=1,
2,1 ifjefz,....r},
(3,0) ifje{r+1,...,d}.

Let G = Resp/q GSpin(V'). The action of B* on V by conjugation induces an
isomorphism

B 5  GSpin(V)
b — (v bvbh,

thus G ~ Resg/q(B*).

Let x € V such that Q(x) > 0, and denote by x; its image in V ®g,, R. Denote
by K the quadratic extension F + Fx and T = Resg/q(Gm) Resp/q(Gim) as above. Let
q be the inclusion K — V — B.
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Proposition 6.5 The set D, = Dy, x --- x Dy, is a q(T(R))°-orbit in D whose
projection on Dy is a point.

Proof Asx € V, Tr(x) = 0 and x> = —nr(x) = f%;‘) € F*. Letje {1,...,r}.
We have 7;(Q(x)) > 0, hence Tj(xz)Tj(Do) < 0. Thus 7, ramifiesin K and 75, ..., 7,
are split. Moreover, q; (K*) fixes x; by definition of K. [ |

Let us focus on the general case when V' has dimension n. Fixt € F satisfying
forall j € {1,...,r}, 7j(t) > 0. GQactson € = {x € V(F) | Q(x) = t} by
conjugation.

Let ¢ be a Schwartz function on V(I?). Assume €2, # @ and fix x € ;. Denote
by Z(y, ¢; H) the sum

Z(t, o3 H) = Y w02 g H).
SEG(Q\G(Q)/HF*
Proposition[4.5]showed that for n = 1,
[Z(x, g H)) = 0 € H,_,(Shu(G/Z,X)(C).C).

A natural invariant to consider is the refined class

{Z(t,p;H)} =

(Harm'(Shy(G/Z, X)(C))*
Im(H,(Shy(G/Z, X)(C),Z) — Harm'(Shy(G/Z, X)(C))*)’

wn—>]f€

where Harm'(Shy(G/Z,X)(C)) is the set of harmonic differential forms on
Shy(G/Z,X)(C).

In order to adapt the work of Yuan, Zhang, and Zhang, we need the following
conjecture.

Conjecture 6.6 In the situation of the above example (V, Q) = (B"=° Dy - nr), the

sum
> {2, 03 H)}q

teOF
>0

is a Hilbert modular form of weight 3/2.

In [31]], the authors work by induction. To apply their method we would need to
prove that the refined classes {Z(¢, p; H)} are compatible with the tower of varieties
attached to quadratic spaces Vy < V of signature (1,2) x (n+1,1)""! x (n+2,0)4"
(in which case a generalization of [[17] should imply that

> 12t g H)lq'
teOr
>0

is a Hilbert modular form of weight 5 + 1 with coefficients in

H"'(Shy(G/Z,X)(C), C)).
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6.3 A Gross—-Kohnen—Zagier-type Conjecture

The Bruhat-Tits tree In this section we recall some basic facts about the Bruhat—
Tits tree (see [4529]]).

Let v be a finite place of F. The vertices of the Bruhat-Tits tree of PGL,(F,) are the
maximal orders of M, (F,). Such maximal orders are endomorphism rings of lattices
in F2 ([29]], lemme 2.1). There is an oriented edge between two vertices O; and O,
if and only if there exist Ly, L, lattices in F? such that O; = End(L;), L, C L; and
Ly /Ly ~ Of,/w,0F,. The intersection of the source and the target of paths of length
n correspond to level v" Eichler orders.

Fix some quadratic extension K/F. This data allows us to organize the Bruhat—
Tits tree. Let U: K, — M,(F,) be a F,-embedding of K,. Let My(N) be the set of
matrices in M, (F,) which are upper triangular modulo N. If

W(Ok,) = U(K,) N My(N),

we say that U has level N. We can organize the vertices of the tree in “levels”, by
privileging a direction. Each level corresponds to a level of embedding relative to Ok,
i.e., to orders that are in the same orbit under K;*. The maximal orders in PGL,(F,)
that are maximally embedded are on the bottom of the tree.

Figures[21 Bl and[lillustrate the dependence on the ramification type of v in K.

Figure 4: Bruhat-Tits tree of PGL,(F,) when v is inert.
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Darmon’s Points, Kudla’s Program, and a Gross—Kohnen—Zagier-type Theorem
Recall that H = (R ®z Z)*, where R is an Eichler order of B of level N, and that
K = F + Fx satisfies the following Heegner hypothesis.

Hypothesis 6.7 Each prime p | N, splits in K, and each prime p | N_ is inert in K.
The group G, is isomorphic to K*, and Z(x, 1; H) is the image of K\ D, x K* /H
in Shy (G, X)(C). Note that
Z(x, LH) = 7' + (5,

where 21 = [UuEﬂ'U(T(R))q(u) : yo’ I]Hﬁx .

Let o = 1. We are able to prove an analogue of [[16, Proposition A.I.1] when
N =1,B = M,(F), R = M,(0F), t = Q(x) = Dgnr(x) € Fand K = F + Fx is such
that K N R = Og and O = Op + Opx. Set e (") = {[t1(x), bl gz, b € ]_?X}

Proposition 6.8 IfN = 1,r =d, B= M,(F), H = R* with R = M,(Op) and if
Ok = O + Opx, then Z(t, ; H) is equal to
Z(x,1;H) = 711 +c1(<711) = 911 - 5911.

Remark 6.9 Under the strong hypotheses above, £ = (—1)? and the cycle obtained
is zero when d is even.

Proof By definition

Z(t,p; H) = Z lﬁnzo(g_l -x)Z(x,¢; H).
gERX\BX /Rx

We have to determine g € K*\B* /R* satisfying g~ 'xg € R, i.e., x € gR"=0g1,
As F* C K*,

K\B* /PR =T 'K;\B) /R = [1'K\B) /ESR}'.
v v

This allows us to work locally with K)}\B)*/FXR), which is identified to the
K -orbits of maximal orders of PGL,(F,). This gives the condition x, € g,R,g, "
First let us consider those g, € B)/RXF) satisfying x, € g,R,g, . The ring
gR,g, ! is a maximal order containing x,. Using the fact that Ox = Of + Opx, we
have
x, € gVRVg‘,_1 <= ngvgv_1 NK, = Ok,.

Hence the maximal order g,R,g, ! is maximally embedded in K,. It is identified to a
vertex at the lowest level of the Bruhat—Tits tree. As each vertex at the same level is in
the same K< -orbit, we have for all v,

& = 1€ K\BS/FR].

Thus Z(t, p; H) = Z(x, 1; H), and, as Dy, is a set of two points, Z(x, 1; H) is identified
with 7' + (T} = F' — €7}, thanks to Proposition [6.1] [
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We now consider the case when N = N, N_ # 1 is prime to di/r. The following
proposition is true even if B # M, (F), but we still assume that R is an Eichler order
oflevel N, and Og = Of + Opx.

Proposition 6.10 Let N be the conductor of E. If N is prime to dy r, then

Z(t,p;H) = [](1 + inv,(B)e,) Z(x, 1; H).
v|N

Proof The proof is analogous to the proof of Proposition Let us first compute
the number of terms in Z(t, ; H). We need to determine for each v the number of
K¢ -orbits of oriented paths of length ord, (N, ) in the Bruhat-Tits tree; this is equal
to the number of g, such that x, € g,R,g, .

e Ifv{N, then the same argument as in Proposition[6.8 shows that there is only one
orbit.
e Ifv|N_, B, is ramified and v is inert in K. Hence K*\B)* /R F) = {1, m, } where
m, € B is an element whose reduced norm has order 1 at v; 7, corresponds to the
Atkin—Lehner involution.
e Ifv| Ny, vsplits in K. Denote by + the level of the order R,. Each Eichler order of
level ° is the intersection of the origin and the target of an oriented path of length 4.
By hypothesis those orders are maximally embedded in K,,, and the path correspond-
ing to g,R,g, ! is contained in the lowest level of the tree. As K¢ acts by translations
on this level, there are exactly two K -orbits corresponding to g, depending on the
orientation. We have ¢! and g, that are exchanged by the Atkin—Lehner involution
corresponding to (%)

Let n be the number of prime ideals in the decomposition of N. The sum
Z(t,; H) has 2" factors. Let W be the sets of these factors. By definition,
Z(x,¢;H) = [-g]Z(x, 1; H). Using Proposition [6.Tlwe obtain

Z(t,p; H) = Z[-g]Z(x, LH) =1]] (1 + inVV(B)EV) Z(x,1;H). [ |
gEW v|N

Let us conclude this paper with another conjecture. Assume that E(F) has rank
1. Denote by Py some generator of E(F) modulo torsion. For each t € Op totally
positive such that () is square free and prime to di/r, denote by K[t] the quadratic

extension
K[t] = F(v/—=Dyt),

which satisfies the hypothesis used to build Darmon’s points. Let P}, be Darmon’s
point obtained for K[t], b = 1, and 8 = 1, and set P; = Trg(,):/r 'Pt,]. Assuming
Conjectures5.Jland[5.12] the point P lies in E(F), and there exists an integer [P;] € Z
such that P, = [P,]Py modulo torsion.

Proposition[6.10/together with Conjecture[6.6]suggest the following (as in [9, Con-
jecture 5.3]).

Conjecture 6.11 There exists some Hilbert modular form g of level 3/2 such that the
[Pt]s are proportional to some Fourier coefficients of g.
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Remark 6.12 Using the analogy with the Gross—Kohnen—Zagier theorem, the inte-
gers [P;] should be (proportional to) square roots of L(E_p, 1), where E_p,; is the
twist of E by —Dyt.

Let us end this paper with two open questions.

Question 6.13 Does Bruinier’s generalization of Borcherds products [3] give any-
thing interesting in this situation ?

It is natural to expect that results of Cornut and Vatsal [5J6] also hold for Darmon’s
points.

Question 6.14 Would it be possible to deduce such a result from suitable equidis-
tribution properties for the real tori 7,° ?
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