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Abstract

An R-module M is called coretractable if HomR(M/K , M) 6= 0 for any proper submodule K of M . In
this paper we study coretractable modules and their endomorphism rings. It turns out that if all right
R-modules are coretractable, then R is a right Kasch and (two-sided) perfect ring. However, the converse
holds for commutative rings. Also, for a semi-injective coretractable module MR with S = EndR(M), we
show that u.dim(S S)= corank(MR).
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1. Introduction

Throughout this paper, all rings are associative with identity and all modules are
unitary right modules unless stated otherwise. Homomorphisms between modules
are written and composed on the opposite side of scalars. Semisimple rings are in the
sense of Wedderburn and Artin: these are rings which are semisimple as right (or left)
modules over themselves. By a regular ring, we mean a ring R such that x ∈ x Rx
for any x ∈ R (that is, a von Neumann regular ring). For a module MR we write
Soc(MR), Rad(MR) and E(MR) for the socle, the Jacobson radical and the injective
hull of MR , respectively. Also J(R) will be used for the Jacobson radical of a ring
R. The notation K ≤ M , K � M and K � M will denote that K is a submodule, a
superfluous submodule and an essential submodule of M , respectively.

Let S be a ring and let S M be a left S-module. Then for any X ⊆ M and Y ⊆ S, the
left annihilator of X in S and the right annihilator of Y in M are

lS(X)= {s ∈ S | sx = 0 for all x ∈ X}
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and
rM (Y )= {m ∈ M | ym = 0 for all y ∈ Y },

respectively. Also for a right R-module NR, rR(Z) and lN (W ) are defined similarly
for any Z ⊆ N and W ⊆ R.

Following Khuri [5], an R-module M is said to be retractable if HomR(M, N ) 6= 0
for any nonzero submodule N of M . Retractable modules have been investigated by
some authors (see, for example, [4–6, 9, 13, 14]). Dually an R-module M is called
coretractable if HomR(M/K , M) 6= 0 for any proper submodule K of M . In Section 2
we study some properties of coretractable modules. We show that coretractability
is preserved under finite direct sums. Also we observe that a ring R is right Kasch
if and only if RR is coretractable, but for modules, coretractability and being Kasch
are not equivalent conditions. In Section 3, we call a ring R right CC (completely
coretractable) if all right R-modules are coretractable. It is proved that right CC rings
are two-sided perfect. However, an Artinian ring need not be right CC. Also we find
conditions under which free modules are coretractable. Section 4 is concerned with
the endomorphism rings of coretractable modules. For a coretractable module MR
with S = EndR(M) we show that S is a regular ring if and only if MR is semisimple.
Moreover, if MR is semi-injective, then u.dim(S S)= corank(MR).

2. Coretractable modules

It is natural to consider the dual notion of retractable modules. In this section we
define the concept of coretractability for modules.

DEFINITION 2.1. An R-module M is called coretractable if, for any proper
submodule K of M , there exists a nonzero homomorphism f : M −→ M with
f (K )= 0, that is, HomR(M/K , M) 6= 0.

One can easily see that an R-module M is coretractable if and only if
HomR(M/K , M) 6= 0 for any proper essential submodule K of M . (For if L is a
submodule of M , then there exists L ′ ≤ M such that L ⊕ L ′ � M .)

EXAMPLE 2.2. (a) Clearly semisimple modules and cogenerators (in the category
Mod-R) are coretractable.

(b) The Prüfer p-group Zp∞ is a coretractable Z-module (since, for any proper
submodule K of Zp∞ , Zp∞/K ∼= Zp∞).

(c) Since HomZ(Q/Z,Q)= 0, the Z-module Q is not coretractable.
(d) Let n > 1 be a positive integer. It is easy to check that the Z-module Zn = Z/nZ

is coretractable.

We now obtain some properties of coretractable modules.

PROPOSITION 2.3. Let M be a coretractable R-module.

(a) If Rad(M) 6= M, then Soc(M) 6= 0.
(b) If M is nonsingular, then it is semisimple.
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PROOF. (a) Let K be a maximal submodule of M . Since HomR(M/K , M) 6= 0 and
M/K is a simple R-module, Soc(M) 6= 0.

(b) Suppose on the contrary that M is not semisimple. So M has a proper essential
submodule K . Since M/K is singular and M is nonsingular, HomR(M/K , M)= 0,
which is a contradiction. 2

Since over a right nonsingular ring any projective right module is nonsingular, the
following result is an immediate consequence of Proposition 2.3.

COROLLARY 2.4. Let R be a right nonsingular ring. Then a projective R-module is
coretractable if and only if it is semisimple.

Let R be a ring and let C be a cogenerator. Then for any module M , C ⊕ M is
a cogenerator and so is a coretractable module. But M need not be coretractable.
Therefore, being coretractable is not preserved by taking submodules, factor modules
and direct summands. However, there are some special cases, as follows.

PROPOSITION 2.5. Let M = K ⊕ L be a coretractable module. If K is a fully
invariant submodule of M or K cogenerates M, then K is also coretractable. In
particular, if

⊕
I K or

∏
I K is coretractable for some index set I , then so is K .

PROOF. Let U be a proper submodule of K . There exists 0 6= f ∈ EndR(M) with
f (U ⊕ L)= 0. If K is a fully invariant submodule of M , then

0 6= f |K ∈ EndR(K ) and ( f |K )(U )= 0.

Now suppose that K cogenerates M . So there exists g ∈ HomR(M, K ) with
g f 6= 0. Thus 0 6= g f |K ∈ EndR(K ) and (g f |K )(U )= 0. So in both cases K is
coretractable. 2

PROPOSITION 2.6. If M1, M2, . . . , Mn are coretractable R-modules, then so is
M =

⊕n
i=1 Mi .

PROOF. Let K be a proper submodule of M . There exists a least integer j with
K + (M1 ⊕ · · · ⊕ M j )= M . Let

L = K + (M1 ⊕ · · · ⊕ M j−1) if j > 1 and L = K if j = 1.

So L 6= M and L ∩ M j 6= M j . There exists a nonzero homomorphism

f : M j/(L ∩ M j )−→ M j .

Since K ⊆ L , there exists a natural epimorphism

h : M/K −→ M/L .

Hence the composition of the following homomorphisms is nonzero:

M

K
h
−→

M

L
=

M j + L

L
∼=

M j

L ∩ M j

f
−→ M j ↪→ M.

Therefore, M is coretractable. 2
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In general an infinite direct sum of coretractable modules is not necessarily
coretractable (see Proposition 3.2 and Example 3.3). However, under certain
conditions, Proposition 2.6 holds for an infinite direct sum.

Recall that a ring R is said to be right max if every nonzero right R-module has a
maximal submodule.

PROPOSITION 2.7. Let R be a right max ring and {Mα | α ∈ I } be a family of
coretractable R-modules. Then M =

⊕
α∈I Mα is also coretractable.

PROOF. Let K be a proper submodule of M . There exists a maximal submodule L of
M with K ⊆ L . Thus for some β ∈ I , Mβ 6⊆ L . Now, as in the proof of Proposition 2.6,
we have the desired nonzero homomorphism M/K −→ M . 2

Let U and M be R-modules. U is said to be M-injective if for any monomorphism
f : K −→ M and any homomorphism g : K −→U there exists a homomorphism
h : M −→U such that h f = g. If M is M-injective, M is called quasi-injective.

PROPOSITION 2.8. Let {Mα | α ∈ I } be a family of coretractable R-modules. If for
any α, β ∈ I , Mβ is Mα-injective, then M =

⊕
α∈I Mα is coretractable. In particular,

if M is a quasi-injective coretractable R-module, then
⊕

J M is coretractable for any
index set J .

PROOF. Let K be a proper submodule of M . Then there exists β ∈ I such that
Mβ 6⊆ K . Therefore, there exists a nonzero homomorphism

g : Mβ/(K ∩ Mβ)−→ Mβ .

Also the natural map
f : Mβ/(K ∩ Mβ)−→ M/K

is a monomorphism. Since Mβ is Mα-injective (for any α ∈ I ), Mβ is (M/K )-injective
by Anderson and Fuller [2, Proposition 16.13]. So there exists h : M/K −→ Mβ such
that h f = g. Hence 0 6= ih ∈ HomR(M/K , M), where i : Mβ −→ M is the natural
inclusion. 2

The following example shows that an infinite direct product of coretractable
modules need not be coretractable.

EXAMPLE 2.9. Let P be the set of all prime numbers and M =
∏

p∈P Zp. Then M
is not a coretractable Z-module. In fact, let

K =
⊕
p∈P

Zp and f ∈ HomZ(M/K , Zp)

for some p ∈ P . Then

M/K = (pM + K )/K = p(M/K )⊆ ker( f )
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and so f = 0. Hence

HomZ(M/K , M)∼=
∏
p∈P

HomZ(M/K , Zp)= 0,

as desired.

Let M be an R-module. A submodule K is said to be dense in M if, for any y ∈ M
and 0 6= x ∈ M , there exists r ∈ R such that xr 6= 0 and yr ∈ K . Obviously, any dense
submodule of M is essential. The following result is in Lam [8, Proposition 8.6].

LEMMA 2.10. Let M be an R-module and K ≤ M. Then the following statements are
equivalent:

(a) K is a dense submodule of M;
(b) HomR(M/K , E(M))= 0;
(c) HomR(P/K , M)= 0 for any submodule P with K ⊆ P ⊆ M.

COROLLARY 2.11. Let M be a coretractable R-module. Then M has no proper dense
submodules.

The following example shows that the converse of Corollary 2.11 is not true.

EXAMPLE 2.12. Let M be as in Example 2.9. Then M is not a coretractable
Z-module. However, we show that M has no proper dense submodules. Let K � M
and y ∈ M\K . There exists an n > 1 such that

{r ∈ Z | yr ∈ K } = nZ.

There also exists 0 6= x ∈ M such that xn = 0. Thus for any r ∈ Z with yr ∈ K , xr = 0
and hence K is not dense in M , as required.

The following result gives a necessary and sufficient condition for a quasi-injective
or finitely generated module to be coretractable.

THEOREM 2.13. Let M be an R-module which satisfies one of the following
conditions:

(a) M is quasi-injective;
(b) every proper submodule of M is contained in a maximal submodule.

Then M is coretractable if and only if it has no proper dense submodules.

PROOF. The necessity is clear by Corollary 2.11.
(a) Let K be a proper submodule of M . Since K is not dense in M , by Lemma 2.10,

HomR(P/K , M) 6= 0 for some submodule K ⊆ P ⊆ M . So there is a nonzero
homomorphism g : P −→ M with g(K )= 0. We can extend g to h : M −→ M by
hypothesis and hence HomR(M/K , M) 6= 0.

(b) Let K be a proper submodule of M . There is a maximal submodule L of M
with K ⊆ L . Since L is a maximal submodule of M which is not dense in M , again
by Lemma 2.10, HomR(M/L , M) 6= 0 and hence HomR(M/K , M) 6= 0. 2
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A ring R is said to be right Kasch if every simple right R-module can be embedded
into RR (see, for example, Lam [8, p. 280]).

THEOREM 2.14. For a ring R, the following statements are equivalent:

(a) R is a right Kasch ring;
(b) RR is a coretractable module;
(c) every finitely generated free right R-module is coretractable;
(d) for any right ideal I of R, lR(I ) 6= 0;
(e) RR has no proper dense submodules.

PROOF. By Proposition 2.6, statements (b) and (c) are equivalent, and by
Theorem 2.14, (b) and (e) are equivalent. The equivalence of (b) and (d) follows
from the fact that any endomorphism of RR is given by left multiplication by some
element of R. Finally, since every proper right ideal of R is contained in a maximal
right ideal, one can easily see that (a) and (b) are equivalent. 2

Example 2.15 shows that being coretractable is not preserved by extensions.

EXAMPLE 2.15. Let K be a field and let R be the ring of 2× 2 upper triangular
matrices over K . Then J =

(
0 K
0 0

)
is the Jacobson radical of R. Since J and R/J

are semisimple, they are both coretractable but R is not so (for I =
(

0 K
0 K

)
we have

lR(I )= 0 and now apply Theorem 2.14).

REMARK 2.16. Let M be a nonzero R-module. An R-module N is subgenerated by
M if N is isomorphic to a submodule of an M-generated module. The full subcategory
of Mod-R consisting of all R-modules that are subgenerated by M is denoted by σ [M]
(see Wisbauer [12, p. 118]). Following Albu and Wisbauer [1], an R-module M is
called a Kasch module if it contains a copy of every simple module in σ [M]. So a
ring R is a right Kasch ring if and only if RR is a Kasch module. Consequently, by
Theorem 2.14, RR is coretractable if and only if it is a Kasch module. In the following
example we show that for an R-module M these are two different concepts.

EXAMPLE 2.17. (a) Let R = Z and let M be as in Example 2.9. Since all
simple R-modules can be embedded into M , M is a Kasch module which is not
coretractable. However, a Kasch module which is finitely generated or quasi-injective
is coretractable.

(b) Let K be a field and let R be the ring of all matrices of the form

r =

a x y
0 b z
0 0 a

 where a, b, x, y, z ∈ K .

Let
M = {r ∈ R | b = z = 0}.

Then M is a right R-module with exactly two proper nonzero submodules A and B,
where

A = {r ∈ R | a = b = z = 0}
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and
B = {r ∈ R | a = b = x = z = 0}.

Also M/A ∼= B = Soc(MR) and hence MR is coretractable. Since A/B ∈ σ [M] is a
simple R-module and A/B 6∼= B, we deduce that M is not a Kasch module, as required.

3. Classes of coretractable modules

The aim of this section is to find conditions under which some classes of modules
are coretractable.

PROPOSITION 3.1. For a ring R, the following statements are equivalent:

(a) all free R-modules are coretractable:
(b) HomR(M, R) 6= 0 for every nonzero R-module M;
(c) HomR(M, R) 6= 0 for every nonzero singular R-module M.

PROOF. To show that (a) implies (b), let M be a nonzero R-module. There is
a free R-module F and K ≤ F such that M ∼= F/K . Since F is coretractable,
HomR(F/K , F) 6= 0 and so HomR(M, R)∼= HomR(F/K , R) 6= 0.

Clearly (b) implies (c).
Finally, to prove that (c) implies (a), let F be a free R-module and K be a

proper essential submodule of F . Since F/K is a (nonzero) singular R-module,
HomR(F/K , R) 6= 0 and so HomR(F/K , F) 6= 0. Therefore, F is coretractable. 2

Note that by Proposition 2.7, over a right max ring all free R-modules are
coretractable if R is a right Kasch ring. But by the next result we see that the condition
‘R is a right max ring’ cannot be omitted from the assertion.

PROPOSITION 3.2. Let R be a right Kasch ring which is not right max. If every
right ideal of R has a maximal submodule, then there is a free R-module which is not
coretractable.

PROOF. There is an R-module M with no maximal submodules. Since every right
ideal of R has a maximal submodule, HomR(M, R)= 0. Let M ∼= F/K , where
F is a free R-module and K ≤ F . Then HomR(F/K , F)= 0 and so F is not
coretractable. 2

The following example guarantees the existence of a ring with the required
conditions of Proposition 3.2. Recall that a subset X of a ring R is said to be right
(left) T -nilpotent in case for every sequence a1, a2, . . . in X , there is an integer n ≥ 1
such that anan−1 · · · a1 = 0 (a1a2 · · · an = 0). It is well known that for a right max
ring R, J(R) is right T -nilpotent.

EXAMPLE 3.3. Let R be the ring of all N× N lower triangular matrices over a field
K which are constant on the diagonal and have only finitely many nonzero entries off
the diagonal. Then R is a local ring and J = J(R) is the set of all matrices with zero
diagonal. It is easy to check that J is not right T -nilpotent and so R is not a right
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max ring. Let 0 6= x ∈ R have nonzero entries only in the first column. Then x J = 0
(and thus x R ∼= R/J ) which implies that R is a right Kasch ring. It is not difficult to
see that

⋂
∞

n=1 J n
= 0. So for any nonzero proper right ideal I of R there exists n ≥ 1

such that I ⊆ J n and I 6⊆ J n+1. Since

I/(I ∩ J n+1)∼= (I + J n+1)/J n+1
≤ J n/J n+1,

I/(I ∩ J n+1) is an (R/J )-module and so has a maximal submodule. Therefore, I has
a maximal submodule, as desired.

We now consider rings over which every module is coretractable. But for
convenience we give the following definition.

DEFINITION 3.4. Let R be a ring. We call R right completely coretractable (right
CC) if every right R-module is coretractable. Left completely coretractable (left CC)
rings are defined similarly. A ring is said to be completely coretractable (CC) if it is
both left and right CC.

Recall that a ring R is right semi-Artinian if every right R-module has a minimal
submodule (equivalently, if every cyclic right R-module has a minimal submodule;
see Stenstrom [10, Proposition VIII.2.5]).

PROPOSITION 3.5. Let R be a right semi-Artinian right max ring. If R has a unique
simple right R-module (up to isomorphism), then R is a right CC ring.

PROOF. Let M be a nonzero R-module and K be a proper submodule of M . There is a
maximal submodule L of M with K ⊆ L . Since R is right semi-Artinian with a unique
simple (right) R-module, M/L can be embedded into M and so HomR(M/K , M) 6= 0.
Therefore, M is coretractable. 2

Note that a semisimple ring is (right) CC although it does not have necessarily a
unique simple module.

PROPOSITION 3.6. Let R be a right max ring. If every cyclic R-module is
coretractable, then R is a right CC ring.

PROOF. Let K be a proper submodule of an R-module M . There is a maximal
submodule L of M containing K . Let x ∈ M\L; then M/L ∼= x R/(L ∩ x R). Thus
HomR(M/L , x R) 6= 0 which implies that HomR(M/K , M) 6= 0. Therefore, M is
coretractable. 2

Let R be the ring of Example 3.3. Since R is a local left perfect ring, it is right semi-
Artinian with a unique simple R-module. Then as in the proof of Proposition 3.5,
we can show that all finitely generated R-modules are coretractable. However, by
Proposition 3.2, R is not a right CC ring.

We now investigate some properties of (right) CC rings. But first we need a lemma.

LEMMA 3.7. Let R be a right Kasch ring. If J(R)= 0, then R is semisimple.
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PROOF. Let T = Soc(RR). If T 6= R, then since R is a right Kasch ring, by
Theorem 2.14, I = lR(T ) 6= 0. Thus (T I )2 = 0. As J(R)= 0, we have T I = 0.
Since R is right Kasch, T contains a copy of every simple right R-module and
so I annihilates all simple right R-modules. Therefore, I ⊆ J(R)= 0 which is a
contradiction. Thus T = R and hence R is semisimple. 2

PROPOSITION 3.8. Let R be a ring. If all cyclic right R-modules are coretractable,
then R is a left perfect ring.

PROOF. Let J = J(R). Since R/J is coretractable as an R-module (and hence as an
(R/J )-module), it is a right Kasch ring. So by Lemma 3.7, R/J is a semisimple
ring. Now let M be a nonzero cyclic right R-module. Since Rad(M) 6= M , by
Proposition 2.3, Soc(M) 6= 0 and hence R is right semi-Artinian. Therefore, J is left
T -nilpotent (see, for example, Stenstrom [10, Corollary VIII.2.7]) and so R is a left
perfect ring. 2

Let R be a ring and I be a nonzero two-sided ideal of R. Set I 0
= R and

for any ordinal α > 0 we define I α = I β I if α = β + 1 for some ordinal β and
I α =

⋂
0≤β<α I β if α is a limit ordinal. So {I α | α is an ordinal} is a descending

chain of ideals of R. There is an ordinal λ such that I λ = I γ for any ordinal γ ≥ λ.
Now let κ(I )= I λ.

LEMMA 3.9. Let R be a right CC ring and let J = J(R). If κ(J )= 0, then R is a
right max ring.

PROOF. By Proposition 3.1, HomR(M, R) 6= 0 for any nonzero right R-module M .
So to prove that R is a right max ring, it suffices to show that any nonzero right
ideal of R has a maximal submodule. Let I be a right ideal of R which has no
maximal submodules. By Proposition 3.8, R/J is semisimple and so Corollary 15.18
of Anderson and Fuller [2] implies that I = Rad(I )= I J ⊆ J . It is easy to show that
I ⊆ κ(J ) and hence I = 0, as required. 2

THEOREM 3.10. Let R be a right CC ring and let J = J(R). Then κ(J )= 0 and so
R is a (two-sided) perfect ring.

PROOF. Suppose on the contrary that L = κ(J ) 6= 0. By Proposition 3.8, J is left
T -nilpotent and so L2

⊆ J L $ L (see Anderson and Fuller [2, Lemma 28.3]). Let
T = R/L . Then by Lemma 3.13, T is a right CC ring with the Jacobson radical
J(T )= J/L . Since κ(J(T ))= 0, by Lemma 3.9, T is a right max ring. Now L/L2

is a nonzero right T -module and hence has a maximal submodule. As a consequence
L R also has a maximal submodule and so L J = Rad(L R) 6= L . This is a contradiction
because κ(I )I = κ(I ) for any ideal I of R. Therefore, κ(J )= 0 and by Lemma 3.9,
R is a right max ring. Thus J is right T -nilpotent. Since R is a left perfect ring, it is
also right perfect. 2
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COROLLARY 3.11. Let R be a right CC ring. Then a right (left) R-module is
Noetherian if and only if it is Artinian.

PROOF. Since R is a (two-sided) perfect ring, it is a (two-sided) semi-Artinian max
ring. However, over a semi-Artinian max ring a module is Noetherian if and only if it
is Artinian (see Stenstrom [10, Proposition VIII.2.1]). 2

COROLLARY 3.12. Let R be a right semi-Artinian max ring with a unique simple
right R-module. Then R is a (two-sided) perfect ring. R is also a left CC ring.

PROOF. By Proposition 3.5, R is a right CC ring and so it is (two-sided) perfect. Let
J = J(R). Since R has a unique simple right R-module, R/J is a simple Artinian ring
and hence R has also a unique simple left R-module. As R is a left semi-Artinian max
ring, again by Proposition 3.5, R is a left CC ring. 2

The converse of Theorem 3.10 holds for commutative rings. First we need a lemma.

LEMMA 3.13. Let R and S be rings and let I be an ideal of R.

(a) If R is a right CC ring, then so is R/I .
(b) We have R × S is right CC if and only if R and S are both right CC.

PROOF. (a) Follows from the fact that every (R/I )-module is obviously an R-module.
(b) The necessity is clear by part (a). For the sufficiency note that every (R × S)-

module is a direct sum of an R-module and an S-module. 2

THEOREM 3.14. Let R be a commutative ring. Then the following statements are
equivalent:

(a) R is a CC ring;
(b) every cyclic R-module is coretractable;
(c) R is a perfect ring.

PROOF. Clearly (a) implies (b) and, by Proposition 3.8, (b) implies (c). Now suppose
that (c) holds. By Lam [7, Theorem 23.24], R = R1 × · · · × Rn where each Ri is
a local perfect ring (1≤ i ≤ n). Since a commutative local perfect ring is a semi-
Artinian max ring with a unique simple module, by Proposition 3.5, each Ri is a CC
ring. Now Lemma 3.13 implies that R is a CC ring and therefore (a) is satisfied. 2

Note that Theorem 3.14 is not valid for noncommutative rings, as is illustrated in
the following example.

EXAMPLE 3.15. Let K be a division ring and let R be the ring of all 4× 4 matrices
of the form 

a x 0 0
0 b 0 0
0 0 b y
0 0 0 a
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where a, b, x, y ∈ K . Then R is a quasi-Frobenius (and hence two-sided perfect and
Kasch) ring and J = J(R) consists of all matrices in R with zero diagonal. Let

e =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ∈ R.

Then Soc(eR)= eJ is a simple R-module. Also eR/eJ is a simple R-module
which is not isomorphic to eJ . Therefore, HomR(eR/eJ, eR)= 0 and so eR is
not coretractable. In particular, R is not a right CC ring. For the details see Lam
[8, Example 16.19(4)].

Note that in Example 3.15 since R is a Kasch and max ring, all free R-modules are
coretractable. But the projective module eR is not coretractable.

4. Endomorphism ring of coretractable modules

Throughout this section, MR is a right R-module and S = EndR(M) is the ring of
R-endomorphisms of M . Hence S MR is a bimodule.

We begin with some characterizations of coretractable modules in terms of their
endomorphism rings.

LEMMA 4.1. For a right R-module M, the following statements are equivalent:

(a) MR is coretractable;
(b) for any proper submodule K of MR , rM (lS(K ))/K � M/K ;
(c) for any submodule K of MR , if rM (lS(K )) is a summand of MR , then

K = rM (lS(K )).

PROOF. To prove that (a) implies (b), let K be a proper submodule of MR and
L = rM (lS(K )). Suppose that

(L/K )+ (U/K )= M/K .

If U 6= M , then by hypothesis, there exists 0 6= f ∈ S with f (U )= 0. Since K ⊆U ,
f ∈ lS(K ) and so f (L)= 0. Hence f (M)= f (L +U )= 0, which is a contradiction.
Therefore, L/K � M/K .

We now show that (b) implies (c). Let K be a proper submodule of MR and let
L = rM (lS(K )) be a summand of MR . So M = L ⊕U for some U ≤ MR . Thus

(L/K )+ ((U + K )/K )= M/K .

Since L/K � M/K , U + K = M which implies that K = L , as desired.
Finally, to check that (c) implies (a), let K ≤ MR and HomR(M/K , M)= 0. Then

lS(K )= 0 and so rM (lS(K ))= M is a summand of M . Therefore, K = M and hence
MR is coretractable. 2
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Recall that an R-module MR is co-semisimple if for any K ≤ MR , Rad(M/K )= 0
(see Wisbauer [12, p. 190]).

COROLLARY 4.2. Let MR be a coretractable module. Then:

(a) for any K � MR , we have rM (lS(K ))� MR;
(b) if K = Rad(MR) or K is a maximal submodule of MR , then rM (ls(K ))= K

(that is, M cogenerates M/K );
(c) if MR is co-semisimple, then rM (lS(K ))= K for any K ≤ MR .

PROOF. (a) This follows from the fact that for K ≤ L ≤ M if K � M and L/K �
M/K , then L � M .

(b) and (c) In both cases, since Rad(M/K )= 0, M/K has no nonzero superfluous
submodules. 2

The following result shows that when the endomorphism ring of a coretractable
module is coretractable.

PROPOSITION 4.3. Let MR be coretractable. Then SS is coretractable if and only if
I M 6= M for any proper right ideal I of S.

PROOF. In general, if SS is coretractable, then by Theorem 2.14, for any proper right
ideal I of S, there exists 0 6= f ∈ S with f I = 0. Thus f (I M)= 0, which implies
that I M 6= M . Conversely, let I be a proper right ideal of S. Since I M 6= M , there
exists 0 6= f ∈ S with f (I M)= 0. Therefore, f I = 0 and, again by Theorem 2.14, SS
is coretractable. 2

Note that the endomorphism ring of a coretractable module need not be
coretractable. For example, let R = Z and M = Zp∞ . Then S = EndR(M) is a domain
which is not a coretractable S-module by Theorem 2.14.

We know that the endomorphism ring of a semisimple module is a regular ring. For
coretractable modules the converse does also hold.

PROPOSITION 4.4. Let MR be coretractable. If S is a regular ring, then MR is
semisimple.

PROOF. Suppose on the contrary that MR is not semisimple. So MR has a proper
essential submodule K . Then f (K )= 0 for some 0 6= f ∈ S. There exists g ∈ S such
that f = f g f . Since (g f )2 = g f and ker( f )= ker(g f ), ker( f ) is a summand of MR
which contains the essential submodule K , and this is a contradiction. 2

Following Wisbauer [12, p. 261], an R-module MR is called semi-injective if for
any f ∈ S,

S f = lS(ker( f ))= lS(rM ( f ))

(equivalently, for any monomorphism f : N −→ M , where N is a factor module
of MR , and for any homomorphism g : N −→ M , there exists h : M −→ M such
that h f = g). Clearly every quasi-injective module is semi-injective. Also for a
ring R, RR is semi-injective if and only if it is right principally injective. In the
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following proposition, we establish relations between submodules of a coretractable
module and its endomorphism ring.

PROPOSITION 4.5. Let MR be a coretractable module and let K ≤ MR and I ≤ S S.

(a) If lS(K )� S S, then K � MR .
(b) If I � S S, then rM (I )� MR .

Moreover, suppose that MR is semi-injective.

(c) If K � MR , then lS(K )� S S.
(d) If K is a maximal submodule of MR , then lS(K ) is a minimal left ideal of S.
(e) If I is a minimal left ideal of S, then rM (I ) is a maximal submodule of MR .

PROOF. (a) Let L be a proper submodule of MR . There exists 0 6= f ∈ S with
f (L)= 0. Since lS(K )� S S, there exists g ∈ S such that 0 6= g f ∈ lS(K ). Therefore,
g f (K + L)= 0 and hence K + L 6= M . Consequently, K � MR .

(b) This follows from part (a) and the fact that I ⊆ lS(rM (I )).
(c) Suppose that S f ∩ lS(K )= 0 for some f ∈ S. Since MR is semi-injective,

0= S f ∩ lS(K )= lS(ker( f )) ∩ lS(K )= lS(ker( f )+ K ).

But MR is coretractable and so ker( f )+ K = M . Therefore, ker( f )= M which
implies that f = 0. Hence lS(K )� S S.

(d) As M is coretractable, lS(K ) 6= 0. Let 0 6= f ∈ lS(K ). Since f (K )= 0 and K
is a maximal submodule of MR , ker( f )= K . Thus lS(K )= lS(ker( f ))= S f .

(e) Suppose that rM (I )⊆ K for a proper submodule K of MR . So

0 6= lS(K )⊆ lS(rM (I )).

Since MR is semi-injective and I is a cyclic left ideal of S, I = lS(rM (I )).
Thus lS(K )= I and so K ⊆ rM (lS(K ))= rM (I ). Therefore, rM (I ) is a maximal
submodule of MR . 2

A nonzero module is said to be uniform if each nonzero submodule is essential. It
is said to be hollow (co-uniform) if each proper submodule is superfluous.

COROLLARY 4.6. Let MR be a nonzero coretractable module. If S S is uniform, then
MR is hollow. The converse holds when MR is semi-injective.

PROOF. Suppose that S S is uniform. Let K be a proper submodule of MR . Since
lS(K ) 6= 0, it is an essential left ideal of S. Now Proposition 4.5(a) implies that
K � MR . Therefore, MR is hollow.

Now suppose that MR is semi-injective and hollow. Let 0 6= f ∈ S. Since S f =
lS(rM ( f )) and rM ( f )� MR , by Proposition 4.5(c), S f � S S. Consequently, S S is
uniform. 2

Let R be the ring of Example 3.3. Since R is a local right Kasch ring, RR is
coretractable and hollow. But R = EndR(R) is not a left uniform R-module. Thus, the
semi-injectivity condition is needed in the last statement of Corollary 4.6.

https://doi.org/10.1017/S1446788708000360 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000360


302 B. Amini, M. Ershad and H. Sharif [14]

COROLLARY 4.7. Let MR be a semi-injective coretractable module. Then
Rad(MR)= rM (Soc(S S)). In particular, Rad(MR)= M if and only if Soc(S S)= 0.

PROOF. We have

lS(Rad(MR))= lS

( ∑
K�MR

K

)
=

⋂
K�MR

lS(K ).

By Proposition 4.5(c), lS(K )� S S for any K � MR . Thus Soc(S S)⊆ lS(Rad(MR)),
equivalently, Rad(MR)⊆ rM (Soc(S S)). Now suppose that x ∈ M\Rad(MR). There
is a maximal submodule K of MR with x 6∈ K . Let 0 6= f ∈ lS(K ). By
Proposition 4.5(d), lS(K ) is a minimal left ideal of S and so f ∈ Soc(S S). Since
f (x) 6= 0, x 6∈ rM (Soc(S S)). Therefore, Rad(MR)= rM (Soc(S S)). Now the last
assertion follows from this equality. 2

As a consequence of Corollary 4.7, we see that for a semi-injective coretractable
module MR , if Soc(S S) is a summand of S S, then Rad(MR) is a summand of MR .

COROLLARY 4.8. Let M be a coretractable R-module. Then

Z(S S)⊆ { f ∈ S | f (M)� MR}.

The equality holds when MR is semi-injective.

PROOF. Let f ∈ Z(S S). There is an essential left ideal I of S such that I f = 0. Thus
f (M)⊆ rM (I ) and by Proposition 4.5(b), rM (I )� MR . Therefore, f (M)� MR .
Now suppose that MR is semi-injective and f ∈ S with f (M)� MR . Then again by
Proposition 4.5(c),

lS( f )= lS( f (M))� S S.

Therefore, f ∈ Z(S S). 2

Observe that by Corollary 4.8, a coretractable module with zero Jacobson radical
has a left nonsingular endomorphism ring.

Let M be a nonzero R-module. The uniform dimension (or Goldie dimension) of
M is defined as

u.dim(MR)= sup{k | M contains a direct sum of k nonzero submodules}.

There are various dual notions for the uniform dimension (see, for example, [3, 11]).
Varadarajan [11] defined the corank of a nonzero module M as

corank(M)= sup
{

k | there is an epimorphism M −→
k∏

i=1

Ni with all Ni 6= 0
}
.

We now investigate the relation between corank(MR) and u.dim(S S) for a
coretractable module MR . But first we need a lemma.
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LEMMA 4.9. Let MR be a nonzero R-module and K , L ≤ MR with K + L = M.
Then lS(K ∩ L)= lS(K )+ lS(L).

PROOF. Clearly lS(K )+ lS(L)⊆ lS(K ∩ L). Now let f ∈ lS(K ∩ L). Define g, h ∈
S as follows. For any m ∈ M , let g(m)= f (x) and h(m)= f (y) if m = x + y,
where x ∈ K and y ∈ L . Since f (K ∩ L)= 0, g and h are well defined. Obviously,
f = g + h and g ∈ lS(L) and h ∈ lS(K ), as desired. 2

PROPOSITION 4.10. Let MR be a nonzero coretractable module. Then u.dim(S S)≥
corank(MR).

PROOF. Suppose that f : M −→ N1 × · · · × Nn is an epimorphism, where each
Ni 6= 0 (1≤ i ≤ n). Let πi : N1 × · · · × Nn −→ Ni be the natural projection and let
Ki = ker(πi f ) for all 1≤ i ≤ n. For each 1≤ i ≤ n, put L i =

⋂
j 6=i K j . Since f is an

epimorphism, Ki + L i = M (1≤ i ≤ n). If Ii = lS(Ki ), then by induction and using
Lemma 4.9, it is easy to check that lS(L i )=

∑
j 6=i lS(K j )=

∑
j 6=i I j . Since MR is

coretractable, Ii 6= 0 for each i and

0= lS(M)= lS(Ki + L i )= lS(Ki ) ∩ lS(L i )= Ii ∩
∑
j 6=i

I j .

Therefore, {I1, . . . , In} is an independent set of nonzero left ideals of S. Thus
u.dim(S S)≥ n and hence, by definition, u.dim(S S)≥ corank(MR). 2

PROPOSITION 4.11. Let MR be a nonzero semi-injective coretractable module. Then
corank(MR)= u.dim(S S).

PROOF. Suppose that 0 6= fi ∈ S for 1≤ i ≤ n and {S f1, S f2, . . . , S fn} is an
independent set of left ideals of S. Let Ki = ker( fi ) (1≤ i ≤ n), then by semi-
injectivity of MR , S fi = lS(Ki ). Thus for any i 6= j ,

0= S fi ∩ S f j = lS(Ki ) ∩ lS(K j )= lS(Ki + K j ).

Since MR is coretractable, Ki + K j = M . By Lemma 4.9,

lS(Ki ∩ K j )= lS(Ki )+ lS(K j ) for any i 6= j.

Now let i, j, k be three distinct positive integers less than n + 1. Then

lS(Ki + (K j ∩ Kk)) = lS(Ki ) ∩ lS(K j ∩ Kk)

= lS(Ki ) ∩ (lS(K j )+ lS(Kk))

= S fi ∩ (S f j + S fk)= 0.

Therefore, Ki + (K j ∩ Kk)= M . Now we can show by induction that for any
1≤ i ≤ n, Ki + (

⋂
j 6=i K j )= M . Hence the natural map

ϕ : M −→ (M/K1)× · · · × (M/Kn)

is an epimorphism. Consequently, corank(MR)≥ u.dim(S S) and by Proposition 4.10,
the equality holds. 2
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