
BULL. AUSTRAL. MATH. SOC. 57M25, 57M27

VOL. 75 (2007) [253-271]

SOME INVARIANTS OF PRETZEL LINKS

DONGSEOK KIM AND JAEUN L E E

We show that nontrivial classical pretzel knots L(p,q,r) are hyperbolic with eight
exceptions which are torus knots. We find Conway polynomials of n-pretzel links
using a new computation tree. As applications, we compute the genera of n-pretzel
links using these polynomials and find the basket number of pretzel links by showing
that the genus and the canonical genus of a pretzel link are the same.

1. INTRODUCTION

Let L(pi,p2,... ,pn) be an n-pretzel link in S3 where Pi € Z represents the number
of half twists as depicted in Figure 1. In particular, if n = 3, it is called a classical pretzel
link, denoted by L(p, q, r). If n is odd, then an n-pretzel link L(pi,p2,... ,pn) is a knot
if and only if none of two p^'s are even, a pretzel knot is denoted by K(pi,p2,.. • ,pn).
If n is even, then L(pi,p2,... ,pn) is a knot if and only if only one of the p^s is even.
Generally the number of even p^s is the number of components, unless p^s are all odd.
Since pretzel links have nice structures, they have been studied extensively. For example,
several polynomials of pretzel links have been calculated [13, 15, 22, 28]. Shinohara
calculated the signature of pretzel links [34]. Two and three fold covering spaces branched
along pretzel knots have been described [4, 19]. For notations and definitions, we refer
to [2].

A link L is almost alternating if it is not alternating and there is a diagram DL of
L such that one crossing change makes the diagram alternating; we call Di an almost
alternating diagram. One of the classifications of links is that they are classified by
hyperbolic, torus or satellite links [2]. First we show that classical pretzel links are prime
and either alternating or almost alternating. Menasco has shown that prime alternating
knots are either hyperbolic or torus knots [24]. It has been generalised by Adams that
prime almost alternating knots are either hyperbolic or torus knots [1]. It is known that
no satellite knot is an almost alternating knot [17]. Thus, we can classify classical pretzel
knots completely by hyperbolic or torus knots.
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Pi P2 Pa Pn-1 Pn

Figure 1: An n-pretzel link L(pi,p2,... ,pn)

Let L be a link in S3. A compact orientable surface T is a Seifert surface of L if the
boundary of T is L. The existence of such a surface was first proven by Seifert using an
algorithm on a diagram of L, named after him as Seifert's algorithm [33]. The genus of
a link L can be defined by the minimal genus among all Seifert surfaces of L, denoted by
g(L). A Seifert surface T of L with the minimal genus g(L) is called a minimal genus
Seifert surface of L. A Seifert surface of L is canonical if it is obtained from a diagram of
L by applying Seifert's algorithm. Then the minimal genus among all canonical Seifert
surfaces of L is called the canonical genus of L, denoted by gc(L). A Seifert surface F of
L is said to be free if the fundamental group of the complement of F, namely, 7Ti(S3 — T)
is a free group. Then the minimal genus among all free Seifert surfaces of L is called the
free genus for L, denoted by g/(L). Since any canonical Seifert surface is free, we have
the following inequalities,

g(L) < gf(L) ^ gc(L).

There are many interesting results about the above inequalities [5, 8, 21, 25, 29, 32].
Gabai has geometrically shown that the minimal genus Seifert surface of n-pretzel links
can be found as a Murasugi sum using Thurston norms and proved that the Seifert
surfaces obtained by applying Seifert's algorithm to the standard diagram of L(2ki
+ 1,2A;2 + 1, • •• ,2A;n-l-l) and L{2ki,2k2, •.. ,2kn) are minimal genus Seifert surfaces [12].
There is a classical inequality regarding the Alexander polynomial and the genus g(L) of
a link L: G. Torres showed the following inequality,

(1) 2g(L) Si degreeAi - /x + 1

where Aj, is the Alexander polynomial of L and /i is the number of components of L
[36]. Crowell showed that the equality in inequality (1) holds for alternating links [8].
Cimasoni has found a similar inequality from multi-variable Alexander polynomials [6].
In fact, we can find the genera of oriented n-pretzel links from the inequality (1) and
the Conway polynomial found in section 3, that is, we shall show that the equality in
inequality (1) holds for all n-pretzel links with at least one even crossing. For pretzel
links L(2k\,2ki,... ,2kn) with all possible orientations, Nakagawa showed that a genus
and a canonical genus are the same [28]. The idea of Nakagawa [28] can be extended
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to arbitrary n-pretzel links, that is, we can show that these three genera g(L), g/{L) and
gc{L) are the same.

Some of Seifert surfaces of links feature extra structures. Seifert surfaces obtained
by plumbings annuli have been studied extensively for the fibreness of links and surfaces
[10, 11 , 12, 14, 26, 29, 30, 35]. Rudolph has introduced several plumbed Seifert
surfaces [31]. Let An C S 3 denote an n-twisted unknotted annulus. A Seifert surface T
is a basket surface if T — D2 or if T = TQ *O An which can be constructed by plumbing
An to a basket surface TQ along a proper arc a C D 2 C TQ [31]. A basket number of
a link L, denoted by bk(L), is the minimal number of annuli used to obtain a basket
surface T such that dT = L [3, 16]. As a consequence of the results in section 4 and a
result [3, Corollary 3.3], we find the basket number of n-pretzel links.

The outline of this paper is as follows. In section 2, we mainly focus on the classical
pretzel links L(p,q,r). We find Conway polynomial of n-pretzel links in section 3. In
section 4, we study the genera of n-pretzel links. In section 5, we compute the basket
number of n-pretzel links.

2. CLASSICAL P R E T Z E L LINKS L(p, q, r)

2.1. A L M O S T ALTERNATING. One can see that L(p, q, r) is alternating if p, q, r have the
same signs. Since every alternating link (including any unlink) has an almost alternating
diagram, we are going to show that every nontrivial pretzel link has an almost alternating
diagram. Since the notation depends on the choice of + , — crossings, it is sufficient to
show that L{— p , q, r) has an almost alternating diagram where p , q, r are positive. In
particular, one might expect that L(—l,q,r) is almost alternating, but surprisingly it is
also alternating.

THEOREM 2 . 1 . For positive integers p, q and r, L(-l, q, r) is an alternating link
and L(—p, q, r) has an almost alternating diagram.

PROOF: One can see tha t L(q, — l , r ) is isotopic to L(q — 2, l , r — 2) as shown in

Figure 2. For the second par t , see Figure 3. D

THEOREM 2 . 2 . All nontrivial pretzel knots K(p, q, r) are either torus knots or
hyperbolic knots.

PROOF: The key ingredient of theorem is that prime alternating (almost alternating)
knots are either hyperbolic or torus knots [24, Corollary 2] ([1, Corollary 2.4], respec-
tively). Since every pretzel knot has an almost alternating diagram by Theorem 2.1, we
need to show that all nontrivial classical pretzel knots are prime. Since no two of p, q, r

are even, there are two cases:

(i) all of them are odd,

(ii) exactly one is even.
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Figure 2: An alternating diagram of L(q, — l,r).

Figure 3: An almost alternating diagram of L(p, —q,r).

(i) p = q = r = 1 (mod 2). For this case, we can use the genus of K = K(p, q, r).
Suppose K = Ki#K2. Since a Seifert surface of K is the punctured torus, it has genus
1 as described in the left top of Figure 2. But 1 = g(K) = g{Ki) + g{K2). Thus one
of g(Ki) or g{K2) has to be 0, that is, one of Kt is trivial. Therefore K cannot be
decomposed as a connected sum of two nontrivial knots.

(ii) Suppose that p is even that is, p = 21, and q, r are odd. Then it is easy to see
that the left two twisting parts form a prime tangle (except when \p\ = 21 and \q\ = 1).
The right part is an untangle, but since r is odd, we can use a result of Lickorish [23,
Theorem 3] to conclude that K(21, q, r) is prime. For the above exceptional cases, we
can assume that \r\ = 1 because we can choose \q\ ^ \r\. So all possible cases are
K(2l, ±1, ^1), #(2*. 1,1) and K(2l, - 1 , -1). But the first one is the unknot and the other
two can be deformed to K(p, q, r) of all odd crossings, i.e, K(2l, - 1 , -1) = K(2l — 1,1,1)
and K{21,1,1) = K(2l + 1, - 1 , -1) . This completes the proof. D

2.2. PRIME TORUS PRETZEL KNOTS. The primary goal of this section is to decide
which classical pretzel knots are torus knots. For convenience, the (m, n) torus link is
denoted by T(m,n). One can see that all 2-string torus links are alternating. C. Adams
has conjectured that only (3,4) and (3,5) torus knots are almost alternating [1]. One can
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see that K{-2,3,3) is the (3,4) torus knot and K(-2,3,5) is the (3,5) torus knot. Since
the branched double cover of a torus link is a Seifert fibred space with the base surface
S2 and at most three exceptional fibres, and the branched double cover of a nontrivial
n-pretzel link is a Seifert fibred space with n exceptional fibres, there will be no torus
knot of the form K(p-i,p2, • • • ,pn) for n ^ 4 and |p,| ^ 2.

To find all torus knots, we use the Jones polynomials of K(2l, q, r) because the genera
of pretzel knots tell us that no K(p,q,r), with p,q,r all odd, is a torus knot except the
unknot and trefoil, and it is known that K(p, — 1,1) is the unknot and K(±l, ± 1 , ±1) are
trefoils, which are the only torus knots of genus 1. Remark that the genus of an (m,n)

torus knot is (m — l)(n - l ) / 2 . The Jones polynomial of an (m, n) torus link (m ^ n) is
given by equation (2) if m is odd, by equation (3) if 4 ^ m is even, and by equation (4)
if m = 2 and n is even. This is due to the original work by Jones [18] but still there is
no combinatorial proof for these formulae.

(2) _t(m-l)(n-l)/2pn+n-2 + jm+n-4 + . . . + jn+1 _ fm-l *2 - 1],

(3) _<(m-l)(n-l)/2jtm+n-2 + jm+n-4 + j. fn _ < n - l t2 - l],

^^ - tn~l + tn~2 t3 + t2 + 1].

Using a formula for the Jones polynomials of n-pretzel knots in [22], we find the
following lemma. Since the Jones polynomial of the mirror image L of L can be found
by Vi(t) = Vt^"1) , we may assume q, r are positive integers.

LEMMA 2 . 3 . Let I, q, r be positive integers. Let k = 21 + q + r.

- 2tr+2 + 2f+l -••• + 2t3-t2 + t - l ) ,

**-1 + 3f*-2 - Atk~3 + ----3t2 + t - l ) , if

VK(2i,-q,r) = -i(-4'-3<>+r)/2(t«+' - t"^-1 + t + 1) if q > 1,

VK(-2,X,r) = - t ( r + 1 ) / 2 ( f + 2 - *r+1 + f - • • • + t3 - t2 - 1),

^(-2,3,3) = ~t3(t5 ~t2- 1),

^(-2,3,r) = -f(3+r>/2(f3+r-2 _ f + . . . _ t
2 - 1) if T > 7,

VW(-2,,,r) = -t^+^2(-t"+r-1 + 2t«+'-2 t2 - 1) if q,T > 5,

VK(-*,q,r) = -t{"+r)/2(at' + • • • ± t =F 1) if I, q, r > 1.

By comparing Jones polynomials of pretzel knots in Lemma 2.3 and Jones polyno-
mials of torus knots in equation (2), (3) and (4), we find the following theorem.

THEOREM 2 . 4 . The following are t i e only nontrivial pretzel knots which are

torus knots.
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(1) K(p, ±1, Tl) are unknots for all p.

(2) K{±\, ±1, ±1) are (2, ±3) torus knots.

(3) K{±2, =Fl, ±r) are (2, ±r ^ 2) torus knots.

(4) K{T2, ±3, ±3), K(^2, ±3, ±5) are (3, ±4), (3, ±5) torus knots, respec-
tiveiy.

PROOF: We only need to consider K(2l,q, r). We can see that K(2, — l,r) can
be deformed to /f(0, l , r — 2) by a move shown in Figure 2. The coefficient of t1 and
the second leading coefficient of the Jones polynomial of a torus knot are zero, but by
Lemma 2.3 these are possible only for K{—2,3,3), ^(—2,3,5) and their mirror images.
But the number of terms in the Jones polynomials of these knots is 3, and only (3, n) torus
knots have this property. By comparing the terms of the highest degree, we conclude that

2, ±3, ±3) and K(^f2, ±3, ±5) are the remaining non-alternating torus knots. D

2.3. MINIMAL GENUS SEIFERT SURFACES. When one applies Seifert's algorithm to a
diagram of a link L, in general one may not get a minimal genus Seifert surface. In fact,
Moriah found infinitely many knots which have no diagram on which Seifert's algorithm
produces a minimal genus surface [25]. But it is known that a minimal genus Seifert
surface can be obtained from an alternating diagram by applying Seifert's algorithm [27]
and more generally, alternative links [20]. We prove that the Seifert surface obtained
by applying Seifert's algorithm to the diagram in Figure 4 of a pretzel knot K(p, q, r) is
a minimal genus Seifert surface. Since K(2l,q, r) and its mirror image are alternating,
without loss of a generality, we only need to find Alexander polynomials of K(—21, q, r)
andK(-2l,q,-r).

LEMMA 2 . 5 . Let I, q, r be positive integers.

+ r - (2/ - l ) ^ - 1 + • • • - (2/ -

-2 - 2t"+r~3 + 2* + 1).

PROOF: One can prove inductively the lemma by the following recurrence formulae
which come from the skein relations, and the formulae for the Alexander polynomial of
the (2,p) torus links.

1 - tp~2 + • • • - t + 1) if p is odd,
AT{2,±p){t) = <d-p)/2(_iP-i + fP-2 + t + i) if P i s even,
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Figure 4: Minimal genus Seifert surfaces of the pretzel knots K(p, q, r).

THEOREM 2 . 6 . Tie surface obtained by applying Seifert's algorithm to the pret-
zel knot K(p, q, r) as in Figure 4 is a minimal genus Seifert surface, if l/\p\ + l/|g| + l/ |r |

PROOF: We consider two cases:

(i) all of p, q, T are odd,

(ii) exactly one of p, q, r is even.

For the first case, the first Seifert surface in Figure 4 is clearly a minimal genus since its
genus is 1 unless K(p, q, r) is the unknot. But it can not be the unknot by the hypothesis.
For the second case, we can consider K{—21, q, ±r), K(—2l, q, ±r) or their mirror images,
where l,q,r are positive. Their canonical Seifert surfaces are given in Figure 4. To
prove these surfaces are minimal genus Seifert surfaces, first we find 2g(K(—21,q,±r))
^ q + r — 1±1 using the Alexander polynomials of K(—2l, q, r) and K(-2l, q, —r) given
in Lemma 2.5 and inequality (1). But the genus of the second Seifert surface in Figure 4
is (q + r)/2, and the third surface in Figure 4 is (q + r - 2)/2. It completes the proof. D

By combining Theorem 2.4 and Theorem 2.6, we find the following corollary.

COROLLARY 2 . 7 . Tie genus of K(p, q, r) is as follows.
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(1) K(p, ±1, =Fl), K(±2, qFl, ±3) have genus 0 for all p.
(2) K(p,q, r) has genus 1 ifp = q = r = 1 (mod 2) and we are not in case 1).

(3) /if (±2, =Fl, ±r) ias genus (|r - 2| - l)/2.
(4) iir(T2i,9, r) has genus (\q\ + \r\)/2 if q,r have the same sign and we are

not in any of the previous cases.
(5) K{=f2l,q, r) has genus (\q\ + \r\ — 2)/2 ifq,r have different signs and we

are not in cases (1), (2) or (3).

For classical pretzel links, one can see that L(2li, 2l2,2l3) has genus 0. For L(2l\, 2l2,
r), we are going to see more interesting results for the genus because there is a freedom
to choose orientations of the components. But, Lemma 2.5 remains true for arbitrary
integers q, r, so we can find the following corollary.

COROLLARY 2 . 8 . The genus of the link L(2li,2l2,r), where \k\ ^ \12\, k,l2

> 0 (unless we indicate differently) and r ^ 0, is as follows.

(1) L(2h, 2l2, ±r) has genus 0ifr = 0 (mod 2) and Zi, l2 are nonzero integers.
(2) L(±2, ±2l2, qFl) Aas genus (\2l2 - 2| - 2)/2.
(3) K(T2JI, T2h, Tr) has genus (\12\ + \r\ - l)/2 if we are not in one of the

previous cases.
(4) K(T21X, T2/2, ±r) has genus (\12\ + \r\ - 3)/2 if we are not in any of the

previous cases.
(5) K(^2lu±2l2, Tr) has genus (\12\ + \r\ - 3)/2 if we are not in case 1).
(6) #(3=2/1, ±2Z2, ±r) has genus (\12\ + \r\ - l)/2 if we are not in case 1) and

\h\ > \l2\,orhasgenus(\l2\ + \r\—3)/2ifwearenotincasel)and\li\ = \12\.

PROOF: We follow the proof of Theorem 2.4 and Theorem 2.6 carefully; if r = ±1,
the link will have two representatives by the move we used in the proof of Theorem 2.1,
we get the result, with a note that we have a freedom to choose an orientation of the
component which goes through two even crossing boxes. 0

3 . CONWAY POLYNOMIALS OF n-PRETZEL LINKS

To find the polynomial invariants of n-pretzel links, we shall use a computation tree:
a computation tree of a link polynomial PL is an edge weighted, rooted binary tree whose
vertices are links, the root of the tree is L, two vertices L\, L2 are children of a vertex Lp

if
PLP = w(Lp(l))PLl + w(Lp{2))PLl,

and w(Lp(i)) is the weight on the edge between Lp and L,. One can see that the link
polynomial PL can be computed as follows,
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O2 O2k O2k+l

L J
e i 02 03

ururu

02k 02k+\

(5) (6)

ei o2 03 02Jt-l 02*: 0 l 02*-1 O2k

(7) (8, 9)

Figure 5: all oriented n-pretzel knots L(pi,p2, • • • ,pn)

where £ is the set of all vertices of valence 1 and V(LV) is the set of all vertices of the
path from the root to the vertex Lv. In general, it is easy to find Pi if we repeatedly use
the skein relations until each vertex Lv becomes an unlink. Moreover, one can replace
links by other for a convenience of the computation. For instance, Franks and Williams
used braids to find a beautiful result on Jones polynomial [9].

To compute Conway Polynomials of n-pretzel links, we shall use a new notation
for n-pretzel links which will be used for vertices of a computation tree. We called a
rectangle in Figure 5 a box and the link moves in the same direction in a box if it has
the orientation as in the second box from the left of the diagram (6) of Figure 5, in the
opposite directions if it has the orientation as in the first box from the left of the diagram
(6) in Figure 5. If we have a box for which two strings move in the opposite directions
and we use the skein relation at this box, then the resulting links have either less number
of the boxes or less number of crossings. One can see that an opposite direction can be
happened only for a box with even number of crossings (but this is not sufficient) except
in the case that n is even and all the pt's are odd (we shall handle this case separately).
Suppose we have at least one even crossing box. We may assume that it is p\ = 2Zi.
Let us remark that the Conway polynomial vanishes for split links. The following is our
new notation for n-pretzel links. From a given n-pretzel link L with an orientation O,

we can represent L by a vector in (Z x Z2)" such as (p\l,p22, • • • >?£"), where £j = 1(-1)
if the link moves in the same(opposite, respectively) direction in the box corresponding
to Pi with respect to the given orientation O. Write p\ = Pi- First we find the following
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recursive formula,

where the term under "" is deleted.

By repeatedly using above formulae, we can make a computation tree such that
there is no negative Ei for the representative at each vertex of valence 1. Then, we can
expand ( . . . ,Pi,-..) into (... , p* ± 1(= p\),...) and (... , p{ ± 2,.. .) with suitable weights
on edges, 1 or ±z where \pi\ > \p\\. We can keep on expanding at the crossings until all
the entries in the vectors of vertices of valence 1 are either 0 or ±1 . At this stage, if it has
more than two O's then we stop the expansion and change the vertex to zero because it is
a split link. If it has only one zero, it is a composite link of T(2,Pj)'s. Otherwise, we change
the vector to an integral value m, the sum of the signs of entries in the vector. In fact,
it is the closed braid of two strings represented by cr™. Therefore, we can compute the
Conway polynomial of a link L using this computation tree and the Conway polynomial
of closed 2-braids.

3.1 . CONWAY POLYNOMIAL OF n-PRETZEL KNOTS. The general figures of ra-pretzel
knots are given in Figure 5 (the right-top one is a two components link) where d
= 21, Oi = 2ki + 1. We can see that there is at most one box in which the knot moves
in opposite directions. But for a two component link, all boxes might move in opposite
directions for the orientation which is not in Figure 5. Counterclockwise from the top-
right, we get representatives, (of1, Oj \ . . . , o^1), (ou o2, • • •, 02k), (o f 1 ,0J 1 , . . . , o^+1),
(ef1 ,02,03, . . . ,o2fc+i) and (ex, 02,03,. . . ,02*)- By using a computation tree for these
representatives, we find Theorem 3.1. For convenience, we abbreviate Vr(2n. by Vn

throughout the section.

THEOREM 3 . 1 . Lete\ = s ign(ei) ( |e i | - l ) , o'i = sign(oi)(|oi|-l), a = Esign(O i )
2

:=0

1

and 0 = s ign(ei) . T i e Conway polynomials of n-pretzel knots in Figure 5 are

(5) Vx,(OliO2,O3 On) =

(6) V K , , ^ fc) = V^V^ ... VOn [l - lz\-\z + E ^ ] ] ,

(7) Vt(ei,02,O3 On) = V^V^ ... VOn [ve- + Vei \-

1=2

L i=2

(8) V£(, "
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(n\ X7 — Y7 T7 T7 K 7 - , i \ ^ • I
(*) v £,(01,02,03 on) — v o i v 02 • • • V O n V £ ? . sign(oj) T / _, _ ,

where for L{o\, o2t o 3 , . . . , on) we have two possible orientations because it is a two com-

ponents link, so we get (8) for (of *, o j 1 , . . . , o^1) and (9) for (ox, o2,... , o2k)-

P R O O F : We shall only prove (6) but one can prove the other by a similar argument.
In the computation tree, we use skein relation at crossings until vertices of valence 1 in
the computation tree up to this point will be (c\,c2,... ,Cn) where C\ is either 0 or ± 1 .
Since the Conway polynomials of split links vanish, we may assume there are no than one
O's. The first term in the parenthesis comes from the case where all |c<| are 1 because it
is again the (2, a) torus link horizontally. It is a two component link with linking number
—a/2, so its Conway polynomial is —(a/2)z. For the case where only one c, — 0, the
values on edges.to the vertex will contribute exactly V^ and the vertex is the composite
link of (2,Oj) torus knots j = 2 , . . . , n except i. D

3.2. CONWAY POLYNOMIALS OF TI-PRETZEL LINKS. Since we have already handled
links of all odd crossings, we assume that n-pretzel links have at least one even crossing
box. Let L(p\,p2,... ,pn) be an n-pretzel link and let s be the number of even p^s. Then
it is a link of s components. The Conway polynomial Vj, depends on the choice of the
orientation of L. There are 2s"1 possible orientations of L. But one can easily see that
the link always moves in the same direction in all boxes of odd crossings for arbitrary
orientation. For further purpose, we shall calculate the Conway polynomial of the pretzel
link with the following orientations. For the existence of such orientations, we shall prove
it in Lemma 4.2: if n — s is even, then there exists an orientation O of L such that the
link L moves in the opposite directions in all boxes of even p<. If n - s is odd, then there
exists an orientation O of L such that the link L moves in the opposite directions in all
boxes of even p{ except one pt but without loss of a generality we assume that pi = pt.

THEOREM 3 . 2 . Let L(pi,p2,..., pn) be a pretzel link with the above orientation

O. Let pe, = 2lt be all even and pOj = 2kj + 1 be all odd. Let s be the number of even
n—a

Pi's and let a = Yl sign(pOi) and /3 = sign(pi). Let pj- = sign(pj)(|pj| — l ) . Ifn-s is

even, then the Conway polynomial of L{pi,p2, •.. ,pn) is

[T^- \Z \. p ° v l ~ 2 ^ ^ V I I - •

Ifn — s is odd, then the Conway polynomial of L(pi,p2,... ,pn) is

fl H,>k-°.
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P R O O F : It is clear by choosing ( p " \ p " \ . . . . p - 1 , p O l ) . . . ,pOn_J and (p^ .p^ 1 , . . . ,

P7,1 > Poi, • • • >Po»-), respectively. D

More generally, we get the following results by taking (p"1, p ~ \ . . . , p ~ \ pe t + 1, • • • ,

Pe.i Poi, • • • .Pon_,) for a representative of L(jp\,pz,... ,pn) induced by an orientation O.

THEOREM 3 . 3 . Let pti = 2lt be all even and pOj = 2kj + I be all odd. Let s

be the number of even Pi. Let t be the number of even pt in the corresponding boxes

in which the link moves in the opposite direction, say pe,. where i = 1,2,... , t. and let
n—s s

a = Yl sign(pOj-) and /? = J2 sign(pej . Let p[ = sign(pi)(|pj| - l ) . Then the Conway
j=\ i=t+l

polynomial of L(pi,p2, • • • ,pn) with the orientation O is

i = l

i = 1 j=i

4. GENERA O F TI-PRETZEL LINKS

We shall consider the genus of an n-pretzel link with at least one even crossing box.

Let FL be a Seifert surface of an n-pretzel link L. For the rest of the section, let X(^L)

be the Euler characteristic of TL, V be the number of Seifert circles, E be the number

of crossings and F be the number of the components of L.

4 . 1 . G E N E R A OF n-PRETZEL KNOTS WITH ONE EVEN pi. We divide into two cases:

(i) n is odd,

(ii) n is even.

For the first case: n is odd, we can see that the degree of V^(eiiOliO3i...,On) is
n n

2 + n<legree(VOi) = 2 + £ ( | o , | - l),
»=2 t=2

and the coefficient of this leading term is —la/2 from Theorem 3.1.

Suppose a is nonzero. Then the Seifert surface T obtained by applying Seifert's

algorithm to the diagram in Figure 5 is a minimal genus surface. The genus of the Seifert

surface TK is

K) = \ [2-X(FK)]=\(2-V

1 , _
= - degree VK(e,,oi,o2,...,on)-
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Suppose a = 0. This means that we have the same number of positive and negative
twists on odd twists. If we look at the Conway polynomial in equation 6, we drop exactly
one in degree with new leading coefficient 1. It is sufficient to show that the degree of
the following term is negative. Remark that VOj = V_Oi.

sign(oi)(Vk| - V|Oi|-2)
ViD.i

We hope to find a minimal surface of this genus. For the first case, the sign of
an n-pretzel is (±, ± , . . . , ± , even, ^f, =F, • • • , =F)- The rule is to use the move from the
outmost pair. Then the moves in Figure 6 will increase V by two but will not change
E,F(= 1); thus we get a surface with one less genus. If we represent the move by the
Conway notation for algebraic links [7], it is either (.. . , - a , . . . ,b, ...)=>(..., (—1)(—a

where the sign sum of the o '̂s between a, 6 has to be zero.

For the general case, if we only look at the signs of the odd twists from O\, we can
find a pair Oi,Oj such that we can apply the move we described above. The resulting
diagram satisfies the same hypothesis with strictly smaller twisted bands. Inductively we
get a well-defined sequence of moves which makes the desired diagram on which Seifert's
algorithm will produce a minimal genus surface. Figure 6 shows the effect on V, E. This
completes the case (i).

For the second case, n is even, we can see that the degree of Vtf(eiiOli()2 On) is

n n
1 + degree(Vei) + J |degree(VO i) = \ex\ + J^flojl - l ) ,

i=2 t=2

and the coefficient of the leading term is - sign(ei)(a -I- /3)/2 from Theorem 3.3.

Suppose a + /? is nonzero. Then the Seifert surface F obtained by applying Seifert's
algorithm to the diagram in Figure 5 is a minimal genus surface. The genus of the Seifert
surface FK is

I , _
= j degreeV*(eI>oi,°2,..,on)-

Suppose a + /3 = 0. This means that we have the same number of positive and

negative twists. As we did before we drop exactly one in the degree of the Conway
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Figure 6: How to modify a diagram in Figure 5 to find a minimal genus diagram of

l,P2,-- >Pn)-

polynomial in equation 7 with new leading coefficient 1. All arguments are the same if
we change the term in parentheses in the equation as follows.

We can find a minimal surface of this genus by the same method as shown in Figure 6
if we handle the even crossing box together. This gives us the following theorem.

THEOREM 4 . 1 . Let K(pi, o2, o 3 , . . . ,on) be an n-pretzel knot with one even pi.

Let a =
«=2

and 0 = sign(pi). Suppose \pi\, \oi\ ^ 2. Let

t = 2

Then the genus g{K) of K is

(I , ,

\ >

f 2) if n is odd and a / 0,

if n is even and a = 0,

11 + S) if n is even and a + /? / 0,

11 + 6) — 1 if n is even and a + /? = 0.

4.2. GENERA OF TI-PRETZEL LINKS. Intuitively, if we have more even pj's with opposite

directions, then we shall have a surface of smaller genus. So we want to choose an

orientation which forces all the even p^s to move in the opposite directions, but this may

not be possible for all cases.
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L JiUr _J

Figure 7: Boundary orientation of L(p\,p2, •. • ,pn) .

LEMMA 4 . 2 . Let L(pi,p2, • • • ,Pn) be an n-pretzel link and let s be the number
of even Pi's. Ifn — s is even, then there exists an orientation of L such that the link L
moves in opposite directions in all boxes of even pt. Ifn-s is odd and a given pt is even,
then there exists an orientation of L such that the link L moves in opposite directions in
all boxes of even p^s except the one corresponding to pt.

PROOF: If all pj between two even pt and pk are odd, the number of these p /s odd
(mod 2) will decide the boundary orientation as depicted in Figure 7.

If the number of odd crossing boxes is even, we can orient the link such that the link
moves oppositely in all boxes of even crossings. Otherwise there is just one box for which
the link moves in the same direction. So starting from pt will complete the proof. D

Let us denote the orientation we choose in Lemma 4.2 by O'. From Theorem 3.2, we
can do almost the same comparison by using equation (1). But we have to be careful to
use (1) for links. Since it was defined for oriented links, we can interpolate it as follows.

g(L) = min { min{genus of ?L,O is a Seifert surface

with the orientation O}}.

where the first O runs over all possible orientations of L. So (1) gives us an inequality

on the second minimum of the fixed orientation O and V(iiO)-

We divide into two cases:

(i) n — s is even,

(ii) n — s is odd.

For the first case, n — s even, we can see that the degree of V£,(pliP2i...iPn) is

s + Yldegree(VPmi) + 1 = s + J^flpmJ - l) + 1,
t = i

and the coefficient of this leading term is - a / 2 from Theorem 3.2.

Suppose a is nonzero. Then the Seifert surface F obtained by applying Seifert's
algorithm with the fixed orientation O' is a minimal genus surface of (L, O'). Let us find
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the genus of the Seifert surface T(L,O')-

2g{TL) = 2 - X(?L) = 2-(V-E + F)

= l '

= 2 - (n - a) J2(j ) ) \iZ K
4 t=l

n—s

= 2 53( )
For the rest of the cases the arguments are parallel to the argument for knots. Next,

we explain how pt will be chosen for the rest of the article.

REMARK 4.3. First, we look at the minimum of the absolute value of pei over all even
crossings. If the minimum is taken by the unique pei or by pei's of the same sign, we
choose it for pt. If there are more than two pei's with different signs and the same absolute
value, then we look at the value a, the sign sum of odd crossings. If it is neither 1 nor
— 1, then we pick the positive one for pt. If a = 1(—1), pick the negative(positive) one
for pt.

For the second case, n—s odd, we find pt as described the above. For the last two
cases, we shall drop the genus by 1. Denote the orientation we chose here by O\.

LEMMA 4 . 4 . For an arbitrary orientation O, degree^7{L,O) ^ degreeV^Oj)-

PROOF: If we count to, the number of even crossings in which the link moves in

the opposite directions with respect to O, we can see that to ^ tox- If we look at the

Conway polynomial in Theorem 3.3, we have that (i) we can ignore the second term,

(ii) increasing t by 1 will change the degree of the second term by — (|p»| — 2), and by

hypothesis, \pi\ ^ 2 . D

THEOREM 4 . 5 . Let Z / ( p i , o 2 ) . . . ,o,,es+i,... ,en) be an n-pretzel link with at
n—s

least one even pt. Let a = J3 sig^KPo,) sud /? = sign(pt). Suppose |OJ|, \ej\ ^ 2. Let pt

be the integer described in Remark 4.3. Let I be the number of even pi's. Let

t=2

Then t ie genus g(L) of L is

-6 + 1 if n - s is even and a ^ 0,

-6 if n — s is even and a — 0,

-(\pt\ + 6) if n - s is odd and a + /? ^ 0,

. -(\pt\ + 6) — 1 if n - s is odd and a + @ = 0.
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PROOF: It follows from Theorem 3.2, 3.3 and Lemma 4.4. D

5. T H E BASKET NUMBERS OF PRETZEL LINKS

First let us recall a definition of the basket number. Let An C S3 denote an n-twisted
unknotted annulus. A Seifert surface T is a basket surface if T = £>2 or if 7 — To *a An

which can be constructed by plumbing An to a basket surface TQ along a proper arc
a C D2 C TQ. A basket number of a link L, denoted by bk(L), is the minimal number
of annuli used to obtain a basket surface !F such that dT = L. For standard definitions
and notations, we refer to [31]. Throughout the section, we shall assume all links are
not splitable, that is, Seifert surfaces are connected. Otherwise, we can handle each
connected component separately.

For the basket number and the genus of a link, there is a useful theorem.

THEOREM 5 . 1 . ([3]) Let L be a link of I components. Then the basket number

of L is bounded by the genus and the canonical genus of L as,

2g(L) + I - 1 ^ bk{L) ^ 2gc(L) + 1-1.

Since we have found that a minimal genus surface of a pretzel link L of genus g(L)

can be obtained by applying Seifert algorithm on a diagram of L, that is, g(L) = gc(L), we
find that the basket number of a pretzel link L is 2g(L)+l-l, that is, bk(L) = 2g(L)+l — l.

THEOREM 5 . 2 . Let K[p\, o2, o%,... , on) be an n-pretzel knot with one even p\.
n

Let a — ̂  sign(oj) and /? = sign(pi). Suppose |pi|, |o,-| ^ 2. Let
t=2

t=2

Tien the basket number bk(K) ofK,

bk(K) =

6 + 2 if n is odd and a ^ 0,

8 if n is even and a = 0,

|pi | + 6 if n is even and a + 0 ^ 0,

|pi | + 6 — 2 if n is even and a + ft — 0.

THEOREM 5 . 3 . Let L(pi,O2,... ,o,,e,+\,... ,en) be an n-pretzel link with at
n—s

least one even pt. Let a = £ sign(pOj) and 0 = sign(pt). Suppose |OJ|, |e,| ^ 2. Let pt
i=2

be the integer described in Remark 4.3. Let I be the number of even pi's. Let

i=2
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Then the basket number bk(L) ofL,

bk(L) =

6 + 1 + 1 if n — s is even and a ^ 0,

S + I — 1 if n — s is even and a = 0,

\pt\ + 6 + l - l if n-s is odd and a + 0 ^ 0,

|pf| + <5 -H - 3 if n - s is odd and a + /? = 0.
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