Journal of Glaciology, Val. 42, No. 141, 1996

Temperate ice permeability, stability of water veins and
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ABSTRACT. In temperate glacier ice, in situ, besides water veins, there are water
lenses, on grain boundaries more or less perpendicular to the direction of maximum
pressure py (at the grain scale). Geometry of veins is developed. Grains are modelled as
equal tetrakaidecahedra. The stress and temperature fields around a vein at a smaller.
microscopic scale are estimated and the water discharge by a vein is calculated. The
time-derivative of the cross-sectional arca S of a vein is governed neither by energy
dissipation in the water nor by plasticity, but hy capillarity effects and salinity. A
“vasodilator threshold™ py for water pressure py in the veins is defined. Normally,
Pw < pa, then S has a stable value, the same for any orientation of the vein, and the
mi(‘ms('op}i(: temperature is uniform. The coefficient of permeability is proportional to
(Pa—pw) » and thus a true Darcy law does not hold. As an application, the
percolation of internal meltwater is studied; in an upper boundary layer about 2m
thick this meltwater flows upwards, because in the bulk of the glacier py is very close to
. whereas it is zero at the surface. When. exceptionally, py > pq, S increases

irreversibly. Whether it leads to the formation of “worm-holes” is discussed.

NUMERICAL VALUES

Rheological parameter:

B=044bar *a '=1.39%x 10 ** Pa *s .

Lowering of melting point with pressure (air-saturated
water); Cy=9.8x 10 *K Pa ',
Lowering of melting point with total curvature of the

interface (air-saturated water): C.=2.7x 10 *K m.
Lowering of melting point with salt content:

C.=1.85K mole ' kg,
Thermal capacity of water: ¢, =4216 | ke 'K '
Thermal conductivity of ice: K;=2.12Wm 'K ',
Melting heat: L=3.35x 10" J kg .

Interfacial energy between ice and water: y=0.034 J m *
Water viscosity: 1, = 0.0018 Pas.
Ice density: pi=915kgm *

1. INTRODUCTION

Ice permeability is not a mere curiosity providing an
occasion for the advanced student to discover the subtle
laws of capillarity. It is a key factor in several glacio-
logical problems. According to Nye (1976), the outburst
of glacier-dammed lakes, in particular the well-known
[celandic jokulhlaups, should proceed from irreversible
broadening of the capillary veins. If his theory is correct,
this process might explain the disappearance of tempor-
ary pools that appear on some glaciers in spring. In any
“worm-holes™,
several millimetres thick and halla metre long (Raymond

case, the formation of some observed
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and Harrison, 1975}, ought to be explained. Also, I have
suggested  (Lliboutry, 1993) that the permeability of
hottom ice replaces the speculated water film between ice
and bed. allowing meltwater from the stoss sides of
obstacles to reach their lee sides.

Nye's (1976) theory, which develops Shreve’s (1972)
ideas, contradicts Nye and Mae (1972). In Lliboutry
1976) T stressed salinity effects. whereas in Lliboutry
(1993) I ignore them. Nye (1991h) examines how salinity
modifies the apparent latent heat and diffusivity of
temperate ice, neglecting the fact that most of the liquid
phase is found in isolated lenses. Many theorists assume
that temperate glacier ice has some well-defined coeffic-
ient of permeability. Almost none of the authors discuss
the dramatic differences between the artificial and stress-
free ice they consider and true glacier ice in situ. This
confusing literature encourage

s me to present a clear
exposition of the whole topic, instead of limiting my
contribution to new ideas and theoretical results.

2. PRESSURES AND TEMPERATURES AT THE
MICROSCOPIC SCALE

In temperate ice the liquid phase is found as lenses at two-
grain boundaries, and as veins at three-grain boundaries
(Lliboutry, 1971; Nye and Mae, 1972; Raymond and
Harrison, 1975; Mader, 1992a). At any ice-water inter-
face, the temperature and the pressure in the liquid phase
arc well defined. At a curved interface, because of surface
energy effects, this water pressure (py) differs from the
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pressure in the ice at the interface (py). At a plane
interface, the Celsius melting temperature is 8 = —Cpypy
= —(C\upn, but at a curved interface it is neither —ChDw
nor —Cypy. Let 2/rp > 0 be the total curvature of
spherical lens walls, and —1/ry < 0 be the total curvature
of cylindrical vein walls. The mean salinity of water
lenses, and the salinity of connected water veins (in mole
equivalents per unit mass, since dissolved salts are diss-
ociated into ions), will be denoted if, and iy, respectively.
Dissolved carbon dioxide will also be included in the
salinity. The physical laws of capillarity read (Lliboutry,
1987, p. 160; Mader, 1992b):

For a lens:

Pw =P+ 27/TL
0 =6, =—Cupn + 201'/’”11 - C-.EL (1)

For a vein:

Pw =Pn — 7/7-\.-
0= 8, =—Cmpn — Cr/"“\' — Cily (2)

The value of the surface energy between ice and water
(%), and of the three constants (Cy,, Cr, Cy) entering the
formulas are given above. Comparing both Equations
(2), py may be eliminated:

Cm'y -+ Cr

Ty

Q\A = Acmpw - - C“i" ' (3)

For brevity, a new physical constant will be
introduced:

O+ Co= 0y =808 % 107 Km. (4)

To go further, it is essential to specify the scale at
which stresses are defined. In the formulas above, p, is the
normal stress at the literally microscopic level (say, at
1 pm from the interface). It may differ from the stress at
the grain level, say at I mm from the interface, for
instance when the vein shrinks plastically. This stress at
the grain level, which is not affected by the microscopic
processes ongoing close to a vein, may differ in turn from
the macroscopic stress, at the decimetre level, because the
deformation of a crystal is very anisotropic, and identical
strain rates and stresses in all the individual crystals are
impossible.

When studying strain rates under an applied stress, or
the reverse, on polycrystalline samples (such as ice cores),
it is the stresses and strains at the 0.1 m scale that are
considered. For modelling glacier flow, a creep law at a
still larger scale, say 10 m, is needed, because in a glacier
there are “blue bands”, fine-grained layers, and overall
fluctuations in the water content. I shall as usual not
distinguish between stresses at the 10m and at the 0.1 m
scale, or between the latter and stresses at the grain scale.
The reasons for assuming that the stress is the same in
every crystal (whereas strain rates differ) are given in
Lliboutry (1987, p.456; 1993, p.53). The stress down to
the millimetric scale will be called the local stress, whereas
the stress near veins or lenses, which is of interest here, will
be called the microscopic stress.

In unstressed ice, p, is roughly the same everywhere
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and in any direction. When ip, = d,, both the water
pressure and the temperature are lower in the veins than
in the lenses. Thus, heat goes from the lenses to the veins.
Continuously water freezes at the walls of lenses and the
walls of veins melt, until the former disappear. The
microscopic stresses due to the volume increase when a
lens freezes are [ast relaxed (Nye and Mae, 1972).

(The reader who finds it paradoxical that the melting
temperature is lower in the veins, where water pressure is
lower, should consider the case of a lens connected with a
vein. If the temperature were higher in the vein, heat
would diffuse steadily through the ice [rom the vein to the
lens. There would be melting at the lens walls, meltwater
flow into the vein, and refreezing of the same mass of
water at the vein walls; and so on indefinitely, without the
need to supply energy to the system. Such a perpetual
process would be contrary to the second principle of
thermodynamics. )

When a sample of polycrystalline ice is kept for a long
time in a water bath (or left in a cold place slightly above
melting temperature), the surface of the sample acts as
heat source, and the veins go on coarsening (Nye, 1991a;
Mader, 1992b).

Within a glacier, the state of stress is no longer
hydrostatic, and thus p, may vary from one water-ice
interface to another. For water lenses at a two-grain
boundary, p, is highest and #;, lowest when the boundary
is more or less perpendicular to the direction of maximum
normal pressure. These lenses enlarge at the expense of
others that freeze. and thus only lenses with this
orientation will be considered. Denoting the three
principal local stresses, with reversed sign, p1 > p2 > p3.
then, shortly after the final size has been reached, p; = pp.
and the walls of these lenses are at temperature:

91. = _Clupl 5 2C*‘r/rl. = (‘H"T ~—=Cmpr - (5)

(There is a printing error of sign in Lliboutry (1993,
equation (6)).) The “locally stress-controlled tempera-
ture” that I consider in this paper does not differentiate
between By and #p. because the influence of salinity and
capillary effects could be neglected for that study. Now, to
study permeability, more refinements, and the tempera-
ture field at a smaller, truly microscopic scale, must be
considered.

(By the way, note that in a temperate glacier the local
ice temperature decreases with depth by about Cypigm 1
Thus a very small heat flux goes down, which causes an
imperceptible melting rate KiCupig/pL) = 0.192mma i
at the sole.)

A vein has three eylindrical sides (its “walls™), each
one limiting a different crystal. (A vein with four sides has
a vanishing probability of being found. For this reason an
assemblage of equal cubes would be a very bad model for
polyerystalline ice.) In a steady regime, the temperature
at the three walls must be the same, . According to
Equation (3), the curvature of the three walls must be the
same, 1/ry. Therefore, from Equation (2), the micro-
scopic pressure within the ice at the walls is the same, py,
whereas at a large distance the stress is anisotropic.

Locally, since the veins are connected together, py, and
i, are the same for all veins (or everywhere), and thus 718
is lowest where 7, is smallest. This means that veins with
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the smallest r, catch more heat from the su rrounding ice
than do others. Therefore, if all the cross-sections of veins
were similar (as will be assumed later). all the veins
should tend to have the same size locally, whatever their
orientation, in contrast to lenses.

3. GEOMETRICAL RELATIONS

In fact this similarity is not observed, hecause the surface
energy between two crystals varies with the relative
crystal orientation (Walford and Nye, 1991). It is lower
when coincidence site lattices form. and the muld-
maxima [abric that is observed in temperate glacier ice
should come from this formation (Higashi, 1978; Matsuda
and Wakahama, 1978).

Consider three crystals, 1, 2, 3, having an edge in
common, with “grain dihedral angles™ at this edge wy, w,
ws, respectively (Fig. la). The surface energy of the

boundary between crystals ¢ and j will be denoted e 1f

the grain dihedral angles are governed by surface energies
only, the three vectors in the directions of the three grain
boundaries, and with respective intensities 2, a3, Y31,
must have a zero vectorial sum (Fig. 1b). Consequently:
We must have the inequalities:
st — 23] < 712 < a1 + a3 (6)
and two similar ones obtained by cyclic permutation
of the indices.
The sines relation in a triangle yields:
sin wy

Y23 31 12

sinws  sinwsy

(Wi +ws +wy =2m). (7)

From the cosine relation in a triangle:

o 2 g B . UG
128 @l — 712

2931712

COSw) =

and two similar ones.

Fig. 1. Grain diledral angles at a three-grain intersection,
as governed by interfacial energics.

These relations are valid in stress-free annealed ice, In
a glacier, the self-energy of dislocations perturhs the
equilibrium of the interfacial forces, grain boundaries
migrate, and ice recrystallizes continuously. For the time

being, due to a lack of studies on quenched samples of

glacier ice, it will be assumed that Relations (7)—(8) are
also valid in situ.
When a vein with cross-section ABC exists at the edge
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considered (Fig. 2), the equilibrium of the interfacial
forces must be obeyed at the three vertices A, B, C.
Consequently:

Since the interfacial energy between ice and water is
independent of the orientation of the crystalline lattice
at the interface, the grain boundaries bisect the
dihedral angles at A, B, C.

With 1/;; denoting the values of these “vein dihedral
angles™:

U3 Vo3

cos 5 2 COS 5 oy

P 731 Tz Nz
e COS— = 9
: 2 2 )

Fig. 2. Vein cross-section ABC, and centres of curvature of
its three walls C;, Cs, Cy,

The centres ol curvature of the three walls are denoted
Cy, Cs, Cy4, and the three-grain intersection without vein
is O. Since ry = CC; = CCy, the triangles OCC; and
OCCy are equal, and thus OC; = OC, = R. Similarly,
OC3 =0C; = R. The angles of triangle C,CoCy are
equal to T —wy, m—ws, and T — ws, respectively. The
sines relation reads:

CoC3  C3Cy GGy

sinw; sinws  sinw;

=2R. (10)

Consequently, the angle of OC; with boundary (1-2)
is T -wy, and OC,Cy = wy — w/2. This is the maximum
value that 112/2 can have (then the distance OC vanishes).
Thus we must have:

2 T
e g
[} = 5 =Ws >
D12 ™
COS —— > cos (w‘;g = ~)
2 2
2 s 8 (11
oy 2 Sinws . )
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Similar conditions holds for w; and ws. Comparing
with Equation (7), a necessary condition for the existence
of a vein is:

sinw; sinws sinws 1
— — < —, (12)
Y23 V31 T2 T 29

This condition is not always met. Moreover, it is not

sufficient. Another condition is that O be at the interior of

triangle C;CyCs. It requires wy, wa, Wy > m/2, or,
geometrically, that the triangle with sides v;; (Fig. 1b)
have three acute angles. Figure 3 shows a low-energy
houndary (1-2), and four others with higher energies:
about the same for (2-3) and (3-1), different for (2-4) and
(4-1). A vein exists at the intersection (1-2-3), but docs
not exist at(1-2—4) because a grain dihedral angle 1s acute.

The existence of about 3% of three-grain intersections
without veins was discovered by Raymond and Harrison
(1975) and confirmed by Mader (1992a). My Figure 3
may be compared with the latter’s figure 16: a quad-
rilateral grain boundary with a measured low energy had
veins on two sides, and none on the other two.

All the theory above is consistent with Mader’s
observations, although the conditions for the existence
of a vein differ from hers. According to Mader, it is
W19 + oy + g1 < w. This condition expresses only the
fact that the three walls are concave (when seen from
outside). They must be so in stress-free ice with a low
salinity, for the veins to be at a lower temperature than
the lenses. But if py 3 py or i1, 3 iy, the walls might be
convex. It will be shown that no stable value of the cross-
sectional area exists in this case, however.

To develop the theory taking into account different
interfacial energies between neighbouring crystals would
be extremely difficult. Therefore, the study of the
behaviour of a vein will be done assuming that the three
7ij are equal, with the hope that in general they are not
very different. The cross-section of the vein is then an
equilateral curvilinear triangle.

The problem is to decide the best numerical value for
this grain-boundary energy, or, according to Equation
(9), the best value for the dihedral angle 1. The first
published values span 20-34°. An improved analysis of
Walford’s data by Nye yielded =25 (Walford and
Nye, 1991). On the other hand, Mader (1992a) found

])31 VZ 3 );24 V41

e  ©

once, in the quoted case of two veins out of four missing at
the periphery, ¢ = 105°. (She used then spikes entering at
its extremities a three-grain intersection without vein.) All
these measurements were done on annealed ice, produced
artificially by a technique that should favour the
formation of a [abric but not the one found in temperate
glaciers. The value ¥ =30" has been adopted in the
following numerical calculations.

The cross-sectional area is readily found to be (Nye,
1976 )

5 = ot (3-2) 4G v) (G- o) =
(13)

[t is also of interest to know the ratio of the radius rj
that inscribes the cross-section to the radius r. that
circumscribes it. It is found:

B_a ¥ (% ¥
F R t.111(12 4) (14)

Some values are given below:

» = 95° 30° 35° 45°  60°
vy = 03173 0.2840 0.2461  0.1582 0
r/re = 03667 0.3860 04052 0.4482 05

4. WATER DISCHARGE BY A VEIN

The abscissa along a vein is denoted s, and measured in
the upstream direction. Let Z be the altitude of a cross-
section of the vein (relative to some reference level,). The
hydraulic head of the vein at that point is defined (py
denoting water density and g gravity) as:

Z\\':Z'I'pw . (]5)

Pwg

The slope of the vein (positive when water flows
downwards) is denoted tan3. The hydraulic gradient
reads:

0Zy 1 OJpy
ds  pwg Os

+sin 4. (16)

@

Fig. 3. A vein exists al the triple intersection (1-2-3), but not al ( 1-2-4), because grain 1 has an acute grain dihedral angle.
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Flow in a vein is obviously laminar. Then, from
Newtonian viscosity theory, in a transversal plane, 7
denoting water viscosity, the velocity of water (u) obeys:

Pwg OZy

Viu+A=0, A e B (17)

At the periphery of the conduit, w = 0. Thus, u is
proportional to A. and so is the discharge . For
dimensional reasons,

0 Pwg OZ

Q= uS T

(18)

where 1 denotes some numerical coeflicient.

For a circular cross-section whose equation in polar
coordinates is 7 = a, we have the well-known Poiseuille
solution, which is used by Nye (1976):

= (g) a*A

1
p=—=0.03979. (19)
8m

u=A(a® - %) /4,

There is another simple solution of Equation (17)
when the cross-section is an equilateral triangle, with sides
equal to 2a and area S = /3% Adopting Cartesian
coordinates such that the three summits are (—a, 0), (a,0)
and (0,v/3a). the polynomial of lowest degree that is zero
along the triangle is:

u(z,y) = C”y{y— V3(x + a)} [y* V3(a — :r)] . (20)

For this special triangle the Laplacian reduces to a
constant, —4v/3Ca, and thus C may be chosen so that
Lquation (17) is satisfied at any point. It is found;

a3 a3 ~ 3
Q :/ dy/ wde = 2Ca” = \/—(LIA
0 = /3 =

20

a+yv 3

1
Y =
. 20v/3

The ratio ri/r. is 1 for a circle, 2 for an equilateral
1

= 0.02887. (21)

triangle. Both are special cases of curvilinear equilateral
triangles. For all of them, intuitively, g is a continuous
function of r; /r.. Therefore, although a precise numerical
computation of g for a vein might be done, the value
obtained by a mere linear extrapolation, namely
i = 0.0264, has been confidently adopted.

5. EVOLUTION EQUATION FOR A VEIN

The variation of § with time may be written:

95 E+® N
W pl @)

where E'is the heat produced by viscous dissipation in the
water, @ is the heat received by the walls of the vein from
the surrounding ice (both per unit length and unit time),
pilis the melting heat per unit volume, and P is the rate
of shrinking by plastic deformation.

The first term has been calculated by Rithlisherger
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(1972). He took into account the fact that part of this heat
is used to warm the water, when it flows towards lower
pressures and higher melting temperatures. His value for
the dimensionless constant Cy,ewpy that gives the ratio
has been modified (Lliboutry, 1983), because ¢, is larger
when water is air-saturated, as should be the case given
the air inclusions in glacier ice (Raymond and Harrison,
1975). This ratio is 0.413 instead of 0.316. Nye (1976)
noted that the water-warming rate involved is not
A0y, /Ot, but the material derivative dby/ot — (Q/S)
Oy /0s. The corrective term is totally negligible,
however, Taking into account Equations (16) and (18),
we obtain:

3. 62‘\- g ap\\'
B=1) ,()“-gaT — O Gl W:l
2 (pwg)? DZ, 02 .
52 10)” O2v g 57 0%w | o 13sing). (23)
e s ds

The term P comes from the fact that at a vein wall the
microscopic normal stress is p,, whereas at some distance
itis the local stress. ‘The fact that cach of the three crystals
surrounding a vein deforms differently, according to the
orientation of its lattice, makes illusory the classical
formula used for Réthlisherger channels. T shall use it
however, to obtain an order of magnitude. It will show
that this term is negligible.

For this reason, and because surface energies, which
act to preserve the shape of the cross-section, were not
considered, a smart calculation by Oakberg (1981) is not
very meaningful. (He found radial velocities at the middle
of the sides of the cross-section, v(r), that are 2.46 times
the velocities at the corners, v(r.). For the cross-section (o
keep a constant shape, the ratio must be rj/r, = 0.397
instead. )

The component of the local stress that intervenes is the
radial pressure p, in the plane of the cross-section, say the
ry-plane. It varies with azimuth & as:

1M +p Pz — Dy x
= i% + p’—l—zp"cos 20 — 1,,5in 20, (24)

;

As microscopic pressurce at a large distance, the mean
value of py, (p: + py)/2 = py, is adopted. Let a, 3, v be
the cosines of the z axis (i.e. of the vein) with respect to the
principal directions of stress. Then:

T = rrgpl ~+ ;’)'21)2 += ”,'21;;; v PetpPy+p-=p+p2+ps,
pe =3((1 = a®)p1 + (1 - B%)p2 + (1 — V)ps] .

(25)

The microscopic pressure at the walls of the vein is s

as given by Equation (2). The classical formula for the

closing of a cylindrical conduit, when the medium has a
third-power-law viscosity, namely:

2 = Br'n, (r° = lnymy) (26)
reads:
1 .d8 Pv — Pn)?
L3 _) _ 27
S di ( 3 ol

Lasdy, the heat flux reaching the vein must he
estimated. Grains are modelled as equal tetrakaidecahe-
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dra, each one formed by eight regular hexagons and six
squares, all with equal sides (the 36 edges of the
polyhedron). This model was used by Kelvin in 1867 in
his speculations about the structure of ether, and in
modern times by Nye and Frank (1973). Ttis displayed in
Figures 4 and 5. I b is the length of the edges, any edge is
at distance (v/3/2)b from the centres of its two
neighbouring hexagons, and at distance b/2 from the
centre of its neighbouring square. The arithmetic mean of
grain areas, as measured on sections, is 0 = (8//3)1?
when the sections are parallel to hexagons, and o = 4p*
when they are parallel to squares. Thus, the distance from
a vein to the centre of a neighbouring grain boundary is
0.403 /& and 0.250 /o, respectively.

I assume that the heat flow is the same as if the
temperature were uniformly fp, at distance D = 0.250 Vo,
and @, at distance d = m from the vein axis. The
sought heat flux is then

® = 20K,(01, — 0,)/A

D
= h]'g

o
1 21/ 0Q
= 5ln— — 0.814 (28)
475
where K; denotes ice thermal conductivity, and 6y, and 0y
are given by Equations (5) and (3), respectively. Since
2/r, << 1/ry, the term 2C; /7 will be neglected. As for
7y, it is given by Equation (13).

a

Equation (22) can now be written in full, as:

ds (ng)z 2 0Zy 07 .
— =py——=_5 s i aeidil A13sin ]
ar H o s 0.587 — s + 0.413 sin 3

2\ 3
(p\' =[Dgpi= 7‘!)'5_1/2) i

f—BS 27 K;
21 pilA
[CsT2 — Gy —p) = Culin = )] . (29)

Numerically, with the values given at the beginning of
this paper, p = 0.0264, and v = 0.284:

J“-(pwg}z 2
B = 458 m e
T i L
B i 2 :
5 =516 x 107% Pa=3 57!
2r K, o
s o= 3. Ta R0 1 g
oL
2w K; 5
—W—\‘C,u — 426 x107% m? s7! Pa™!
mL

%Q =8.05 x 107 m? s~} (rm)lc/l‘;g)_i . (30)
piL

T'o suppress many powers of ten, S may be expressed

in units Sy = 1071 m?, py, p, and p, in bar= 10" Pa, and
iL, s in pmoleg ' =10 * mole kg '. These units are in the
same order of magnitude as the corresponding variables.

C

Fig. 4. Tetrakaidecahedron oblained by truncating the six vertices of a regular octahedron with edges equal to 3b, so that the
central thirds are left. It is _formed by eight regular hexagons and six squares, and has 36 edges of equal length b. The
octahedron has a volume O\/2 b° . and each truncation removes 1/54 of its volume. Thus the volume of the tetrakaidecahedron
is V=82 b’. Its surface has a total area S = (12/3 + 6) b2, and S°|V?=150.12. ( This ratio is 216 for a cube, and
113.10 for a sphere.) (a) Plan view, and (b) elevation when a square is horizantal. The height of the polyhedron is then
2v/2 b, and the mean area of horizontal sections is 46°. Edges that are nol horizontal are 45 from horizontal. (¢) Plan
view, and (d) elevation when a hexagon is horizontal. The height of the polyhedron is then V6 b, and the mean area of

horizontal sections is (8/ V3.
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>

TN
%‘%_

) N

Fig. 5. Infilling of space by a regular assemblage of equal
letrakaidecahedra. A single layer is represented. The lavers
below and above are in contact at the square lefi white. The
grain dihedral angle between lwo hexagons is
2arctan v/2 = 109.47°; that between a square and a
hexagon is 180°— arctan v/2 = 125.26".

(8) ta be obeyed, the ratio of the surface energies beliceen

For Equation

and between two hexagonal

=2//3.

lwo square boundaries
boundaries must be 2 cos (arctan v/2)

With them, Equation (29) reads:

ds OZy dZ, .

' 10710 —= - B )8
Js Jds '

== A6h ¥
f
i
—9.16 % 10"”(})\- — Pu — 0.009035‘*“-) s

d

1 , , .
o [0.3745 2 _ 4 96(py — i) — 080K, — 1\-)] .

(31)
6. DISCUSSION

With the values of the hydraulic gradient and of p, — py
that may be expected on any glacier, the terms E and P
of Equation (22) are normally totally negligible, contrary
to Shreve's (1972) opinion, and to Nye's (1976) theory.
With only these terms, the steady state 95/0t = 0 was
With the
predominant terms coming from @ (i.e. from capillary
contrast, the state is stable: it §

ki becomes

unstable against any perturbation in 5.

effects), in steady
increases, S decreases and @ negative.
(Note that the
the fact that the vein walls are concave.
convex, would valid, but in
Equation (29) v would be replaced by —v. Then 95 /0t
would be negative for any S.)
Deline:

existence of a steady value comes from
If they were

Equation (13) remain

pa=p+ (('5/Clll)(iL - -'\)

—= =0.189 bar g pmole

1M

(32)
The steady state corresponds to a uniform tempera-
ture at the microscopic scale. The steady value of § is:

. 0.088 * 0088 17
~ |pL — pw + 0.189(¢L — 3v) " |pd — pe

(33)
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It is independent of the orientation of the vein, as
already stated. Nevertheless, value of §
stable against a perturbation in the water pressure only if
Pw < pa- Then, if py increases, S
vanishes again, and the steady regime is restored.

this steady

increases until @
This
stability ends, and the steady value of S becomes infinite,
when p, becomes equal to py. Since blood vessel was the
original meaning of “vein” and humour is not forbidden,
pa will henceforth be called the “vasodilator threshold™
It is interesting to examine whether a very strong
hvdraulic gradient, such as is artificially created when a
water-filled borehole reaches the vicinity of a subglacial
walerway or cavity at atmospheric pressure, modifies pg
significantly.
borehole emptied when reaching 120 m in rlr-*pth and it

At Glacier d’Argentiere, French Alps, a

remained empty when the bed was reached, 5m below
(Hantz and Lliboutry, 1983). Thus the

gradient was about 20. Keeping E in Equation (22),

hydraulic

but always neglecting P, Equation (31) reads:

dS 2 0 3{4 —1/2 (pl}“ - p\\') o
— = F,;8* g 1/2 \PdT = D) | g
A [ 0.088 f(5)

(34)

where pg" is the value of pg above. Since JZ/0s

> 1, sin 4 may be neglected, and:

7., 2
E| =~ 2.73 x 10—'“(‘—) (35)

s

With the term E included, the function f(S) has now
a minimum for S = S,,. In general, f(S) =0 has two
roots, and the smaller one is the stable solution above.
When f(S,) >0, there are no roots, and S grows
continuously, at an increasing rate. Since a/S is very
large,
considered as a constant when calculating the minimum

A is a very mild function of S, which may be
Sy (Next, for obtaining numerical values, the precise A
corresponding to each Sy, say Ay, as given by Equation

(28) will be used.) The result is;

) 0374 \¥° s L
g =[——1 =p5gak.Y
= (4[‘:] ”\Ill) JJJ : ( ()5 )

0.374} B pa — pe

(36)

. . 1/5
J‘(SIIIJ ‘)E [ 4)\”’ (){)88)\“1 )

The vasodilator threshold is the value of p,, that makes

f(8m) = 0

a/,v.\
pa = pa’ — 8.08 x 1074\, ( )

ds (37)

Numerical values of the corrective term pyg - pa", Tor
o= 0.1cm”=10"Sy, are given below:
0Zy[Os 10 20 100

S 306.6 166.7 41.5
Pa— pd” —2.35 —5:19 6.38

x 10 "'m”
% 10 ? bar

The corrective term is negligible for any hydraulic
oradient.
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Plausible values of (ip — iy) will now he assessed.

At the atomic scale, internal meltwater appears when
a dislocation and its elastic self-energy disappear, a
process that occurs mainly at grain boundaries. Since
the impurity concentration is larger at the grain
boundaries, internal meltwater should be less pure than
surface meltwater coming from the total melting of snow
and ice.

First, consider measurements on unstressed ice cores,
such as those by Raymond and Harrison (1975). In this
case (p; — pyw) was zero. Since thermal boring and
subsequent melting at the surface of the core should
have flushed out the salts from the veins, i, = 0. Then,
from Equation (32), 7;, should be related to the ohserved
cross-section by:

i, = 0.4665° 12, (38)

S was found to be about 75, and thus ip =0.176
pmoleg ', Ifw is the water content of the ice core, almost
all due to the water lenses, the global salinity of the ice
core is i /w. From the electrical conductivity of the
melted cores, Harrison and Raymond (1976) estimated
the global salinity as 3.3x 10 " ymoleg ' for fine ice
(grain diameter=2mm), 0.87 x 10 ymoleg ' for coarse
ice (10-30mm). These values yield w=1.88% and
0.49%, respectively. They are quite acceptable, but,
since the water content was not measured, the present
theory cannot be tested.

The study above was done on ice cores from Blue
Glacier, in the Olympic National Park. Washington,
U.5.A., a very wet area. In the Alps, where precipitation
is lower, the salt content of snow and glacier ice is higher
by a full order of magnitude (Lliboutry, 1976).

Nevertheless, in situ, 7, is no longer negligible. Veins
are fed only in part by surface meltwater, especially
since shallow glacier ice is very bubbly, and air bubbles
clog water flow in the veins. A large part of the water
feeding the veins is internal meltwater. In stressed ice,
water lenses at grain boundaries must grow continu-
ously until they reach a vein and can empty into it
(Lliboutry, 1987, p.123). In the extreme case of veins
exclusively fed by internal meltwater (a model adopted
by Berner and others (1978)), i, =4;,. Then, the
vasodilator threshold depends on the maximum
compressive stress p; only.

When p,. exceeds the vasodilator threshold, S grows
continuously. For S in the order of 1000
Sp(=0.1 n1tn2). S-12 has practically vanished, and,
even for moderate values of the hydraulic gradient, in
Equation (22) the term E must be taken into account.
It affords a positive feedback. Consider several distinct
paths between two given four-grain intersections. The
variation of the hydraulic head Z is the same for all
paths, and thus (‘)Z“-/r?s is lower the more tortuous the
path. Consequently, the straightest path thickens
fastest, and the feedback along it is the most
important. The global water flow is no longer equally
shared between veins of the same cross-section. It tends
to concentrate into several almost straight water-
channels of millimetric thickness. Such ducts were
observed by Raymond and Harrison (1975). I call
them “worm-holes™.
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It remains to assess how long it takes for such worm-
holes to form, by integrating:
ds 4.26

P '*2 —_— (D — ]
a E]S -+ \ (p\\ p:l)! (39)

assuming the realistic values 0Z,/0S =1 — pi/py =
0.085,sin 3 =1, and E;=1.8x 10 '".

With the first term alone, a worm-hole should take
several centuries to appear. With the term in (py — pq)
alone, S might reach Imm” in Ld, but § would grow
equally for every vein, and worm-holes would not form.
Therefore, I suggest a two-step model. First, p,, > pq, and
all the veins thicken. Next, p,, = pqg, and the worm-holes
form. There are not enough observations to clear up
definitively this puzzling problem.

In the quoted case of an extremely large hydraulic
gradient at the bottom of a water-filled borehole, the
formation of worm-holes through which it emptied should
be expected. It seems a more credible process than any
other hypothesis that comes to mind: thickening of the
veins by the influx of warm water, hydraulic fracture, or
[ortuitous formation of a fault there.

6. ICE PERMEABILITY

In polyerystalline temperate ice all the veins are inter-
connected, when they are not clogged by air bubbles.
Thus, at the local scale, an interstitial water pressure py
and the corresponding hydraulic head Zy and hydraulic
gradient VZ,, can be defined. As long as the vasodilator
threshold is not reached, the total water flow per unit area
(q) may be expressed as in Darcy’s law:

Pwl
Thw

q=+kvz, (40)

but the coeflicient of permeability & does not depend
on geometrical factors only, as in soils or porous rocks.
It depends also on the local values of p;, pe and
(P — 2y).

To pass from discharge by a single vein Q to the water
flux [q|, some geometrical model for the polycrystal is
needed. It will be assumed that the grains are
tetrakaidecahedra of equal size. It may be objected that
they are not the polyhedra that ensure a minimum
surface for a given crystal volume (Weaire and Phelan,
1994). This objection has little weight. Itis not the area of
the surface that is minimized by capillary forces, it is the
total surface energy. Equation (8) is obeyed if the surface
energies of square and hexagonal boundaries, say 7, and
T, are in the ratio J5/m = 2/\/§ Note that the
orientation of the hexagons, which are the low-energy
boundaries, recalls the four-maxima fabric.

The objection that grains in polyerystalline ice are of
different sizes might give more concern. With equal
tetrakaidecahedra, water contents of 1% or more would
be impossible, because the water lenses would then be
larger than the square sides. 1 believe that this geometrical
model leads to good estimations, however, when statistical
parameters other than the water content are sought.

The discharge by a single vein, when S has its steady
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value (Equation (32)), is:

&=

| :
Cyv ] Py 02y (41)

1
v [Cm (pd —pw)] W s

To obtain the analogue of Darcy’s law, this value must
be multiplied by three factors:

1. A vein density factor. The number of veins per unit
area that cross a section of polycrystalline ice increases
with the number of grains counted in this section.
With ¢ denoting the mean cross-sectional area of
grains, this number of veins (the
proportional to ¢~'. With the model of equal
tetrakaidecahedra, a vein density of 2/¢ is found.

“vein density”) is

Raymond and Harrison (1975), who examined six
thin sections, found vein densities ranging from 0.8/c
to 2.1/o, but they used an arithmetic mean for a. A
harmonic mean would have been more appropriate,
and it is smaller.

2. A lortusstly faclor, because there is never a set of
successive veins exactly in the direction of the hyd-
raulic gradient. With the tetrakaidecahedra oriented
as in Figure 4a and b, and in Figure 5, when the
gradient of Z, is vertical, dZ/ds = 1/v/2 for all the
veins. This value will be adopted. A cumbersome
statistical calculation for all the orientations would not
be very meaningful.

3. A path continuily factor. A series of grain edges is not
necessarily a possible path for water flow, for two
reasons: at some edges no vein exists, and even if a vein
exists, it may be clogged by an air bubble (Lliboutry,
1971). We have not enough data to assess the
probability of the first circumstance in temperate
glacier ice. We assume that it is negligible. The prob-
ability of the second circumstance is easier to handle.

To obtain, among the number of veins crossing a
plane, the proportion of those that permit water flow,
Raymond and Harrison (1973) considered the case of
several bubbles on the same edge. Their result does not
differ significantly from that obtained when this case is
ignored. If b is the mean length of an edge, and s the
mean distance of bubbles along a path (their notation),
this ratio is then (1-b/s).

We may go further, by introducing the number of air
hubbles per unit volume (N), and their mean diameter
(6). With p denoting the density of bubbly ice (860
900kgm *), and p; the density of bubble-free ice (915
kgm °), we have:

(g)a“N =1+ (42)

Pi

A bubble intersects a path when its centre is less than
6/2 from it. Thus the number of bubbles per unit length
of path is:

_ 31 -p/p)

)
—=—N =
5 4 26

(43)
As for b, the tetrakaidecahedron model yields b=
Vo /2. Consequently, the probability of free passage along

a vein is:
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(44)

For a given air content, the probability decreases for
small bubbles, and increases for fine ice (not as drama-
tically as the vein density factor, however),

With @ given by (10) (where
p=0.067), S given by Equation (24) and k given
by Equation (30), once the three factors above have
been taken into account, the permeability reads,
reverting to SI units:

Equation

4 S ] 3&( p)}
=il = = e e —
; Cm(Pcl = P“-) o \/Q 46 i

o nl‘f,|
(pa — PW).I
2.92 % 1079 3a/¢
e i B (45)
o 46 i

Mader (1992a) notes that, when the probability is
low, there are networks of uninterrupted veins that do not
extend to infinity and thus cannot ensure macroscopic
permeability. Computations by Frisch and others (1962)
and by Svkes and Essam (1964) have shown that this
begins to happen when the probability is lower than 0.6.
When it is lower than 0.39 the
macroscopically impermeable.

Thus, Equation (45) should be valid for (1 —b/s)
> (0.6 only. For the realistic value p = 0.87, the condition
reads /o /6 < 10.8. which is generally the case.

material becomes

7. PERCOLATION OF INTERNAL MELTWATER

The theory above will be used to handle the percolation
of internal meltwater. The hvdraulic gradient V.Z, is
assumed to be vertical. With the zaxis vertical upwards,
its intensity is then:

1 Z 1 ;
Henk r=1+ % .
ds pwy dz

(46)

The rate of internal melting equals the increase of
volume discharge g(z) downwards. They depend on the
effective shear stress 7, as defined in Equation (26):

dg Bri
pwL

_ (47)

dz

The origin of the zaxis is at the sole, and the surface is
at z=h. It is assumed that: (1) no external meltwater
enters the vein system at the surface, but instead g(h) is
negative; thus ¢y = i, and pg = p1: (2) the vasodilator
threshold is never reached; thus p =p; —p, is every-
where positive. Both assumptions will be checked once the
solution has been found.

It is also assumed that p; = pg(h —z) + 7, as in the
plane problem, and that 7 is a constant for any z. In fact 7
is in the range 0.4-0.7 at the surface, and equals about 1 bar
near the hottom, but to assume a constant value does not
change qualitatively the results, and makes the calculation
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simpler and its difficulties clearer.
With zp denoting the unknown level where ¢ =0 (D
is for “water Divide”), Equation (47) is readily

integrated:
Br!
=—[(2p—2 48
0=t (2p — 2) (48)
and p reads:
p=pi—pu=pglh—2)+7—py. (49)

On the other hand, Equation (40) reads:

Thw 4
T= i 50)
kl Pwd = (

From Equation (46) and (49), py, and I" are related to
dp/dz by:

dpy e dp
. T
. dp
Pwl' = (P —p)g— (51)
Comparing with Equations (48) and ([50):
1w BTt A dp "
zp—2)p” = (py — —=— 52
kleL( D )[) {p\\ [)), i (J )

Function p(z), as g(z) and pw(2), obeys a differential
equation of second order, subject to two bhoundary
conditions: py(h) =0, and pw(0) = pgh. Equation (52)
is a first integral, including the integration constant zp. It
is convenient to adopt a unit pressure w and a unit length
A such that:

Ny B

kypw L

Adopting p/pe = 0.9, ki = 0.02, and 7 = 107 Pa, it is
tound:

Aw' =1, (P — plgw/A=1. (53)

TR AL 2/5
o L;];Tl] [(pw — p)g]"* = 4808 Pa
kipu L] ~3/5
a [nl.’ﬁ] (pw = p)gl =490 m.  (54)

The relation between the dimensionless variables
p=p/wand Z = z/A reads:
dP
(B =B = |~ (55)
dZ
P has been assumed to be positive for any Z, and must
remain finite, as is F. At the boundaries Z =0 and
Z =h/A= H, P is subject to conditions

B(0) = P(H) =7 /a=208: (56)

A value H = 60 (h = 294 m) has been adopted for the
numerical computation.

The fact that the differential equation is strongly non-
lincar makes it impossible to solve by the usual methods. 1
have found the following one, but I leave more competent
mathematicians to assess its accuracy.

The non-linearity leads to the formation of boundary
layers where |dP/dZ| is very large, whereas in the bulk of
the glacier P and dP/dZ are smaller than 1. In all this
central part, P can be calculated as a function of
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Z — Zp = X, without the need of some given value of P
to start with, thanks to the following algorithm:

P(u—o—l)(.,r.) —
1= [P(")(X—F AX)— PmEX — A)()}/ZAX ¥
—-X
PO(X + AX) = PO(X — AX). A7)

This algorithm converges very fast towards a solution
P(X) that does not depend on the the values of P in the
boundary layers. P increases slowly from 0.36541 for
X = =56 to 0.69966 for X = —4, and dP/dX increases
slowly from 0.00163 to 0.04147 in the same interval. Next,
starting from this solution, P(X) in the upper boundary
layer can be determined

dpP

—=14+XP!,

—4) = 0.69966 .
o P(—4) = 0.69966 (58)

This equation has been solved by a Runge-Kutta
method. It is found that P =20.8 is reached when
X = 0.4001. Since then dP/dX = 73860, this value of X
is quite insensitive to the precise value of P at the surface.
Thus, H— Zp=0.4001 (=1.96m). At Z=2Zp, P=
1.3562 (=0.065 bar), and dP/dZ = 1. 1 shall define a
dP/dZ| > 1. With this
definition, the upper boundary layer is the one whose
internal meltwater exudes at the surface. (It exudes
0.26 mma ' with the adopted value 7= 1 bar, but only
0.016mma ' if 7=005bar.) No external meltwater
enters the vein system and lowers its salinity.

Now, as Zy has been determined, P(Z) can be calculated
in the lower boundary layer. Equation (55) reads:

dP A
dZ_l (59.6 — 2)P*,
From Z=0 to Z=0.004, since dP/dZ is very

negative, the following approximation is accurate enough:

boundary layer as a region where

P(0)=208.  (59)

j—}; ~ —59.6P
1 1 )

Here also, the precise value of P at the boundary does
not significantly modify P(Z).

Next, starting' from 4 =0004, P=1.11815, the
Runge Kutta method has been used. It is found that
dP/dZ = -1 at Z = 0.094. The thickness of the bottom
boundary layer (as 1 define it) is thus 0.094=0.46 m.
Next, at Z = 0.65, d?/dZ is zero, and P has its minimum
value, 0.3609. (The corresponding maximum value of the
vein's cross-sectional area is S = 0.06615mm”.) The
values of P given by Algorithm (57) are found again
around Z = 2. Thus, for Z < 2, we have an interesting
example of an algorithm that converges very fast towards
a wrong solution.

8. CONCLUSION

It has been shown that capillary effects and salinity,
which exclusively control the size of veins (contrary to the
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case of Rathlisherger channels), in general ensure a steady
value. Nevertheless, since this value depends strongly on
the water head in the veins, hydraulics are quite different
from those governed by Darey’s law. Given the discharge
(for example, when percolation of internal meltwater is
considered), it is much more the water head Z, and the
corresponding permeability, rather than the hydraulic
gradient. that adjust to ensure the discharge. With
Darcy’s law instead, it would be the hydraulic gradient
only. The water pressure py differs from the maximum
compressive stress by no more than 0.065 bar. Conse-
quently, for the boundary conditions on py to be obeyed,
boundary layers with large hydraulic gradients, but very
small vein sizes and permeabilities, must appear.

This unexpected behaviour, of a material that
becomes more impermeable at its surface to maintain a
high internal pressure, would make the fortune of a tyre
manufacturer. For a glaciologist trying to determine the
permeability of temperate ice, it is a disaster. On a stress-
free sample, permeability is totally different from in situ.
In an in situ experiment, since a very high hvdraulic
gradient must be applied in order to assess the perm-
sability within a reasonable time, the vasodilator thresh-
old may be exceeded, and the result may be erroneous.
Probably for this reason, old experiments in situ of the
19th century (quoted in Lliboutry, 1971) lead to the idea
that clear temperate glacier ice is quite permeable.

In fact, the in situ permeability of temperate glacier ice
is very small indeed, except when it is bubble-free and with
very small grains, or when internal meltwater production is
very large. Such conditions are met at the sole of glaciers
sliding fast on a rough hard bed. Therefore, my theory
about internal melting and migration of the meltwater that
allows a refreezing trend at the bed (Lliboutry, 1993) is not
contradicted by the present theory.

The layers of clear ice that form the popular “blue
bands™ at the glacier surface may also have an
appreciable permeability. These layers come from the
concentration of the strain by a feedback process that
provides small grains. Nevertheless, when they are a relict
form, recrystallization has enlarged the grain-size, the
multimaxima fabric is found again, and only a lattening
of the crystals gives evidence of their origin (Vallon, 1967:
Lliboutry, 1987, p.122-123). So we cannot assert that
blue bands are paths for water percolation, unless
observations in tunnels discover this phenomenon.

Putting aside (1) the obvious case of surface ice alter
days ol fine weather., when individual grains have
loosened from each other because of solar radiation, (2)
the poorly documented cases of “ice mylonites” along
internal faults, and (3) the mysterious “ice worm-holes™,
there is no more water percolation through the bulk of a
temperate glacier than through silty clay or granite
(Brace, 1984). In contrast to Shreve's (1972) views.
surface meltwater reaches the bed only by moulins, old
closed marginal crevasses and other large waterways.

Another consequence of the present theory is that
water pressure in subglacial cavities has nothing to do
with the interstitial pressure in the vein system.

An obvious improvement of the theory would be to use
empirical statistical values instead of values drawn from a

Lliboutry: Temperate ice permeability

simplified model. We need statistics not only of in situ
values of the vein dihedral angles ), but also of the
corresponding grain dihedral angles w. This is a challenge
to the ingenuity of experimental investigators. Nevertheless,
the best test of the theory would be to measure in situ the
interstitial water pressure p, without disturbing it. This
may be done by putting pressure gauges at the bottom of
boreholes, and carefully sealing them with cores of cold ice,
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