
Appendix

A1.1 Thermodynamic relations

Following is a list of the most commonly encountered thermodynamic
functions. They are expressed in terms of their natural variables. This
means that if a variational parameter, such as a condensate field, is intro-
duced, the given function is an extremum with respect to variations in
the parameter with all natural variables held fixed. To obtain an inten-
sive function from an extensive function in the large-volume, thermody-
namic, limit either divide by the volume or differentiate with respect to
it. Only one chemical potential is indicated; the generalization to an arbi-
trary number of conserved charges is obvious. For a general reference, see
Landau and Lifshitz [1] and Reif [2].

Grand canonical partition function:

Z(μ, T, V ) = Tr exp[−β(H − μN̂)] (A1.1)

Thermodynamic potential density:

Ω(μ, T ) = −T lnZ

V
= −P (μ, T )

V dΩ = −SdT − PdV −Ndμ

S

V
=
(
∂P

∂T

)
μ

N

V
=
(
∂P

∂μ

)
T

(A1.2)
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418 Appendix

Energy:

E = E(N,S, V )
dE = TdS − PdV + μdN

T =
(
∂E

∂S

)
N,V

(A1.3)
P = −

(
∂E

∂V

)
N,S

μ =
(
∂E

∂N

)
S,V

Helmholtz free energy:

F = F (N,T, V ) = E − TS

dF = −SdT + PdV + μdN

S = −
(
∂F

∂T

)
N,V

(A1.4)
P = −

(
∂F

∂V

)
N,T

μ =
(
∂F

∂N

)
T,V

Gibbs free energy:

G = G(N,P, T ) = E − TS + PV

dG = −SdT + V dP + μdN

S = −
(
∂G

∂T

)
N,P

(A1.5)
V =

(
∂G

∂P

)
N,T

μ =
(
∂G

∂N

)
P,T

A1.2 Microcanonical and canonical ensembles

The level density is defined as

σ(E) =
∑

states s

δ(E − Es) (A1.6)

https://doi.org/10.1017/9781009401968.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.019


A1.2 Microcanonical and canonical ensembles 419

The number of states with energies between E and E + ΔE is the integral

N (E,ΔE) =
∫ E+ΔE

E
dE′σ(E′) (A1.7)

This will be a choppy discontinuous function for low energies but will
approach a smooth continuous function at high energies when many
states are contained within the energy window ΔE. If there are con-
served charges, such as baryon number or electric charge, the sum over
states should be restricted to those that have the specified values. For one
conserved charge with fixed value N ,

σ(E,N) =
∑
s

δ(E − Es)δN,Ns
(A1.8)

The conserved charge involves a Kronecker rather than a Dirac delta
function because charge is always discrete. Specifying the exact energy
and charge numbers of a system leads to the microcanonical ensemble.
This is the situation for an isolated system.

The level density can always be expressed as the Laplace transform of
the grand canonical partition function. For example, for a system with no
conserved charges,

σ(E) =
1

2πi

∫ i∞+ε

−i∞+ε
dβ eβEZ(β) (A1.9)

where

Z(β) = Tr e−βH

This may be illustrated by applying it to the massless, self-interacting,
scalar field theory discussed in Chapter 3. From (3.56) we know that

lnZ = V

(
π2

90β3

)
c(λ) (A1.10)

where

c(λ) = 1 − 5
24

(
9λ
π2

)
+

5
18

(
9λ
π2

)3/2

+ · · ·

Hence

σ(E) =
1

2πi

∫ i∞+ε

−i∞+ε
dβ ef(β) (A1.11)

where

f(β) = βE + lnZ (A1.12)
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Asymptotically, when V → ∞ and E → ∞ with E/V fixed, we can eval-
uate the level density using the saddle-point approximation. The location
of the saddle point is determined by df/dβ = 0. This occurs when

β4 =
π2V

30E
c(λ) (A1.13)

(It is legitimate to neglect the β-dependence of λ induced by the renor-
malization group to the order λ3/2 at that we are working.) Then

σ(E) ≈
[

ef√
2πd2f/dβ2

]
saddle point

= aV 1/8E−5/8 exp
(
bV 1/4E3/4

)
(A1.14)

where

a =
1
2

(
c(λ)

480π2

)1/8

b =
4
3

(
π2c(λ)

30

)1/4

(A1.15)

The saddle point value of β is therefore just the inverse temperature.
Notice that the saddle point condition (A1.13) can also be written as

E

V
=

π2

30
T 4c(λ) (A1.16)

that agrees with the energy density obtained via −P + TdP/dT from
(3.56). Furthermore, the level density (A1.14) agrees with that derived
on the basis of single-particle phase space [3] when we set λ = 0.

The canonical ensemble refers to a system in a box of volume V , main-
tained at temperature T by thermal contact with a heat reservoir but
with a fixed number of conserved charges. For a system with just one
conserved charge, say baryon number, the canonical partition function is

Zc(N,T, V ) =
1
2π

∫ π

−π
dθ e−iθNZ(θ) (A1.17)

where

Z(θ) = Tr e−βH+iθN̂

Notice the integral representation of the Kronecker delta on account of
the discreteness of baryon number. Make the change of variable θ = −iβμ.
Then

Z = Tr e−β(H−μN̂) (A1.18)

that is the familiar form, albeit with an imaginary chemical potential.
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A1.3 High-temperature expansions 421

As an illustration, recall the partition function for a massless noninter-
acting gas of fermions:

lnZ =
V

12π2β3

(
β4μ4 + 2π2β2μ2 +

7
15

π4

)
(A1.19)

Then

Zc =
β

2πi

∫
dμ ef(μ) (A1.20)

where

f = −βμN + lnZ

The saddle point is determined by the condition

N

V
=

μ

3π2

(
μ2 + π2T 2

)
(A1.21)

which is just the expression for the baryon density in the grand canoni-
cal ensemble, namely, ∂P (μ, T )/∂μ. In the large-volume limit with fixed
intensive quantities,

Zc(N,T, V ) ≈ V −1/2

(
2Tμ2

π
+

2πT 3

3

)−1/2

× exp
[

V

12π2

(
−3μ4

T
− 2π2Tμ2 +

7π4T 3

15

)]
(A1.22)

In this equation, μ is given by (A1.21) as a function of N/V and T . Up
to corrections of relative order (lnV )/V the canonical partition function
is

T lnZc = T lnZ − μN = PV − μN = −F (A1.23)

It is also possible to fix the total three-momentum of the system [4]
and to pick out the singlet states of SU(N) gauge theories [5]. Different
boundary conditions on the surface, such as periodic, Dirichlet, Neumann,
and Cauchy, result in contributions to the free energies that scale as the
surface area but with differing coefficients. Compared with the volume
contributions they are of no importance in the large-volume, thermody-
namic, limit and so we do not discuss them further.

A1.3 High-temperature expansions

Frequently a high-temperature (T � m) expansion of an integral like

hn(y) =
1

Γ(n)

∫ ∞

0

dx xn−1√
x2 + y2

1
e
√
x2+y2 − 1

(A1.24)
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is desired, where y = m/T . These integrals satisfy the differential equation

dhn+1

dy
= −yhn−1

n
(A1.25)

The high-temperature expansion is obtained by using the identity

1
ez − 1

=
1
z
− 1

2
+ 2

∞∑
l=1

z

z2 + (2πl)2
(A1.26)

multiplying the integrand by x−ε, integrating term by term, and letting
ε → 0 at the end. One obtains

h1(y) =
π

2y
+

1
2

ln
( y

4π

)
+

1
2
γE − 1

4
ζ(3)

( y

2π

)2
+

3
16

ζ(5)
( y

2π

)4
+ · · ·
(A1.27)

where γE = 0.5772 . . . is Euler’s constant and ζ(3) = 1.202 . . ., ζ(5) =
1.037 . . . are specific values of the Riemann zeta function ζ(n). Also

h2(y) = − ln
(
1 − e−y

)
(A1.28)

For example, the pressure of a noninteracting spinless boson field is

P =
4T 4

π2
h5

(m
T

)
=

π2

90
T 4 − m2T 2

24
+

m3T

12π

− m4

32π2

[
ln
(

4πT
m

)
− γE +

3
4

]
+ O

(
m6

T 2

)
(A1.29)

The analysis for a noninteracting charged spinless boson field is only
slightly more complicated. See Haber and Weldon [6] for details. In the
limit T � m > |μ| the pressure is

P =
π2

45
T 4 − (m2 − 2μ2)T 2

12
+

(m2 − μ2)3/2T
6π

+
(3m2 − μ2)μ2

24π2

− m4

16π2

[
ln
(

4πT
m

)
− γE +

3
4

]
+ O

(
m6

T 2
,
m4μ2

T 2

)
(A1.30)

For fermions with zero chemical potential the integral of interest is

fn(y) =
1

Γ(n)

∫ ∞

0

dx xn−1√
x2 + y2

1
e
√
x2+y2 + 1

(A1.31)

The fn satisfy the same differential equation as the hn,

dfn+1

dy
= −yfn−1

n
(A1.32)
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To evaluate the fermion integral, insert the factor x−ε, integrate term by
term using the expansion

1
ez + 1

=
1
2
−

∞∑
l=−∞

z

z2 + (2l + 1)2π2
(A1.33)

and let ε → 0 at the end. One obtains [7]

f1(y) = −1
2

ln
( y
π

)
− 1

2
γE + · · ·

f2(y) = ln(1 + e−y)
(A1.34)

For a noninteracting gas of fermions with μ = 0 the pressure is

P =
16T 4

π2
f5

(m
T

)
=

7π2

180
T 4 − m2T 2

12

+
m4

8π2

[
ln
(
πT

m

)
− γE +

3
4

]
+ O

(
m6

T 2

)
(A1.35)

Notice the absence of an m3T term, that is present for bosons. For small
mass and small chemical potential the high-temperature expansion begins
as

P =
7π2

180
T 4 +

(2μ2 −m2)T 2

12
+ · · · (A1.36)

A1.4 Expansion in the degeneracy

The pressure of a noninteracting gas may be expressed as

P = (2s + 1)T
∫

d3p

(2π)3
ln
(
1 ± e−β(ω−μ)

)±1
(A1.37)

Here s is the spin, while the upper sign refers to fermions and the lower
sign to bosons. The logarithm may be expanded in powers of the expo-
nential and then integrated term by term:

P =
(2s + 1)m2T 2

2π2

∞∑
l=1

(∓)l+1

l2
elμβK2(lmβ) (A1.38)

Here K2 is a modified Bessel function of the second kind. This is an
expansion in powers of the quantum degeneracy.
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The number density, entropy density, and energy density may be cal-
culated using the thermodynamic identities:

n =
(2s + 1)m2T

2π2

∞∑
l=1

(∓)l+1

l
elβμK2(lβm)

s =
(2s + 1)m2T 2

2π2

∞∑
l=1

(∓)l+1

l2
elβμ

[
(2 − lβμ)K2(lβm)

+ 1
2βm (K1(lβm) + K3(lβm))

]
ε =

(2s + 1)m3T

2π2

∞∑
l=1

(∓)l+1

l
elβμ

[
K1(lβm) +

3
lβm

K3(lβm)
]

(A1.39)

These expressions do not include contributions from the antiparticles,
if they exist; they may be obtained by the substitution μ → −μ. The
nonrelativistic limit may be obtained by using the expansions of the Bessel
functions Kn(x) when x � 1:

Kn(x) =
√

π

2x
e−x

[
1 +

4n2 − 1
8x

+
(4n2 − 1)(4n2 − 9)

2!(8x)2
+ · · ·

]
(A1.40)

Numerical approximations for both bosons and fermions have been
worked out for arbitrary values of m,T, μ by Johns, Ellis, and Lattimer
[8].
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