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1. Introduction

The study of topological semirings, initiated by Selden [5], arises
naturally from the theory of topological semigroups. It is of interest to
take a known multiplication and investigate the possible additions. Selden
has done this in [5] for several compact semirings.

If S is any interval of Rt which is algebraically closed under ordinary
multiplication, then there are at least two semirings on S with this (or, in
fact, any) multiplication, namely those with additions x © y = x and
x © y = y. It is the purpose of this paper to list all the possible additions
on S.

It can be easily verified that if S is an interval which is closed under
ordinary multiplication, then S is of one of the following types:

I. {0}; II. {1}; III. (0, oo); IV. [0, oo); V. R,;
VI. (0, b) or (0, b] where 0 < b ^ 1;
VII. [0, b) or [0, b] where 0 < b ^ 1;
VIII. [a, b], (a, b], (a, b) w h e r e — l ^ a < 0 < a 2 ^ b ^ l , o r
[a, b) where — 1 < a < 0 < a2 < b fSi 1;
IX. (b, oo) or [b, oo) where 5 ^ 1 .

The problem is a trivial one for intervals I and II.
The necessary definitions are given in §2, while in §3 we derive some re-

sults which are necessary for the rest of the paper. In §§4—6 the problem
is solved for intervals III—V respectively. Intervals of types VI—VIII
are dealt with in §7, and finally, in §8, the list of additions for intervals
of type IX is obtained from the corresponding list for intervals of type VI.

The systems treated here can be defined in terms of functional equations,
and similar problems have been considered in that field (see, for example,
[1]). In particular, with the further assumption that addition satisfies the
cancellation law, Aczel (Theorem 2 of [2]) has found all additions when
S C [0, oo). Also Bohnenblust (§4 of [3]) has solved a similar problem on
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[0, oo) in which, although continuity is not assumed, several other assump-
tions, including monotoneity, are made.

I wish to thank Dr. J. H. Michael and several other members of the
Mathematics Department of the University of Adelaide for their encourage-
ment and assistance. I am also indebted to Professor J. Acze"! for drawing
my attention to [2] and [3].

2. Topological semirings in general

2.1 DEFINITION. By a {topological) semiring we mean a system {S, ©,o}
where S is a Hausdorff space and ©, o (called addition and multiplication
respectively) are continuous binary operations on S such that

(i) each is associative. That is, for all x, y, z in 5,

{x ® y) ffi z = x © (y © z),
(x o y) o z = x o (y o z);

(ii) o distributes across ©. That is, for all x, y, z in S,

x o (y © z) = (x o y) © (x o z),

(x © y) o z = (x o z) © (y o z).

In functional notation, this is equivalent to having two continuous
functions

F : S X 5 -> 5,
G:S X S->S,

where
F(x, y) =x ®y,
G(x,y) =xoy,

and requiring that, for all x, y, z in 5,

F[F(x,y),z] = F[x,F(y,z)],

y),z] = F[G(x,z),G(y,z)].

We shall find both notations useful.

2.2 The following lemma, although obvious, will be applied several
times.

LEMMA 1. Suppose that {S, ©, o} is a topological semiring and {T, •}
is a topological semigroup (i.e., • is a continuous associative binary operation
on T). If h is a homeomorphism of S onto T such that
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h(x o y) = h(x) • h{y)

for all x, yinS, then a, defined by

zaw = h[h-1(z) © h~1(w)]

for all z, w in T, is an addition of a semiring on {T, •}.

2.3 Throughout the rest of this paper, multiplication will be ordinary-
multiplication. That is,

G(x, y) = xy.

Note that with this multiplication the distributive requirement is satisfied
if and only if, for all x, y, z in 5,

x(y © z) = xy © xz.

3. Preliminaries

Throughout this paper we shall use the following notations:

g(x) = F{x, 1) = x © 1;
0 = 27(1, 1) = 1 © 1.

In this section {S, ©, .} will denote a semiring on an interval S of Rj^
with ordinary multiplication. We establish here some apparently unrelated
results which we need in the remaining sections.

3.1 Suppose that, for any x in 5, we know the value of f(x), and sup-
pose further that if x e S and x ^ o , then x~x e 5. Then if x, y e S and x ^ 0
we see that

x © y = x(l © yx-1) = xf{yx~x)

is known. From the continuity of © we can then find x © y for all x, y
in S. Similarly if we have fixed g(x) for all x in 5, then we can find x © y for
all x, y. Accordingly we direct much of our attention to specifying the values
of / or g.

Because /(I) = g(l), there is a certain duality between / and g. This is
especially true when, at various times, we assume that /(0) = g(0). Several
results which we state and prove for / have dual results for g. We will assume
these latter results without stating them explicitly.

3.2 If 0 e S, then 0 © 0 = 0(0 © 0) = 0.

3.3 If x, y,z,w e S, then

(a; © y) (z © w) = (x © y)z © (a; © y)w = xz © yz © xw © yw.
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3.4 If 0,1 e S, then, by §§ 3.3 and 3.2,

[/(0)]2 = 1 © O 0 O © O = 1 0 O = ̂ (0).

Hence /(0) is either 0 or 1, and similarly for g(0). Clearly x © 0 = xf(O)
for all x, and so

/(0) = 0 => x © 0 = 0 for all x,

/(0) = 1 => x © 0 = x for all x.

3.5 For any x ^ 0 such that x~x e S, it is clear that

f{x) = x{x-i © 1) = xg{x-1).

3.6 (i) Suppose S = Rx and g(0) = 1. Then we see that

limg(a;) = 1 = limg'(x).
x-,0- x-»0+

If we put xf(x~1) for g(x) and y for x~x, we see that

\imf{y)Jy = 1 = Yaaf(y)jy.

Hence /(?/) -> ±oo according as y->• ±00, and it follows from the conti-
nuity of / that f(Rx) = R1.

(ii) If [0, oo) C S and g(0) = 1, then it follows as in (i) that f(x) -> oo
as x -> oo.

3.7 Suppose that T = {f{x)\x e S}; then T2CT. For if y^y^eT,
there exist a^, xa such that

= (1 © »i)(l © «2) = 1 © K © a;2 © ^1*2) e :r-

Also T, being the continuous image of a connected set, is an interval.

3.8 Suppose that 0 = 1 and T is as in § 3.7. Then if y e T, there is an
x such that 1 © x = y. Hence

f{y) = \®y=l®{\®x) = {l®l)®x=l@x = y.

3.9 We derive some results when there is a y in S with f(y) = 1.

LEMMA 2. / / f(y) = 1 for some y, then f{yn) = 1 for all integers n ^ 1.
//, in addition, 6 ̂  0, ttew f(Qmyn) = 1 /or o/Z integers n 3^ 1 a»<̂  w.

PROOF. We first prove that /(y") = 1 for all integers n 2j 1. This is
trivial if « = 1. If we assume it to be true for some n 2g 1, then we see that

1 = (1 © »)(1 © 2/n) = (1 © V) © 2/" © 2/n+1

= (1 © yn) ® yn+1 = 1 © 2/B+1.

The result follows by induction.
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If 0 # 0, we now show that f(dy') = / (0~y) = 1 whenever f(y') = 1.
For

i®0y' =1® {y' ® y') = (l © y') ® y' = 1 e y' = 1,
and

i e e - y = e-1^ © y') = ̂ [ i © (i © </')] = e -^ 1 © i) = 1.

The lemma follows by repeated application of these two results.

LEMMA 3. / / [0, oo) C S and /(0) = 1, then 0 ^ 1 .

PROOF. Suppose, if possible, that g(l) = 0 < 1. Now, by §3.6, g(x) ->• oo
as x -> oo; it follows from the continuity of g and Lemma 2 that there is a
ze> > 1 with g(wn) = 1 for all integers n ̂  1. But K>" -> oo as n -> oo while
g(i»n) is bounded, which is a contradiction.

LEMMA 4. / / [0, oo) CS and 0 = 0, then F(x, y) = 0 for all x, y in S.

PROOF. It follows from § 3.4 and Lemma 3 (and its dual) that
/(0) = g(0) = 0. Hence, using §§ 3.3 and 3.4, we see that, for any x, y in S,

(x ® yf = x2 © xyd © j / 2 = (x2 © 0) © y2 = 0 © y2 = 0.

Hence the lemma.

LEMMA 5. If (0, oo) C S, 6 ^ 0 and there is a y ̂  0 with f(y) = 1, then
6 = 1.

PROOF. We first observe from Lemma 4 that 6 > 0, and further, since
it follows from Lemma 2 that f(y2) = 1, we can assume that y > 0. Sup-
pose, if possible, that 6 # 1. Then it is well known (see, for example, §11.1
of [4]) that there exist sequences {pn}, {qn} of integers such that qn > 0 for
all n, qn -*• oo as n -> oo, and

Ilnj/Ane+^J^2 (aUn).
i.e.

^ ?„ In t /+£n In 0 ^ |ln flfe"1.

Hence, putting | = 0 or 0"1 according as 0 > 1 or 6 < 1 respectively, we
see that

It is now clear that yQ»dPn-> 1 as «-> oo. But, by Lemma 2, f(yQ«dPn) = 1
for all « ^ 1, and so it follows from the continuity of / that 0 = /(I) = 1.

3.10 We examine here the sets

Z = {x\x e S and /(a) = 0},
N = {x\x e 5 and f(x) =£ 0}.
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LEMMA 6. / / /(0) = g(0) = 0, then ZNmCZ for all integers m ^ 1.

PROOF. Suppose z e Z and neN. Then, using §§3.3 and 3.4, we see
that

(1 © n) (1 0 zn) = 1 0 «(1 © z) © zn2 = (1 © 0) © zn2 = 0 © zn2 = 0.

Because 1 © n ^ 0, we see that 1 © zn = 0, and so Z2V C Z. The lemma fol-
lows by repeated application of this result.

LEMMA 7. / / [0, oo) C S and there is a z > 0 with f(z) = 0, then F(x, y)
= 0 for all x, y in S.

PROOF. We first show that /(0) = g(0) = 0. For suppose that
/(0) = 1; then, by §3.6, g(x) - • oo as x -> oo. But, by §3.5, g^-1) = z^f{z)
= 0 and it follows from the continuity of g that there is a w > z^1 > 0 with
£(?£>) = 1. Further, it follows from Lemma 3 that 0 S? 1. Hence we see from
Lemma 5 that 0 = 1. But f{z) = O and it follows from § 3.8 that /(0) = 0,
which is a contradiction. Similarly, by reversing the roles of / and g, we can
show that g(0) = 0.

Suppose now that Q =£ 0. Then it follows from the continuity of / that
there is a 8 > 0 such that [1—d, 1+5] CN. From Lemma 6 it follows that

Z D ZNm D z[l—

for all integers m 5=: 1. But clearly lez[l— 8, l+<5]m for some integer m
and so 0 = /(I) = 0, which is a contradiction. The lemma now follows
from Lemma 4.

LEMMA 8. / / S = Rx, /(0) = g(0) = 0 and there isaz < 0 with f(z) = 0,
then /(x) = 0 /or a«x ^ 0.

PROOF. If there is a z1 > 0 with /(s^ = 0, then the result follows from
Lemma 7. Hence we can assume that (0, oo) CN. Then, by Lemma 6,

ZDZNDz{0, oo) = (-oo.O),

and the lemma follows immediately.

4. (0,00)

We prove here the following theorem.

THEOREM 1. All additions of semirings on (0, oo) with ordinary multipli-
cation are given by the following five functions:

F1{x,y)=x; F2{x,y) = y;

Fzix. V) = min (x, y); F4(x, y) = max (x, y);
Fb(x,y) = (xc-\-y°)1/c, where c^0.
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It is easily verified that each of these functions gives such an addition.
We prove in Lemmas 9 and 10 that these are the only such additions.

LEMMA 9. The only additions on (0, oo) which have 0 = 1 are given
by the functions F1~Fi of Theorem 1.

PROOF. If T = {f{x)\x > 0}, then it is clear that 1 e T. If follows from
§3.7 that T is either {1}, (0, oo), (0, 1] or [1, oo). Also, from §3.8, f(x) = x
for all x in T. Hence

(i) If T = {1}, then f{x) = 1 for all x.
(ii) If T = (0, oo), then f(x) = x for all x.

(iii) If T = (0, 1], then f(x) = x for 0 < x ^ 1. Thus if x > 1, we see
that fix'1) = x"1 and so

1 = 1© xx-1 = 1 © x{l © x-1) = 1 © * © 1
= [1 © x][l © (1 © a)-1] ^ 1 © x.

But 1 © x e (0, 1] and we conclude that f(x) = 1 for all cc > 1.

(iv) If T = [1, oo), then /(#) = x for all a; _ 1. Thus if 0 < x < 1, we see
that /(a;"1) = x~x and so, as in (iii),

1 = [1 © ar][l © (1 © a;)-1] = 1 © a;.

But 1 © x e [1, oo) and we conclude that f(x) = 1 for 0 < x < 1.
In each of the four cases we have now fixed f(x) for all x. If we proceed

as in §3.1, we see that © is given by the functions F1~Fi in the cases (i) —
(iv) respectively.

LEMMA 10. The only additions on (0, oo) with 0 # 1 are given by the
function F5 of Theorem 1.

PROOF, (i) Suppose that 1 © 1 = 2. Then we show that x © y = x+y
for all x, y.

If m is a positive integer, we denote by m* the number which is the semi-
ring sum of m ones. Then if m and n are positive integers with m < n, we
see that

n* = m* © (n—m)* = m* (1 © (n—m)*lm*).

But as 0 = /(I) > 1, it follows from Lemma 5 that f(x) > 1 for all x. Thus
n* > w* if n > w. Also (wn)* = (m*)n for any positive integers m and «;
in particular, since 2* = 1 © 1 = 2, it follows that (2n)* = 2n.

Now let s be any integer ^ 3. Then, as in §11.1 of [4], there exist sequen-
ces {pn}, {qn} of positive integers such that qn ->• oo as n -> oo and

(1) | l n s / l n 2 - ^ / ? B | < ? - 2 (aUn).
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Hence PJqn -> In s/ln 2 as n ->• oo, and we conclude that 2*"/8» -> s as
n -^ co. On the other hand it follows from (1) that

< 2J)f>+1.

Thus, from, the properties of * deduced above,

2»»-i = (2J>»-i)* < (s««)* = (s*)8» < (2J)»+1)* = 2J>»+1.

Therefore
2<J>n-u/a» < ; s* < 2<J>n+1)/4».

If we allow n —> oo, we see that

s* = lim 2"»/9» = s.
n-»oo

Now let x = fig-1 and y = mn~x, where p, q, m, n are positive integers,
be any two rational numbers in (0, oo). Then it follows from the above that

x ® y — (qn)~1(pn © qm) = fan)"1 [(/>»)* © (?»»)*]

= x+y.
Finally, if x and y are any two numbers in (0, oo), it follows from the con-

tinuity of © and -f- that x © y = x-\-y.
(ii) Suppose now that © is any addition with 0 ^ 1 . Then the mapping

h(x) = xln2/lnB maps (0, oo) homeomorphically onto itself and preserves
ordinary multiplication. Hence, by Lemma 1, a, defined by

xay = h[h~1{x) © h~1(y)],

is an addition on (0, oo) with lcxl = 2. I t follows from (i) that

x © y = h~1[h(x)ah(y)] = h-^[h(x)+h(y)].

Then, putting c = In 2/ln 0, we see that F = F5.

5. [0,00)

THEOREM 2. ^4// additions of semirings on [0, oo) K>#& ordinary multi-
plication are given by the following seven functions:

Fi{x,y) = 0; F2(x,y)=x; F3(x,y) = y,
Fi(x> y) = min (x, y); Fs(x, y) = max {x, y);

F6(x, y) = {x'+y")1/", where c > 0;
1/c (x > 0 and y > 0),

{x = 0 or y = 0), where c < 0.
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PROOF. It is easily verified that each of these functions gives an addition
on [0, oo). To show that these are the only ones, we consider two cases.

(i) If there is a z > 0 with f{z) = 0, then it follows from Lemma 7 that
F = F,.

(ii) If f(x) > 0 for all x > 0, then, for all x,y>0,

x®y = xf{yx~1) > 0.

Hence F restricted to (0, oo) X (0, oo) is one of the functions listed in Theorem
1. Because F is continuous on [0, oo) x [0, oo), it follows that F is one of the
functions F2—F7.

6. Rt

In this section we prove the following theorem.

THEOREM 3. All additions of semirings on Rt with ordinary multiplication
are given by the following ten functions:

F\(*> y) = °; *«(*» y) = x> Fa(x> y) = y>
Fi(%> y) = sgn x . min (\z\, \y\);

F5(x, y) = sgn y . min (\x\, \y\);
F(>{x> y) = i(sgn a;+sgn y) . min (\x\, \y\);
Fi{x> y) = sgn {sgn x . l^l'+sgn y . \y\c} • |sgn x . \x\e+sgny . |«/|c|1/c,

where c > 0;

where c < 0;

sgn y . {\x\c+ lyl")V° (x ^ 0, ?/ 7̂  0),
0 (x = 0 or y = 0),

wAertf c < 0;

Ksgnz+sgny) • (klc+l2/lc)1/c (x^O, y^O),

where c < 0.

It is easily verified that each of these functions satisfies the require-
ments of an addition on Rx with ordinary multiplication. We prove by a
succession of lemmas that these are the only such additions.

LEMMA 11. The only additions on Rt which have /(0) ^ ^(0) are given
by the functions F2 and F3 of Theorem 3.
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PROOF. It follows from §3.4 that either /(0) = 1 and g(0) = 0, in
which case, for any x, y,

x © y = (x © 0) © y = x © (0 © y) = x © 0 = x,

or /(0) = 0 and g(0) = 1, in which case it is similarly shown that x © y = y
for all x , y.

Accordingly we can assume from now on that /(0) = g(0).

LEMMA 12. The only additions on Rx with /(0) = g(0) = 1 are given
by the function F7 of Theorem 3.

PROOF. It follows from Lemma 3 that 0 jg: 1. Further, it follows from
§3.6 that 0 e / ( ^ ) . Thus 0 ^ 1 , for otherwise it follows from §3.8 that
/(0) = 0, and we conclude that 0 > 1.

Because /(0) = 1, we see from Lemma 7 that f(x) > 0 for all x > 0.
Hence, if x, y > 0, then

x © y — xf(yx~x) > 0.

Therefore F restricted to [0, oo) X [0, oo) gives an addition of a semiring on
[0, oo) and so is one of the functions in Theorem 2. In particulai, if 0 = 2,
it follows thar x © y = x-\-y for all x, y ^ 0.

From §3.6, we see that there is a y =£ 0 with f(y) = — 1. Hence

!)} = i e y(i © - i ) = (i © y) 8 -y
= - i © -y= - ( i ®y) = i

and, since 0 > 1, we conclude from Lemma 5 that /(—I) = 0. Then, for
any x,

(1) x © -x = xf{-\) = 0,

and

(2) -x © x = - (x © —a) = 0.

We can now show that if 0 = 2, then x © y = z-fy for all x, y in Rx.
We consider four cases.

(a) If x, y 5: 0, we have already shown this.
(b) If x, y < 0, then it follows from (a) that

x © y = - | a ; | © - | y | = - ( | * | © \y\) = - ( M + I2/I) = x+y.

(c) If x < 0 and y ^ 0, then either x + y = 0, in which case, from (a),
(1) and §3.4,

x © y = x © [—x+(x+2/)] = x © [ -x © (x+y)] = (x © - x ) © (x+t/)
= 0 © (x+y) = x+y,
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or x+y < 0, in which case, by (b), (2) and §3.4,

x © y = i(x+y) + —y] ®y = [(x+y) ® —y] © y

® (—y © y)
© 0 = x+y.

(d) If x Si 0 and y < 0, the result follows by arguments similar to those
used in (c).

Suppose again that © is any addition on Rx with /(0) = g(0) = 1.
Then, because 0 > 1, the mapping

h(x) =sgax. |z| ln2/ln»,
with inverse

h~1(x) = sgna;. \x\^ei1**,

maps i?! homeomorphically onto itself and preserves ordinary multiplica-
tion. By Lemma 1, a, defined by

xay = h[h~l(x) © h~1(y)],

is therefore an addition on i?x with lal = 2. It follows that

x © y = A-^aOffAfy)] = A-^ACarJ+A^)].

If we put c = In 2/ln 0 (> 0), it now follows that F = F7.

We now consider the possibilities when /(0) = g(0) = 0, and show that
Flt Fi—Fe and F8—F10 are the only resulting additions.

LEMMA 13. If /(0) = g(0) = 0, then either

(i) 0 = 0, when F(x, y) = 0 /or aW x, y in Rt, or
(ii) (9 = 1, when F(x, y) = min (x, y) for x.y^O, /((0, oo)) = (0, 1]

and f(x) -> 1 as a: -*• oo, or
(iii) 0 < 6 < 1, WÂ M there is a c < 0 mt t F(x,«/) = (a;c+2/<!)1/c for x, y > 0,
i^a;, y) = 0 for x = 0 or y = 0, f( (0, oo)) = (0, 1) ««d /(a;) -> 1 as x -+ oo.

PROOF. Suppose, if possible, that 6 < 0. Then, using §3.5, we see that

f{B) = 1 © (1 © 1) = (1 © 1) © 1 = g(6) = df(d-!).

It follows that there is a z < 0 (and between 0 and 0"1) with f(z) = 0;
hence f(d) = 0, by Lemma 8. But then

which is a contradiction. We conclude that 0 ^ 0 .
If 0 = 0, then (i) follows from Lemma 4.
If 0 > 0, it follows from Lemma 7 that f(x) > 0 for all x > 0. Hence
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x © y > 0 for all x, y > 0 and so F restricted to [0, oo) X [0, oo) is one
of the functions listed in Theorem 2. Parts (ii) and (iii) of the lemma now
follow.

LEMMA 14. / / /(0) = g(0) = 0 and /((— oo, 0)) C (-oo, 0), then the
only additions are given by Fb and F9 of Theorem 3.

PROOF. Let 5 1 = /((0, oo)) and S2 =/((—oo, 0)), and suppose ylr

y2e S2. Then there exist z, w < 0 such that

ViVi = C1 © z)(l ® w) = f(z © w ® zw)-
Now

z © w ® zw = z[l © wz-1^ © z)] = zf\wz-1f(z)].

Hence, since /((—oo, 0)) C (—oo, 0), it follows that z © w © zw > 0,
and so y ^ e Sx. Therefore, 52 C Sx. It follows from Lemma 13 that either
d = l and S2C [—1, 0),or0 < (9 < 1 and S2 C ( -1 ,0 ) .

Suppose that x < y < 0; then 0 < yx*1 < 1 and it follows from Lemma
13 that there is a w > 0 with yx~x = 1 © w. Hence

1 © y = 1 © x © xw = [1 © x][l © xw{\ © x)-1].

Then, since xw(l © x)"1 > 0, we see that f(x) sS /(«/) when 0 = 1 and /(x) <
f{y) when 0 < 0 < 1.

It now follows that if ^ = inf S2, then —1 ^, d < 0 and lim f(x) = i .
Hence "—"

d2 = lim (/(x))2 = lim [1 © 0x(l © xd~x)].

Now as X H - - O O , 1 © x6~x ->- rf and so 6x(l © x0-1) -> co. Therefore we
see from Lemma 13 that 1 © 0x(l © X0"1) -> 1. That is, d2 = 1 and so
d= — l. We conclude that (—1, 0) CS 2 .

If d = 1, it follows from §3.8 that f(x) = x whenever —1 < x < 0.
Further / is increasing and f(x) ^ — 1 for all x < 0. We conclude that /(x)
= - 1 for all x ^ - 1 . It follows as in §3.1 thr.t F = F6.

If 0 < 6 < 1, we show that /(x) = —/(—x) for all x < 0. For suppose
there exists a ?/ < 0 for which this is not true. Then either.

- 1 < f(y)/f(-y) < 0 or - i < f{-y)jf{y) < 0.

Thus, since 52 = (—1, 0), there is a w < 0 with

f{y) = f(—y)fiw) = f{~y ® w © —
or

/(—2/) = f{y)f{w) = f(y ®w ©

respectively. But it follows from Lemma 13 and the second paragraph of
this proof that / is strictly increasing, which implies that
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y = —y © w © —yw or —y = y © w © yz#

respectively. That is,

— 1 = 1 © —wy-1 © w or —1 = 1 © w?/-1 © w

respectively, each of which contradicts the fact that f(x) > — 1 for all x.

Thus we have fixed f(x) for any x; if we proceed as in §3.1, we see that

LEMMA 15. The only additions on Rx with /(0) = g(0) = 0 are given by
the functions Fx, Ft—F6, F8—F10 of Theorem 3.

PROOF. If 0 = 0, we have shown in Lemma 4 that F = F1. If 0 =£ 0,
it follows from Lemma 8 that there are only the following three possibilities.

(i) If / ( ( - oo, 0)) = {0}, then f(x) = 0 for all x < 0. It follows from Lemma
13 and §3.1 that F = F6 or F1 0.

(ii) If/((—oo, 0)) C (—oo, 0), then, by Lemma 14, F = F5 or F9.
(iii) If /((—oo, 0)) C (0, oo), then, since f(x) = xg(x~1), it follows that
g((— oo, 0)) C (—oo, 0). Then, using the duality between / and g, it can be
shown as in Lemma 14 that F = F 4 or F 8 .

This completes all possible cases; Theorem 3 follows immediately from
Lemmas 11, 12 and 15.

7. Intervals of types VI, VII and VIII

Let Jls J2, / 3 be intervals of types VI, VII, VIII respectively (where
these roman numerals refer to those in the Introduction), and let Klt

K2,K3 be (0, oo), [0, oo), Rx respectively. Further, put d = \b in the cases of
/ x and J2, and, in the case of J3, put d = ^•min(|«|, \b\) (where a and b refer
again to the Introduction).

If 1 ^ i 5S 3, and if © is a binary operation defined on Ji into Kit

then we extend © to a binary operation a on Kt into Kt as follows:

© ydlxl'1) (x e Kt ~ Jo y e /,-),
(I) xa =1

Xay \ \y\d-i(aarfiyj-x e d sgn y) (xeji>yeKt

*x~i) (x, yeKt~ /

It can be readily checked that this definition only assumes that © is defined
on /,-, and also that a takes its values in Kf.

LEMMA 16. / / 1 ^ i :£ 3, and © is a binary operation on Jt into Kt

such that
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(2) x(y © z) = xy ® xz

for all x, y, z in Jt, and if a is defined as in (1), then

(3) x(yaz) = (xy)a{xz)

for all x, y, z in Kt.

We first prove the following lemma.

LEMMA 17. / / © and a are as in Lemma 16, then

(4) u{vaw) = (uv)a(uw)

for all u, v, w in Kt such that each of \u\, \uv\, \uw\, \uvw\ is at most d.

PROOF. It is clear that each of uv, uw is in /,-. Hence, by (1), we see
that

(5) (uv)a(uw) = uv © uw.

We consider four cases.

(i) If v, w ejt, then (4) follows from (2) because © and a agree on J{.
(ii) If v e K( ~ J( and w ej(, then, by (1),

u(vaw) = u{\v\d~x{d sgnv © wd\v\-1)~] = d~1\_(u\v\){d sgnu © wd^"1)].

Now \uv\ ^ d and hence u\v\, uv e Jt; also uw, dejt. Thus, using in turn,
(2), (2), (5), we see that

u(vaw) = d~x\duv © duw] = d~~^d(uv © uw) = (uv)a(uw).

(iii) If v e Jt and w eKl ~ J{, the proof is similar to that in (ii).
(iv) If v, w eK( ~ /,., then, by (1),

u(vow) = u\ywd-%{d%w~x © d2v~1)] = d-2[(uvw)(d2w-1 © d2v~1)].

Now each of uvw, uv, uw, d* is in /,-. Hence, using in turn (2), (2), (5), we
see that

u(vaw) = d~2[d2uv © d2uw] — d~2d2(uv © uw) = (uv)a{uw).

This completes the proof of Lemma 17.

PROOF OF LEMMA 16. Suppose x, y, z si?,- and let

m = rf-2max (|*|, \xy\, \xz\, \xyz\).

Now (3) follows from Lemma 17 if w ^ d~1; hence we assume that m > d~x.
It is clear that if we substitute mr^x, y, z for u, v, w respectively, then the
conditions of Lemma 17 are satisfied. Hence

(6) m~2[x(yaz)] = (m~2x)(yoz) = (m~2xy)a(m~2xz).
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If we now substitute m~2, xy, xz for u, v, w respectively, the conditions of
Lemma 17 are again satisfied. Thus

(7) (m~2xy)a(m-2xz) = m-2[(xy)a(xz)].

The lemma now follows from (6) and (7).

LEMMA 18. / / 1 ^ i ^ 3, let © be the addition of a semiring on J',- with
ordinary multiplication, and define a as in (1). Then a is an addition of a semi-
ring on K{ with ordinary multiplication.

PROOF. We have shown above that a takes its values in Kt and satis-
fies the distributive law. It remains to show that a is continuous and asso-
ciative.

Let x, y, z,w e Kt. Then we must show that

(8) (xay)az = xa{yaz)

and

(9) lim {xay) = zaw.
(x,v)->(z,t»)

It is clear that there is a constant K > 0 such that each of the relevant
quantities, viz x, y, z, w, xay, yaz, zaw, has modulus at most dK. Further,
because of Lemma 16, it is clear that (8) and (9) are equivalent to

(10) {{K^x)a{K^y)]a{K^z) = {K^x)a[{K^y)a{K^z)]

and

(11) lim [(K~1x)a(K~1y)] = (K-1z)a(R-1w)

respectively. But we have chosen K such that all the relevant quantities
in (10) and (11) are in Jt. Also © and a agree on Jit and © is continuous
and associative on /,-. Hence (10) and (11) follow and the lemma is proved.

It follows from Lemma 18 that if 1 5S i ^ 3, then any addition © on
Jt is given by the restriction to Jtxji of one of the functions which gives an
addition on K{. It is also clear that an addition a on Kt gives an addition
on Ji when so restricted if and only if xay is in /< for all x,yin Jt. The fol-
lowing three theorems now follow immediately from Theorems 1,2 and 3
respectively.

THEOREM 4. All additions of semirings on an interval Jlt of type VI,
with ordinary multiplication are given by the restrictions to J-y X Ji of the func-
tions F1—Fi and F5, when c < 0, defined in Theorem 1.

THEOREM 5. All additions of semirings on an interval J2, of type VII,
with ordinary multiplication are given by the restrictions to Jz^-Jz °f ^ie

functions F1~F5 and F7 defined in Theorem 2.
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THEOREM 6. All additions of semirings on an interval J3, of type VIII,
with ordinary multiplication are given by the restrictions to J3Xj3 of the
functions Ft—F6 and F8—F]0 defined in Theorem 3.

8. Intervals of type IX

THEOREM 7. All additions of semirings on an interval J, of type IX,
with ordinary multiplication are given by the restrictions to J X J of the func-
tions F1—Fi and F&, when c > 0, defined in Theorem 1.

PROOF. The mapping h(x) = x~x maps / homeomorphically onto an
interval Jt of type VI, and preserves ordinary multiplication. It follows from
Lemma 1 that any addition ® on / is given by

x e y = h-1[h{x)ah(y)]

where a is an addition on J1. The theorem now follows from Theorem 4.
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