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1. INTRODUCTION

In the present paper we deal with the problem of calculating a premium for the
largest claims and ECOMOR reinsurance treaties. AMMETER derived already
in 1964 formulas for calculating the premiums of the largest claims and
ECOMOR reinsurance treaties (compare also SEAL (1969), THEPAUT (1950)),
which we will restate in the following Section 2. Lately BENKTANDER (1978)
has established an interesting connection between the premiums of the largest
claims and excess of loss reinsurance treaties. He proved that the net risk premium
of the largest claims treaty covering the p largest claims is bounded by the risk
premium of an excess of loss treaty plus p times its priority, which has to be
determined such that the mean number of excess claims equals p. Furthermore
Benktander showed in examples that the upper bound is quite good in case of
the Poisson-Pareto risk process. Nevertheless he did not give a formal proof for
the quality of the bound in the Poisson-Pareto case nor for other risk processes.

In the following note we take up this last point and prove that for general
risk process Benktander's upper bound is equivalent to the premium of the
largest claims reinsurance cover when the size of the collective approaches
infinity. Consequently, for large portfolios the risk premium of the largest claims
cover may be replaced by the upper bound, e.i., calculated from the premium
of the corresponding excess of loss treaty. Moreover we state a similar result
for the ECOMOR treaty.

2. PRELIMINARIES

Consider a collective K of risks of an insurance company (resp. of a special
branch of the company), producing claims each year. Let N denote the random
variable of claims number per year and Xt, i = 1 , . . . , N the claim amounts. We
arrange the claims in decreasing size:

In the following we investigate special reinsurance treaties, denning the
reinsurer's claims amount by:

R = I fi(XN-,)

where /;, i = 1, 2 , . . . are real-valued functions with:

ft(x)^x, Vx, and f f,{x,)s>0, VJCI> • • • s**„ >0, Vn.
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We get with the definition:

(a) /,(*) = max (x-P.O), i = l , 2 , . . .

the excess of loss treaty {XL(P)) with priority P,

(b) fi(x) = x , i = l , . . . , p

/ / ( * ) = 0 , i = p + l , p + 2 , . . .

the largest claims reinsurance treaty (LC(p)), covering the p largest claims,

(c) fi(x) = x, i = l , . . . , p - \

fp(x) = (l-p)x

/ ,(*) = 0, i=p + l,p+2,...

the ECOMOR reinsurance treaty (ECOMOR (p)), covering all claims excess
the pth largest claim.

In the following we restrict on investigating the net risk premium

and assume Xit being i.i.d. random variables with distribution function F, and
N independent of all Xh i = 1, 2 , . . . . Then the net risk premium of the XL(P)-
treaty is equal to:

(2.1) HXUP) = EW\ (x-P)F(dx).
J[P, oo)

For the LC(p) and ECOMOR (p) treaty the derivation of formulas for pi is
more involved and easy tractable expressions can only be developed with addi-
tional assumptions on the distributions of N and Xt. Assume N being Poisson
distributed with parameter A > 0 and F being a Pareto distribution function with
parameter a > 1, e.i.,

(2.2) F(x)=l-x~a, x&l.

Then, according to AMMETER (1964) and BERLINER (1972), the net risk premium
HLC(P) of the LC(p)-treaty can be approximated from above by

„ , . - !/«. « Hp + l - l / a )
(2-3) /ALC(P) = I' ^ T T(p)
where

r°°
F(y)= uy~xexp(-u)du.

Jo

CIMINELLI (1976) showed that even for negative binomial distributed N j2LC(P)
is a quite good approximation of MI.C(P)- Finally Ammeter developed under the
Poisson-Pareto-assumption an approximation for the net risk premium
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of the ECOMOR (p)-treaty:

on * _ i/a i rg>-i/tt)
. a-1 T(p-l)

3. RATING FOR LARGE PORTFOLIOS

In order to derive results on the risk premium for large portfolios, we investigate
growing collectives Kk = {Rt, / = 1, . . . , & } of risks Rh e.g., let k -* oo. We assume
for claims number Nk

,. ^Var(7Vfc)
(3.1) limp* = 00, hm = 0

fc-»oo fc-»cx> Vk

with the abbreviation:

vk=E(iNk).

Denote by LCk(pk) resp. ECOMORfc (pk) largest claims resp. ECOMOR reinsur-
ance covers for collective Kk and suppose:

(3.2) lim —.= s e (0,1),
fc-i-co Vk

e.i., asymptotically our treaties cover the svk largest claims. Now we can state
our theorem:

Theorem

In addition to (3.1), (3.2) assume:
(1) the claim amounts Xiy 'i = 1,2,... are identically distributed with the

continuous distribution function F and existing first moment.
(2) Nk, Xt, i = 1, 2 , . . . are independent .
(3)

f (x~Ps)F(dx)>0.

Then:

(a) lim AtLCt(Pk) „ = 1,

(b)
fe^°° V-XLk(.Pk)

where XLk(Pk) denotes the excess of loss treaty for collective Kk with
priority:

Vk

(with the usual convention F~x(y) = inf {x: F(x) >«}).
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Remark 1

One should notice that the above theorem holds under rather weak assumptions
on the claims number and claims size distributions.

Proof

We restrict ourselves on proving (a), since the proof of (b) is similar. By
Chebyshev's inequality one has:

p(\*- 2 2 '

e vk
where the upper bound converges by (3.1), (3.2) to zero.
Consequently,

implying with (3.2):

lim — =1 in probability,

Pk

lim — = s in probability.

According to theorem 19.6 in BAUER (1974), we may assume in our proof:

(3.3) lim—^ = s almost surely
k-><x>Nk

and consequently (by (3.1), (3.2)):

(3.4) lim Nk - oo almost surely.
fc-.CC

With definitions:

Tfc :=min (pk,Nk)

Yfci := min (Ps, XNk:Tk)

Yk2 := max (Ps, XNk:Tk)

rk := E( 2 Xt sign (/», -XNk..Tk)l[Ykl. yk2,(Xi)

(1M denotes the indicator function of the set M) we can write:

t Xi hxNk..Tk,

p,) + ukPss+rk.
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Obviously for rk holds:

(3.6) s=

From (3.2)-(3.4) and the strong law of large numbers follows:
Nk

lim vk X l^i| = £i^;l almost surely.

Since by (3.3):

T
lim — = s almost surely

we get from a theorem in SERFLING (1980) (p. 75):

lim XNk-Tk =PS almost surely.

Consequently, the integrant in (3.6) converges almost surely to zero, implying
with the theorem of dominated convergence (in the version as stated in LOEVE
(1963) on the bottom of page 162):

(3.7) lim—= 0.
fc-co Vk

Since \\mk^Pk =PS, we have by (2.1):

lim XLk(Pk) = lim _JSMEA= (x -ps)F(dx),
k-*<x> Vk k-*oo Vk •'[Ps'00)

yielding with (3.2), (3.5), (3.7) statement (a).

Remark 2

Defining the expected total claims amount of collective Kk:

fj,k = ukE(Xi),

the statement of the theorem can be formulated equivalently for the premium
rates as:

iim (

k^oo V IAk Hk

According to this theorem, the net risk premium (more exactly the net premium
rate) of the LC(p) and ECOMOR(p) treaties may be calculated from the
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premium of the XL(P) treaty with

n_F-l(i P \

V Ewr
if the expected claim number E(N) is large. In practice one has to estimate P.
Assume one can get information about the largest claims of the past years
i = l , . . . , / and that in the year / the claims number has been equal to m,. If
for the quotation year the expected claims number is estimated as being v, then
set:

and estimate P by:

P-- V \ r ( 0

I

where X^:j denotes the ;th largest claim of the accident year i (assuming all
claims being inflation- and IBNER-corrected).

Now let us compare our result with BENKTANDER (1978). Define Hk(x), being
the expected number of excess claims for the XLk{x) treaty in the collective Kk.
For a solution Pk of:

(3.8) Hk(Pk) = pk,

Benktander showed for a general risk process:

(3-9) HLCk(pk)^IJ.XLk{Pk)
+PkPk-

Since under our conditions:

Hk{x) = vk(\-F(x))

holds, a special solution of (3.8) is

which is by (3.2) and condition (3) of our theorem even the unique solution for
sufficiently large k.

Consequently, Benktander's upper bound (see (3.9)) is identical with the
denominator of the ratio in part (a) of our theorem. So we have given a general
proof that for large portfolio Benktander's bound is a good approximation to
the pure risk premium.

4. ASYMPTOTIC PREMIUM RATES FOR SPECIAL RISK PROCESSES

Our theorem of Section 3 was derived under quite general assumptions on the
claim size distribution F and the claim number distribution. Completing our
investigation, we now consider two special models for the risk process.
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Example 1

Assume F being a Pareto distribution function with parameter a > 1 (see (2.2)).
Then one has with the notations of Sections 2 and 3:

Ps=s~Ua

. l - l / a

a - 1

Denote by /A the expected total claims amount of colletive K, e. i.,

a - 1

Now one easily derives with remark 2 the handy approximations:

l-l/a

(4.1)

(4.2)

I P \
\E(N)J

M E C O M O R ( P ) __ _1_ \
l- l /a

a \E(N))

for large E(N). In addition assume, iV being Poisson (or negative binomial)
distributed. Then we can calculate the premium rates /ULC(P)/JU., MECOMOR(P>/M

with formulas (2.3), (2.4). The following tables contain the resulting values for
various a and s =p/E(N). The approximations (4.1), (4.2) are written in the
last column.

(1) LC{p)-treaty:

a = 1.5

s = 0-01
0.02
0.03
0.04
0.05

a =2.0

5=0.01
0.02
0.03
0.04
0.05

100

19.2%
25.7%
29.9%
33.2%
36.0%

100

8.7%
13.3%
16.6%
19.4%
21.8%

200

20.4%
26.4%
30.5%
33.7%
36.4%

200

9.4%
13.7%
17.0%
19.7%
22.1%

E(N)

400

21.0%
26.8%
30.8%
34.0%
36.6%

E(N)

400

9.7%
13.9%
17.1%
19.8%
22.2%

oo

21.5%
27.1%
31.1%
34.2%
36.8%

00

10.0%
14.1%
17.3%
20.0%
22.4%
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E(N)

a =2.5

s = 0.01
0.02
0.03
0.04
0.05

a =3.0

s=0.01
0.02
0.03
0.04
0.05

100

5.6%
9.0%

11.7%
14.1%
16.2%

100

4.2%
7.0%
9.3%

11.4%
13.3%

200

5.9%
9.3%

12.0%
14.3%
16.4%

200

4.4%
7.2%
9.5%

11.5%
13.4%

400

6.1%
9.4%

12.1%
14.4%
16.5%

E(N)

400

4.5%
7.3%
9.6%

11.6%
13.5%

00

6.3%
9.6%

12.2%
14.5%
16.6%

oo

4.6%
7.4%
9.7%

11.7%
13.6%

(2) ECOMOR (p)-treaty:

a = 1.5

5=0.02
0.03
0.04
0.05
0.06

a =2.0

s=0.02
0.03
0.04
0.05
0.06

a =2.5

5=0.02
0.03
0.04
0.05
0.06

100

12.8%
17.1%
20.0%
22.2%
24.0%

100

4.4%
6.7%
8.3%
9.7%

10.9%

100

2.3%
3.6%
4.7%
5.6%
6.5%

200

15.8%
19.1%
21.5%
23.4%
25.1%

200

5.9%
7.7%
9.2%

10.5%
11.6%

200

3.1%
4.3%
5.3%
6.1%
6.9%

E(N)

400

17.0%
19.9%
22.2%
24.0%
25.7%

E(N)

400

6.5%
8.2%
9.6%

10.8%
11.9%

E(N)

400

3.5%
4.6%
5.5%
6.4%
7.2%

oo

18.1%
20.7%
22.8%
24.6%
26.1%

00

7.1%
8.7%

10.0%
11.2%
12.2%

00

3.8%
4.9%
5.8%
6.6%
7.4%
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E(N)

a =3.0

s = 0.02
0.03
0.04
0.05
0.06

100

1.4%
2.3%
3.1%
3.8%
4.4%

200

2.0%
2.8%
3.5%
4.2%
4.8%

400

2.2%
3.0%
3.7%
4.3%
4.9%

oo

2.5%
3.2%
3.9%
4.5%
5.1%

Remark 3

A referee pointed out that the formulas (4.1), (4.2) could also be derived directly
with the Stirling approximation from (2.3), (2.4). This conjecture is only partly
true, since (2.3), (2.4) were deduced with the assumption of Poisson (or negative
binomial) distributed claim numbers, whereas with our general theorem (4.1),
(4.2) easily follows for arbitrary claim number processes which only
satisfy (3.1).

Example 2.

Now assume F being an exponential distribution function. For comparison with
example 1, we choose F such that its range and its mean value are identical
with those of the Pareto distribution, e.i.,

We get:

rln(s)a - 1

a - 1

and the expected total claims amount:

a - 1

yielding with our remark 2 the approximations:

(4.3) ( 1 l n (

(A A) MECOMOR(p) ^ _1_ P

ix aE(N)

for large E{N). Values for the approximations (4.3), (4.4) are given in the
following tables (with s =p/E(N)):
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LC(p)-treaty

s = 0.01
0.02
0.03
0.04
0.05

a = 1.5

4.1%
7.2%

10.0%
11-6%
15.0%

2.0

3.3%
5.9%
8.3%

10.4%
12.5%

2.5

2.8%
5.1%
7.2%
9.2%

11.0%

3.0

2.5%
4.6%
6.5%
8.3%

10.0%

ECOMOR (p)-treaty

s=0.02
0.03
0.04
0.05
0.06

a = 1.5

1.3%
2.0%
2.7%
3.3%
4.0%

2.0

1.0%
1.5%
2.0%
2.5%
3.0%

2.5

0.8%
1.2%
1.6%
2.0%
2.4%

3.0

0.7%
1.0%
1.3%
1.7%
2.0%

Obviously for small a and small s, the asymptotic premium rates are much smaller
than in the Pareto case (compare last columns of the tables in example 1), a
result which has already been mentioned by KUPPER (1971) for the LC(p)-cover
with p = l,E(N) = 100.
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