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Abstract. In this paper we shall first show that if T is a class A(k) operator then
its operator transform 7 is hyponormal. Secondly we prove some spectral properties
of T via T. Finally we show that T has property (8).
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Let H be a complex Hilbert space and L(H) the algebra of all bounded linear
operators on H. An operator 7 € L(H) has a unique polar decomposition 7' = U|T|
where |T| = (T* T)% and U is the partial isometry satisfying N(U) = N(T) = N(|T))
and N(U*) = N(T%).

An operator T € L(H) is said to be hyponormal if 7*7T > TT* where T* is the
adjoint of T. As a generalisation of hyponormal operators, p-hyponormal and log-
hyponormal operators are defined in [2] and [9] respectively. An operator 7 is said
to be p-hyponormal if and only if (T*T) > (TT*)’ for a positive number p and log-
hyponormal if and only if T is invertible and log(T*T) > log(TT*). An operator T is
said to be of class A if and only if | 72| > |T|?. See [9]. As a generalisation of class A,
class A(k) and class A(s, f) are defined in [9] and [8] respectively. T belongs to class
A(k), if and only if (T*|T|?*T)w > |T|* where k > 0. For positive numbers s and ¢,
T belongs to class A(s, 7) if and only if (|7*)|T|*|T*|")* > |T*/*. In particular a
class A(k, 1) operator is a class A(k) operator [18]. It is well known that inequalities
(T*|TP*T)e > | T and (|T*|| T1|T*))71 > |T*|? are equivalent [18].

The following inclusion relations hold among these classes:

{hyponormal} C {p-hyponormal, 0 < p < 1} [12]
C {class A(s, 1), s, t € (0, 1]} [8]
C {class 4} [12]
C {class A(k), k > 1} [9].

The Aluthge transform 7 = |T |% ulr |% was introduced in [1]. An operator is w-
hyponormal if |T| > |T| > |T*| [3]. The Aluthge transforms are useful in the study of
these new classes of operators. “The Aluthge transform is an operator transform
from the class of w-hyponormal and semi-hyponormal operators to the class of
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semi-hyponormal and hyponormal respectively. By using Aluthge transforms we can
obtain spectral properties of these new classes of operators from those of hyponormal
operators” [7]. But so far we have not obtained any property of a class 4(k) operator
and it becomes difficult to study its properties. In this paper a new operator transform
T of T from the class A(k) to the class of hyponormal operators is given by

1T = | T/ T|7.

We denote the spectrum, the point spectrum, the approximate point spectrum and
the residual spectrum of an operator T by o(T), 0,(T), 0,(T) and o,(T) respectively.
A complex number X is in the normal approximate point spectrum o,,(T) if there
exists a sequence {y,} of unit vectors such that (7" — 1)y, — 0 and (T — 1)*y, — 0
as n — oo. For a hyponormal operator T, o,(T) = 0,,(T) because the inequality
(T = 1)yl < II(T — A)y| always hold for all . € C and all y € H[7].

In the following theorem we shall show that the operator transform 7' is
hyponormal when 7 is a class A(k) operator, where k > 1. Throughout this paper
we assume that k > 1.

THEOREM 1. If T = U|T)| is the polar decomposition of a class A(k) operator,
then T = WU||T|kT|ﬁ is hyponormal, where |T||T*| = W | |T||T*|| is the polar
decomposition.

The following theorems play an important role in the proof of Theorem 1.

Theorem Ry [12]. Let A and B be positive operators. Then for eachp > 0 andr > 0 the
following assertions hold.:

(a) If (B AP B5)i > B', then AP > (A5 B’ A%)r.
(b) If AP > (A5 B'A%)7% and N(A) C N(B), then (B: A’ B%)i7 > B’

Theorem R, (Lowner-Heinz inequality [12]). A4 > B > 0 ensures that A* > B* for any
a € (0, 1].

Theorem R3 [13]. Let T = U|T|and S = V|S| and |T||S*|= W | |T||S*| | be the polar
decompositions. Then TS = UWV|TS| is also the polar decomposition.

Proof of Theorem 1. By assumption 7T is a class A(k) operator. The following
inequalities hold.

(THTP*T)= = (TIUA TP UIT)™ = | TP <= (T T T = (TP (1)
Applying Theorem R; we obtain
TP = (T TP T ). )
Since 1 < 1, by Theorem R, we have
TP > (ITH T PIT = = (T U TPUH T (3)
From (1) and (3) we get
(TIUHT*UIT)= > TP = (T UITPU T . 4)

Let S = |T|FU|T| = |T|*T. Then (4) becomes, (S*S)#1 > (SS*)&1. This shows that
S =|T*T is k—}rl hyponormal. Besides, since T = U|T| and |T|* = U*U|T|* are the
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polar decompositions, by Theorem R3, | T|¥T has the following polar decomposition
IT*T = U*UWUIITI*T], (5)

where |T|K|T*| = W||T|*|T*|| is the polar decomposition. Accordingly we have
N(U) € N(|\T*||TJ%) = N(W*) and W*U*U = W* on H = N(U) ® R(U*).

Hence (5) can be written as |T|*U|T| = U*UWU||T|*U|T|| = WU||T|*T| which
is lﬁ hyponormal. It follows that 7 = WU||T |kT|ﬁ is hyponormal. O
We note that 7|| T T|7 = 7Tk = WU||TIFT| = |T|FT.

THEOREM 2. Let T be a class A(k) operator and {y,} be a sequence of unit vectors
in H such that lim,_, o (T — Ay, = 0. If lim,_. o | T|*y, and lim,_, o, |T|*y, exist, then
limy— 00 (T — A)y, = 0 and lim,, o (T — A)*y, = 0 where A € C.

Proof. Since T is hyponormal, lim,_ . (7 —A)y, =0 implies that lim,_,
(T — 1)y, =0. When A =0, lim,,, Ty, = 0 and hence lim,_, || 7y,|| = 0. Since
T is a class A(k) operator we have

ITYall> = (T Y. )
< (T T*T)V* 1y, 3,
= (ITFTP** y, y)
= |Tyal* since T = WU||T/FT|"/*

It follows that lim,, , o || Ty, || < lim,_ || T vull = 0 and hence lim,,_, o, Ty, = 0.
Also, since [|T*y,ll < [[Tynll, we have lim, o0 [T*yll < lim,o | Tyull = 0 and
hence lim,,, o, T*y,, = 0.
) On the other hand, when A £ 0 we have lim, o (T — A)y, =0 and lim,_,
(T — A)*y, = 0so that
lim (|77 = [A[*)y, = 0 and lim [(7)*]* = [A[*)y, = 0. (6)
n—0o0 n—00
Since |71 = | 7T |51 = (T*|T/*T)er  and  |(T)*1? = |T*|T |51 = (| T T
|T|K)%1, we obtain from (6) that
lim (7| T1*T)= — |AP)y, = 0and lim (TP T*PITF — APy, =0.  (7)
n—o00 n—oo
Since T belongs to class 4(k),
(THTPT)m = T = (TN T P|IT ),
and hence by (7) we have
lim ((IT1* = |A1*)yn. yu) = 0. (8)
n— 00
Also,
1

* 1 2 * 1
[T 1T T)e — T a|” = (T TPT)ET = AP y0) — AT = A0, 20)-

It follows from (7) and (8) that lim,_, [(T*| T/ T)&1 — |T|22y,|* = 0.
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Consequently we obtain
im (|71 — APy, = Em [|T]> — (T*|T1*17)" /My,
n—oo n—oo

+ lim [(TH TP D)V — 132y, = 0.

Hence lim,,_, o (|T| — |A|)y, = 0. By hypothesis lim,_, o, | 7|¥y, and lim,,_, o, | 7%y, exist,

so that we get
lim (|71 — 12)yn = 0,
n—oo

Tim (|71 — )y, = 0.

©)
(10)

Now |T*T = WU||T*T| and T = WU||T/*T|V*' = wU|T| implies |T|¥T =

T|T|F. Hence T*|T|¥ = |T|*(T)* and so by (9) and (10)

(11)

(12)

- T* VAL xoa
(T* = Dy = W(mk — 1T )y + @ =R+ W(mk — A )yu — 0
as n — oo. That is lim,_, (T — A)*y, = 0. Since | | T*y,|l — || |< (T = A)*p,ll, we
have
lim |7y, = |Al.
n—oo
Also
T T* = A Pyl = (TT* = |A)yu. )
= (TT*yna yn) - |)\|2
= | T*yall> — A%,
and by (11)
nlgrolo((TT* - M'z)yn’yn) =0.
Hence by (12) and (8),

Tim (T = 1Tyl = lim (T = TPy, )

= nlglgo[(UT*P - |)‘|2)yna Yn) — ((|T|2 - |)\|2)yna Yl

=0.
It follows that

lim (| 7> — | T|*)y,= 0.
n—o0

(13)

By (13) limy_oo(IT*1> = [A2)yn = limys oo[(| T*> = |TP)yn + (I T1> = [A*)]yn = 0.

Finally, lim, oo (T — A)yy = lim e (M) ' [(IT*1? = [AP)pn — T(T* — X)y,] = 0.

O

COROLLARY 3. Let T be a class A(k) operator. Suppose that & € 0,,(T) and {y,} is a
corresponding sequence of unit vectors such that (T — A)y, — 0 and (T — 1)*y, — 0 as

n — o0o. If lim,_, o | T*y, and lim,_, o | T|¥y, exist, then o,,(T) C 0,a(T).
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Proof. By hypothesis, A € 0,,(T) = lim,_, (T — 1)y, = 0 and by Theorem 2
lim, oo(T — A)y, = 0 and lim,,_, oo (T — A)*y, = 0.
That is A € 0,4(T). Hence 6,,,(T) C 0,,(T). O

THEOREM 4. Let T be a class A(k) operator and {y,} be a sequence of unit vectors
in H such that lim,_, o | Ty, and lim,_, « | T|*y, exist then lim,_, o (T — X))y, = 0 and
lim, oo (T — 2)*y, =0 = lim,,, oo (T — X))y, = 0, where » € C.

Proof- When A = 0 we have
A 1
I Ty,ll* = IWUNTT| % y,|*

2
= (ITI*T 1% y,, y2)
< (T TV Ty, )& (14)

Since lim, . Ty, =0 we have llm,Hoo(T*|T|2kTyn, y,) =0. Also from (14)
we have lim,_ o |7y, =0 and lim,.. 7y, =0. When A #0, by hypothesis
lim,,_, oo (T — A)y, = 0 and lim,,_, o (T — 1)*y, = 0. It follows that

lim (|T)? — APy, =0 and  lim (|T] — |A])y, = 0.
n— 00 n—0o0

By the continuity of operators we have the following equations

lim (|T1* = [A[*)y, = 0,

n—0o0

lim (|T1*T — [A[*A)y, = 0,

n—0o0

lim (7% 71" — |A[*X)yn = 0, (15)

n—oo

lim (T*| T T1*T) — |2 D)y, = 0,

n—oo

lim (|| 71| = D)y, =0

n—o0

lim (|| 71T |=" — |42y, = 0.

n—0o0
That is lim,oo(|7? = [A*)ys =0 and lim,_(|7] — [A))y, =0. By hypothesis,
lim,_, « | T|¥y, exists and hence,

lim (|71 — |A[*)y, = 0. (16)
n— 00

Since 7171 = |TFT we have (T =)y, = (=)L (171 = 1)y, + Lo (T = )y, +
W(|T|" IA|%)y,. Consequently by (15) and (16) we get lim,,oo(T — 1)y, =0. [

COROLLARY 5. Let T be a class A(k) operator. Suppose ) € 0,,(T) and {y,} is a
corresponding sequence of unit vectors such that (T — A)y, — 0 and (T — 1)*y, — 0 as
n— oo. If lim,_, oo | T|¥y, and lim,_, o | T ¥y, exist, then ,,(T) € 6,.(T).

Proof. By hypothesis, A € 0,,(T) = lim, (T — A)y, =0 and lim,_, (T —
A)*y, = 0. By Theorem 4 lim,,_, .o(T — 1)y, = 0. That is A € 0,,(T). Hence 0,,(T) C
0na(T) O

In the following theorem we shall show that for a class A(k) operator T, 0,(T) =
0)1a(T)'
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THEOREM 6. Let T be a class A(k) operator. Suppose {y,} is a sequence of unit vectors
in H such that (T — 1)y, — 0 and |||T)?y,|l — |A> = 0 as n — oo, then lim,_, o(T —
Ay, =0.

Proof. By assumption lim,_, (7 — A)y, = 0. Since | [|Ty,|l — A | < (T — M)y,
we obtain lim,,_, o, || 7y,|| = |A]. Also T is a class A(k) operator implies that

1Tyl = ATy, )
< ((T*ITP*T) =y, )
= (1T T1%7 y, ya)
< WITI*T) = vull (Cauchy-Schwarz inequality)
= TPyl

That is limy,— o | 79> < limy,— o0 17129, and so [A* < lim,—o0 17120 ]l-

By hypothesis lim,_,« ||| 7|2yl = |A|?> and hence we obtain
. 2
lim (| T T |57 y,, ya) = A% (17)
n— 00
Now by (17)
. 2 1 2 . 2
lim ||(IT*T15 — A1)y, |" = Uim (IT1FT15 1y, pa) — A7 = 0.
n—00 n—00
1t follows that
lim (| T/ T|57 — [AP)y, = 0. (18)
n—0o0
Also
. 2 1 2 . 2
Tim (T T1E = 1TP) 2y |” = lim [(1T1 715y, ya) = (T Py ya)] = 0,
and hence we obtain
lim (|| T/ T %1 — |T?)y, = 0. (19)
n— 00
From (18) and (19) we get
lim (1717 = [A2)y, = m (71 = |TFETP Yy, + 1im (I TFTIE = 32y, = 0.
n—o00 n—o00 n—00
As a consequence,

. N O .
lm (7 = 2)"yy = 5 Bm [T = [Py, = T(T = 2)p] = 0.

n—o0

Hence A € 0,,(T). O

THEOREM 7. Let T be a class A(k) operator. Suppose L € o,(T) and {y,} is a
corresponding sequence of unit vectors sucht that (T — L)y, — 0 and ||| T|?y,|l — |A|* —
0asn — oo theno(T)=0o(T)

To prove Theorem 7 we need the following theorems.
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Theorem R4 [11]

1. If A is normal, then for any B € L(H), 0 (AB) = o (BA).

2. Let T = U|T)| be the polar decomposition of a p-hyponormal operator(p > 0).

Then for any t > 0, o(U|T|)) = {9p" : € p € o(T)).

Theorem Rs [17] Let R be a subset of the complex plane C, T(t) an operator-valued
function of t € [0, 1] that is continuous in the norm topology, t,t € [0, 1], a family of
bijective mappings from R onto ©,(R) C C and, for any fixed z € R, t,(z) is a continuous
Sfunction of t € [0, 1] such that t is the identity function. Suppose that

o (T(1)) N 7(R) = 1(0,(T(0)) N R)
forallt €0, 1]. Then for all t € [0, 1],

o(T(1) N 7(R) = 1(0(T(0)) N R),
o(T()) Nt(R) = ©(a(T(0)) N R).
Let F be the set of all strictly monotone increasing continuous nonnegative functions on

RT =1[0,00). Let Fy ={V € F : V(0) =0} and T = U|T|. For ¥ € Fy,the mapping U
is defined by U(pe'?) = " W(p) and U(T) = U¥(|T)).

Theorem R [6] Let T = U|T| and W € Fy. Then 0,(W(T)) = U (0,0(T)).

Proof. Let T = U|T| be the polar decomposition of 7. We shall prove that if
T is class A(k), then o(U|T |+ = {p**1e? : pe? € o(T)}. Let T(t) = U|T|**" and
T(pe?) = e p¥tt. Since |T(f)| = |T|*** and |T(2)*| = | T*|**' we have the following
implications.

T belongs to class A(k), < (| T*| T/ T* )1 > |T*
& (T |7 | T(0)| 5 | T(0)*|F)mT > |T(1) |7

k 1
T(t) bel to class 4
< T(t) belongs to class <k+t k+t>

= T(¢) belongs to class A(k).

By Theorem 6 and Theorem Rg we have,

o (T () \{0}) = 0ua(T(2) \ {0})

= 7(0na(T) \ {0})

= t(0a(T) \ {0})

= t(0a(1)) \ {0}
Moreover, if 0 € o,(7(¢)) then there exists a sequence {y,} of unit vectors such that
U|T*"y, — 0 as n — oo. Hence, |||T*y,lI> = (U|T**"y,, UIT|*"'y,) — 0, so that,

lim,_, | T|¥y, = 0. It follows that lim,_, o, T, = 0 and hence 0 € o,(T).
On the other hand, if 0 € 0,(7’) then we have 0 € 0,(7(¢)) since,

NUIT yull = NUITHT Iyl < TN Tyull — 0 as n — oo.

Hence we obtain, o,(7(¢)) = t,(0,(T)) for all ¢ € [0, 1] and by Theorem Rs, we have
o(T(t)) = t(o(T)) for all t € [0, 1]. Putting r = 1, we get

o(U|TIFY = (pf1e? : pe? € o(T)). (20)
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By (1) of Theorem R4 and (20) we have,
s(WUITIT|) = o (ITI*UIT)) = o (UIT**")
— {pk+lei9 . peie e O,(T)}
By Theorem 1, 7= WU||T|FT| T s hyponomal. Hence by Theorem R4 we get,
o(T) = o (WUIITITIm) = {(pT)m1e” : pHle? e o(UITI* )
— {pei<9 . eiﬁpk-l-l e O,(U|T|k+l)}
=o(T). I

In the following corollaries we assume that 7 satisfies the following Limit
Condition.

Limit Condition. For each A € 0,(7T) and a corresponding sequence {y,} of unit
vectors, T satisfies the condition that lim,_ ||| T)?y.|| = |A|?, where T is a class A(k)
operator and 7 is its hyponormal operator transform.

COROLLARY 8. Let T be a class A(k) operator such that the Limit Condition is
satisfied. Then | T| = ||T|| = r(T) where r(T) denotes the spectral radius of T.

Proof.
17| = sup{I Tyl : Iyl = 1)
A 1
= sup {(IT1?y, »)? : Iyl = 1}

2 1
sup {(IITFFT|=y, p)2 : ] = 1}

sup{[| 7y : Iyl = 1}
Tl

v

Since 7" is hyponormal, || 7| = (7). Hence we have,

1T < 17|
— (1)
= sup{|r| : A € o(T}
=sup{|r| : A € a(T)}
=r(T).
Sipce every class A(k) operator is normaloid, || T|| = #(T). So |T| = «(T) = r(T) E
177l

COROLLARY 9. Let T be a class A(k) operator with a single limit point in its spectrum
such that the Limit Condition is satisfied, then the residual spectrum of T is empty.

Proof. By Theorem 7 o(T) = o (7). Hence o(7) has a single limit point. Since 7 is
hyponormal with a single limit point in its spectrum it is normal [16]. For a hyponormal
operator the residual spectrum is empty. Since o,(T) = ap(T ) the residual spectrum of
T is also empty. Il
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COROLLARY 10. A generalised nilpotent class A(k) operator satisfying the Limit
Condition is necessarily zero.

Proof. Since T is hyponormal, o(7)) contains a scalar u such that |u| = |7 [4].
For every positive integer #, it follows that [10, Theorem 33.1],

ITI" = 171" = Nl = "l < 0T < IT)".

Hence || T'||" = || T"||. By hypothesis, lim,,_, ||T”||% = 0. Itfollowsthat || T'|| = 0. Hence
T=0. ]

An operator T € L(H) is said to satisfy Single-Valued Extension Property (SVEP)
if for any open subset V' in C, the function 7 — A : @(V, H) — O(V, H) defined by
pointwise multiplication, is one-to-one. Here ©(V, H) denotes the Fréchet space of
H-valued analytical functions on ¥ with respect to the uniform topology. An operator
T € L(H) is said to satisfy the property (8) if for every open subset G of C and every
sequence f,, : G — H of H-valued analytic functions such that (7" — 1)f, () converges
uniformly to 0 in norm on compact subsets of G, f,(A) converges uniformly to 0 in
norm on compact subsets of G. This was first introduced by Bishop [5].

To prove that a class A(k) operator T has property (8) we need the following
Theorem which is a modified form of [14, Lemma 2.5].

Theorem Ry [14].  Let D be an open subset of Cand f, : D — H(n =1,2,...) vector
valued analytic functions such that |i|f,() — 0 uniformly on every compact subset of
D. Then f,() — 0 again uniformly on every compact subset of D.

Proof of Theorem R;.

Let us fix an arbitrary A € D. It suffices to show that there exists a constant r > 0
such that {|u — A| < r} € D and f,(x) — 0 uniformly on {|u — A| < r}. If L # 0, then
we need merely to take r such that 0 ¢ {|u — A| < r} C D. We consider the case in which
A = 0. Take any constant » > O such that {|ju| <r} c D. Thenforeachn=1,2,..., we
can find an w, with |w,| = r such that ||f,(n)| < ||fx(@,)|l on {|u| < r} by the maximum
principle. Thus

1

|y,

VG0 = o501 =~ lonfa(@n)l - 0

uniformly on {|u| < r}. |

THEOREM 11. 4 class A(k) operator T has property (B) if lim,_ |T|*f,(1v) and
limy, oo | 71 /(1) both exist and lim, . o[ T 1)l — I 2fu()]]] = .

Proof. Let D be an open neighborhood of » € Cand f,,(n = 1, 2, .. .) vector-valued
analytic functions on D such that (7" — w)f, (1) — 0 uniformly on every compact subset
of D.

We may assume that sup,, ||f,(1)|| < +o00 on every compact subset of D. In fact,
1?( ];4,7 be a positive number such that ||f,(1)|| < M,. Then by replacing f,, (1) with

(i

i1 e have sup, |f,(w)|l <1 and (T — w)fn() — 0 uniformly on every compact

subset of D. By hypothesis, (T — w)f, (1) — 0 uniformly on every compact subset of
D. Since [ 7/, ()l = Ifu )Nl < (T — w)fu()ll we obtain

Tim (I TG0l = hGo)l) = 0. e
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Since T belongs to class A(k),

ITH GO — 1P = TP, fu()) — (i), f())
< (THTPT) R fi), fou1)) = (1), (1))
= (ITFTIFT L), £,0) = (P hoie), fo()

= (ITPA)- fa) = (Pl Su()
< UTEA@N = NP G010,

by assumption. Hence
lim [(] TG0, o) = (1l f (), fu(mu))] = 0. (22)
Also

IATP = 1PVl = NTPAGON = 20w PA TP, £u(e) + 1l ()l
= T PAH) = el
= 20u (TP = 1P, fu(r) = 0,

uniformly as n — oo. That is,

Tim (1717 = |ul?) fu(w) = 0, (23)
Tim (7] — u]) /o) = 0. 24)

By hypothesis lim,,_, o | 7|¥f;,(t) exists and hence
Jim (171" = [u")fu() = 0.
By (21) and (22)

TP = 1TP) 24,60 = QTG0 /i) = AT Pho), fo(n)) = 0.

Hence (|71 —|T")fu(n) = 0 uniformly. By (23) lim,oo(|TI* — ||*)fo(1e) = 0;
lim, . oo(| 7| — [p])fu(1t) = 0. Hence limy,— oo(| T1% — |11]%)f(12) = 0.

Since 7|71 = |T|*T, we have
(T = IT1 () = AT T () — I T ()
= |TINT — wfu() + (I T = 2w
+u(ul* = 1T — 0,

uniformly. According to Putinar [15], every hyponormal operator has property (8)
and hence T has property (8). Hence, |T|¥f,(«) — 0 uniformly and |7|f,(x) — 0
uniformly as n — oco. By (24) we have |u|f,(1) — 0 uniformly and by Theorem R;
we obtain f,(«) — 0 uniformly. Thus 7 has property (8) and hence the Single Valued
Extension Property. O
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