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ON A CLASS OF GENERALIZED 
BAKER'S TRANSFORMATIONS 

M. RAHE 

ABSTRACT. Let / define a baker's transformation (Tf,Pf). We find necessary and 
sufficient conditions o n / for (Tj -, Pf) to be an A/(o;)-step random Markov chain. Using 
this result, we give a simplified proof of Bose's results on Holder continuous baker's 
transformations where/ is bounded away from zero and one. We extend Bose's results 
to show that, for the class of baker's transformations which are random Markov chains 
where TV has finite expectation, a sufficient condition for weak Bernoullicity is that the 
Lebesgue measure \{x : f{x) = 0 or/(x) = 1} = 0. We also examine random Markov 
chains satisfying a strictly weaker condition, those for which the differences between 
the entropy of the process and the conditional entropy given the past to time n form 
a summable sequence; and we show that a similar result holds. A condition is given 
on / which is weaker than Holder continuity, but which implies that the entropy differ­
ence sequence is summable. Finally, a particular baker's transformation is exhibited as 
an easy example of a weakly Bernoulli transformation on which the supremum of the 
measure of atoms indexed by «-strings decays only as the reciprocal of n. 

1. Introduction. In this article we derive some results about asymptotic indepen­
dence properties of generalized baker's transformations. These objects, defined by Bose 
in his dissertation, can be used in two ways. First, given an arbitrary non-atomic er-
godic transformation of entropy at most log 2, there is an isomorphic representation of 
that transformation as a generalized baker's tranformation. Facts about the representa­
tion can then be carried back to the original via the isomorphism. Second, each function 
/ : [0,1) i—> [0,1] determines a generalized baker's transformation. By proper choice of/, 
one has the potential of constructing simple examples of transformations with interesting 
properties. 

More particularly, denote by N the set of nonnegative integers and by Z the set of 
all integers. Let p be a non-atomic probability measure on the set X = {0,1}N of one­
sided infinite strings of zeros and ones, endowed with the a-algebra generated by the 
finite cylinder sets. We may embed a distribution copy of (X, p) into the unit interval 
[0,1) in a natural manner by inductively defining subintervals on [0,1) with measures 
corresponding to the measures of the finite cylinder sets. In particular, if s is a finite 
string, let As denote the cylinder set of all sequences in X which begin withs. We begin by 
subdividing the interval [0,1) into two left-closed, right-open intervals IQ and I\, having 
lengths P(AQ) and p(A\), respectively, with/o preceeding I\. Then, at the n-th stage, given 
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GENERALIZED BAKER'S TRANSFORMATIONS 639 

an interval Is indexed by a string s of length n, we may subdivide it into two half-open 
subintervals Iso and Is\, having relative lengths fi(Aso\As) and p,(As\\As), respectively, 
with /$() preceding Is\. 

Since ft is non-atomic, there is a measure preserving map O: [0,1) i—• X which asso­
ciates to each number r G [0,1) the unique sequence s whose initial segments index the 
nested intervals containing r. 

Let G denote the cr-algebra on X generated by the coordinate maps with indices greater 
than zero. For any version of/2(Ao|G), there is a corresponding function/: [0,1) i—> [0,1] 
defined by/(r) = /2(A0|G)(O(r)). The function/ then determines a generalized baker's 
transformation, which will represent the original transformation. 

Alternatively, we may begin, not with a given transformation, but with a particular 
/ : [0,1) i—> [0,1]. This choice of/ determines a measure preserving transformation. By 
careful choice of/, we can provide examples of measure preserving transformations of 
various types. 

In his dissertation, C. Bose showed that if the function/ is Holder continuous and 
bounded away from zero and one, then /2 exhibits an extremely strong form of asymptotic 
independence. He then derived precise estimates of the rate at which such independence 
is obtained, based on the constant and exponent of Holder continuity. 

In this note we show some related results. We begin by deriving necessary and suffi­
cient conditions o n / for (Tf,Pf) to be an 7V(u;)-step random Markov chain. In essence, 
/ must be continuous except for possible jump discontinuities at a countable number of 
points, at which we must have right and left limits, and then only if the points of discon­
tinuity are properly placed and the jump sizes are controlled. We give an example of a 
baker's transformation with/ being a step function of two levels, where (7}, Pf) is not a 
random Markov chain. 

Using the random Markov chain analysis, we then give a simplified proof of Bose's 
results on Holder continuous baker's transformations where/ is bounded away from zero 
and one. In particular, we examine the rate at which asymptotic independence obtains and 
its relationship to the random step size. 

We extend Bose's results to show that, for the class of baker's transformations which 
are random Markov chains where TV has finite expectation, a sufficient condition for weak 
Bernoullicity is that the Lebesgue measure \{x : f(x) = 0 or/(jc) = 1} = 0. An example 
is given of a baker's transformation which has/(jc) = 0 on a set of positive measure and 
which is not ergodic. 

We then explore an alternative to the condition of having finite expected step size, 
a weaker requirement involving summability of certain conditional entropy differences, 
deriving similar results. A uniformity condition is given on/ which is weaker than Holder 
continuity but which implies that the process has this summability property. 

Finally, we apply the generalization of Bose's results to the case where/ = l—x, for 
which the resulting baker's transformation is a weakly Bernoulli transformation on which 
the supremum of the measure of atoms indexed by «-strings decays only as the reciprocal 
of n. This gives an easy example of the degree to which the Shannon McMillan Breiman 
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theorem fails to give uniform convergence, even in the presence of strong asymptotic 
independence. 

2. Notation. Let X be a Lebesgue space, B a a-algebra of subsets of X, and /i a 
probability measure on B. 

For P̂ and Q, partitions of X, we write ¥ _L£ Q, if 

£ |/i(An*)-M(A)/z(fl) |<e. 

Denote by P^ the partition \l™ TP. 

DEFINITION. By & process we mean a pair (7\ P) consisting of P, a finite partition of 
subsets of J3, and T:X\—• X, a //-measure preserving transformation. 

DEFINITION. We say that a process (7, P) is a K-automorphism if given e and fc, there 
exists w such that P0 .^ _Le P ^ . 

DEFINITION. We say that a process (7, P) is we<2& Bernoulli if given e, there exists n 
such that for ally and k we have P^- _Le Pn

n
+k. 

After Bose, we define a generalized baker's transformation. Let À be Lebesgue mea­
sure on the Lebesgue subsets B of [0,1). Let JJL — X x À be 2-dimensional Lebesgue mea­
sure on the Lebesgue subsets G of the unit square S = {(*,)>) | x G [0, l),_y G [0, l)},and 
let/: [0,1) i—> [0,1] be a ^-measurable function. Define two mappings I/J, (j>: [0,1) i—> 
[0,1] by the formulae 

Mx) = £f(t)dt 

4>f(x) = \- fx\-f{t)dt. 

For each (JC, y) G 5 we set 

7>(x'>;)- j ( 0 / W , i _ _i_z_), i f / W < y < i . 

It is easy to show, that 7}: 5 i—> S is measurable, invertible, and preserves /i. 

Let Pf be the partition of S into two sets 

Po = { ( x , y ) | ^ G [ 0 , l ) , / ( x ) < j < l } 

and Pi = S — Po. We may consider the process (7},P/). Note that for each positive 
integer y > 1, an atom of the partition P)

l consists of I x [0,1), where I is a left closed, 
right open interval. 
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3. The baker's transformation representation. We begin by establishing an iso­
morphism. 

THEOREM. Let \± be a non-atomic measure on the space X = {0,1}Z which is 
invariant and ergodic under the shift transformation T. Let P = {Po, P\} be the time-
zero partition on X. Suppose that the entropy h(T, P) is some constant h > 0. Then 
the embedding function <E>: [0,1) i—> X establishes an isomorphism between (T,P) and 
(Tf9Pf), wheref(r) = Li(P0\P?)(<S>(r)). 

PROOF. The function O is clearly measure preserving, hence we need only show that 
the partition Pf will separate points under 7). Since h(T,P) > 0, then p(P\P™) will be 
bounded away from zero and one by some value c with 0 < c < \ on some set A G P^ 
with fi(A) > 0. Hence/ will also be bounded away on 0_1(A). 

For each positive integer n, the atoms of (Pf)" are rectangles I x [0,1). As n increases, 
the width of the interval goes to zero since \x is non-atomic. Thus, if (x, y) and (x,y) are 
points in S which lie in the same atom of (Pf)™, then x — x. Now since p is ergodic, 
it follows that the T~l-orbit of points in O(x) will enter the set A infinitely often, with 
//-probability one. Hence y = y, since two points (x,y) and (x,y) in an atom of V°_n TJPf 
have second coordinates that differ by at most (1 — 2c)m, where m is the number of times 
that T~j(0(x)) has entered A for 1 <j<n. 

It follows as an obvious corollary that if we show that (7}, Pf) is ergodic, mixing, a 
K-automorphism, or Bernoulli, the original (T, P) must also be. 

By a well known theorem of Krieger, if (T, P) is ergodic with entropy at most log 2, 
one can construct a two-set generating partition. The above approach will then yield an 
isomorphic representation of (T, P) as a generalized baker's transformation. 

Of course, the resulting (7}, Pf) will also be ergodic in this case, since we are copying 
an existing ergodic transformation. However, if one begins instead only with an arbitrary 
uniformly continuous/, and constructs a transformation 7} in the obvious way, it need not 
be the case that Pf generates under 7}, nor can we rule out the existence of 7}-invariant 
sets G with 0 < /x(G) < 1. 

As an example, consider 

[0, Jt€[0,£), 

/ 0 t ) = J 3 * - l , *€[£,§), 

[ l , *G[§,1). 

The set {[g, | ) U [|, | ) } is clearly invariant and Pf does not separate points, since 7} 
merely flips pairs of corresponding points in the two rectangles. 

The above example has a continuously differentiable/, but is not ergodic since there 
is a nontrivial invariant set I x [0,1) with I C {x : f(x) = 0 orf(x) = 1 } . Our goal is 
to show that the only way that ergodicity can fail to hold for functions/ which display 
sufficient regularity is to have a set of positive Lebesgue measure where/ is zero or one. 
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4. Random Markov processes. In [2], Kalikow defines a particular kind of skew 
product over an independent process which takes non-negative integer values. 

DEFINITION. Let F be a finite set. Let {a^Ni} be a stationary process, where each 
at E F, each Ni G N, No is independent of {a^ N/}/<o and for each j 

P(a0 = k | a-\a^2 • • -a-j AN0 = j) = P(a0 = k | {a,-}/<o AN0 = j). 

Then {<z/,N;};ez is a complete random Markov process. 

DEFINITION. A random Markov process is the projection on the first coordinate of a 
complete random Markov process, i.e., if {#;, Ni} is a complete random Markov process, 
then {at} is a random Markov process. 

It is easy to see that if the values of the random variable N are bounded by some fixed 
integer n, then a random Markov process is actually an rc-step Markov process. 

Kalikow also defined the concept of a uniform martingale. 

DEFINITION. Let F be a finite set, and let {ai}ieZ be a stationary process, with all 
at e F. If, for all e > 0, there exists Nt G N such that for all M > Nt and all {F/}g0 with 
all Fi e F, 

\P(a0 = F0 | a-\ - F\,a-2 = F 2 , . . . ,a_m = Fm)-P(a0 = F0 | <z_/ = Ft for all i)| < 6, 

then {a^ is a uniform martingale. 
He then establishes the following fact. 

THEOREM. A process is a uniform martingale iff it is a random Markov process. 

5. Baker's transformations which are random Markov chains. In this section 
we examine necessary and sufficient conditions on / for (7}, Pf) to be a random Markov 
chain. 

DEFINITION. A function/: [0,1) —* [0,1] is regular if given e > 0 there exists a 
finite sequence do = 0,d\,...,dn = 1 partitioning [0,1), such that for each j = 0 , . . . , 
n - 1 we have | sup{dj4j+ùf - mfidjÀj+ùf\ < e. 

DEFINITION. We say that a function/: [0,1) —• [0,1] is adapted if given e > 0 there 
exists n such that all jump discontinuities of size at least e occur at endpoints of intervals 
which are projections of the vertical cr-algebra (F/)". 

We remark that regularity is implied by either piecewise uniform continuity (with 
finitely many intervals) or by bounded variation, but is strictly weaker than either of 
these conditions. 

Fix a given regular function/. We will consider a sequence en = 2~n and denote by 
D the countable union of all d"s given by the definition of regularity. For all x £ D, we 
have continuity at x. Moreover, even for i G D , both \imy-^x+f and \imy^x-f must exist. 

By Kalikow's result, a process is a random Markov process iff it is a uniform martin­
gale. For generalized baker's transformations, this reduces to saying that/ is the uniform 
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limit (outside a countable set) of the conditional expectations/„ = E(f | 7r(P^)j). Each 
/„ is a step function, whose jumps occur at endpoints of intervals which are projections 
of the vertical cr-algebra (P/)n

v 

Clearly, any uniform limit of step functions is regular, hence regularity is a necessary 
condition o n / for (Tf,Pf) to be a random Markov chain. On the other hand, it is easy 
to see that regularity is not sufficient. As an example, consider f(x) — 2/3 on [0, c) 
and/(x) = 1/3 on [c, 1), for some c. Since the stationary distribution is determined by 
transition probabilities, then by avoiding at most a countable collection of values, we can 
choose c so that (7),P/) is not «-step Markov for any n <E N. Moreover, (7},P/) is not 
even random Markov, since uniform approximation fails for any e < 1 /3 in the interval 
containing the discontinuity. In other words, regularity fails to be sufficient precisely 
because/ must also be adapted. 

THEOREM. The generalized baker's transformation (Tf,Pf) is a random Markov 
chain ifff is regular and adapted. 

PROOF. The above discussion has shown that regularity and adaptation are neces­
sary. The proof that they are sufficient is also easy. Given e > 0, we apply the adaptation 
condition for e/3 to get N\ such that all jump discontinuities of size e/3 or greater are 
contained in endpoints of projections of atoms in (P/)^1 • Then, applying regularity for 
e/3, we get a finite sequence do,...,dn for which | sup(djdj+])f - inf(dpdj+])f\ < e/3, 
j= l , . . . , w - 1. 

If two distinct values of d are never separated by 7r(P/)j*°, then by Bose's result, / 
must be identically zero or identically one on the entire atom. Otherwise we may take 
N2 > N\ so large that the projection of each atom contains at most one of the dj in its 
interior. Either situation will suffice to find a step function g, whose intervals of constancy 
are measurable with respect to the projection of (P/)f2, whose value on each interval is 
the infimum of/ on that interval, and which is within e of/, except possibly at the finite 
collection of endpoints of intervals. 

We can use this fact to write/ as an infinite sum. Set/o = / , so that/o < 2°; and given 
e = 2_ 1 , find g\, measurable with respect to 7r(P/)"', for some n\. Let g\ be g\ truncated 
at 2~~l. Then by induction, given/ and gi, #2, • • •, £/, with gj < 2~-/> for 7 = 1,2,...,/, let 
// = / — T!J=\ gj- Then/ < 2~\ and given e/+i = 2~/_1, find g/+1 measurable on 7r(P/)"z. 
Let gi+i be gi+\ truncated at 2~ /_1. 

Thus, given a sequence ê  = 2~k, we can write/ as an infinite sum of step functions 
gk, where 0 < g^ < 2~k and gk is measurable with respect to the projection of (P/)J* 
for some strictly increasing sequence nk —* 00. This construction results naturally in the 
required skew product, where the values P(XQ = 0 | x\ • • • xnk) = 2kg determine the 
transition probabilities of an %-step Markov process on a skewing set of measure 2~k. 

Of equal importance, statements about the random step size N(u), which is a random 
variable in the skew product but not on the unit square, are interprétable as statements 
about the summands gk which make up/ . 
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In particular, every uniformly continuous function/: [0,1) —•> [0,1] gives a random 
Markov chain. Moreover, Bose's result that Holder continuous baker's transformations 
with / bounded away from zero and one are weakly Bernoulli is a statement about a 
particular class of random Markov chains. This observation will allow us not only to 
simplify some of Bose's proofs, but also to extend the results to a larger class where/ 
need not be bounded away. 

6. Holder continuous baker's transformations with/ bounded away. We re­
mark that it is an easy calculation that the Holder condition \f(x) — f(y)\ < M\x — y\a 

and the existence of 8 > 0 for which 8 < f < 1—5, imply that the expected step size 
E[N] is finite. It suffices to take 

nk 

-J t log2-logAf 

alog(l —8) 
+ 1, 

(where [ ] indicates the greatest integer function), since the maximum size of an atom in 
(Pf)1

k is (1 - £)"*, and we then have 

\f(x) -f(y)\ < M\x - y\a < M(l - 8)a"k < 2~\ 

as required. Thus E[N] = T,nk2~k < oo. 

Moreover, Bose's result that (//)0_oo -LM9 * (Pf)^ also becomes a more transparent 
and tractable computation. One can demonstrate that the distributions of (P/)^ on two 
atoms of (Pf)°^m are e-independent in the following manner: use the finite expectation 
of N(LJ) to find N sufficiently large that, except for possibly a set of measure e/2, we 
have N(LU) < N, N(TLJ) < N + 1, . . . , i.e., the random Markov process never looks back 
farther than a certain fixed past of length N. Then, given A, B G (Pf)°_m, form a joining 
of the (nonstationary) distributions conditioned on A and #, which is product measure 
until the first time that both strings agree in a block of $ consecutive times, starting at a 
time which is a multiple of N. After that point, the distribution remains identical in both 
processes. 

It will require at most R — NL outputs to get such an agreement on N consecutive 
places, on a set of relative measure at least 1 — e/2, where L is the smallest value for 
which (\-82f/)L < e/2. 

But one can easily compute N. By the expression for n^ given above, nk = 
0(—k log 2). On the other hand, for N = nk, 

oo oo 

£ P(N(Fu>) > N +j) < £ P(N(PLO) > nk+j) 

= f^2-*~-/ = 2-*_1. 
7=0 

Thus, it suffices to take 2~k~l < e/2, or — k = O(loge), so N = O(loge). But we also 
have L = O(loge). Hence R — NL — 0(loge loge), as desired. 
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7. Baker's transformations with finite expected step size. As shown in our pre­
vious example, not every baker's transformation need be ergodic, even iff satisfies a 
Lipschitz condition: there must also be some restriction on the set where / is zero or 
one. On the other hand, we need not be content with Bose's stringent requirement that 
6 <f < 1 —S. Instead, it is sufficient to require that the set of zeros and ones be negligible 
in the sense of Lebesgue. 

THEOREM. IfiTf, Pf) is a random Markov chain with finite expected step size and 
\{x :f(x) = 0 or 1} = 0, then (Tf,Pf) is weakly Bernoulli. Moreover, the rate at which 
(//)0_oo becomes e-independent of (Pf)^ is easily computed in terms of the rates at which 
P(N(UJ) > N) -> 0 and X(f > 6) -+ 1. 

PROOF. In the previous section, we reduced the problem of establishing weak Ber-
noullicity to easier problems: finding N, the existence of which followed from a finite 
expected step size, and a separate problem of finding L, which resulted from a lower 
bound 6 on/ . In the present situation, given e and N, we take 6 — 6(e,N) to be so small 
that \{x : <5 < / } > 1 — (e/8N)8. Thus, all except e/4 in measure of the atoms in (P/)°_m, 
have all except e/4 in relative measure of their mass in a set on which the frequency of 
blocks of length N, beginning at times which are multiples of N, on which/ > <5 at each 
time index is at least 1 — e/4. Then the previous argument goes through. 

8. Summable convergence of conditional entropy. Kalikow has shown that the 
class of random Markov chains with finite expected step size is closed under the taking 
of inverses, i.e., if one runs a random Markov chain backwards, one gets another random 
Markov chain with finite expected step size. In this section, we consider another condition 
which implies this same property. 

DEFINITION. We say that a transformation (71, P) has summably convergent condi­
tional entropy if 

oo 

J2 HP I P~l • • P~k) - h(P | P-1 • •) < oo. 
k=\ 

This concept was originally defined in [3], where it was shown that if (7, P) is mixing 
and has summably convergent conditional entropy, then (T,P) is weakly Bernoulli. In 
the context of generalized baker's transformations, we can replace the mixing condition 
withA{jt:/(jt) = 0or 1} = 0. 

REMARK. It is perhaps worthwhile to mention that Bose has an example in his dis­
sertation of a baker's transformation (Tf,Pf) where | <f(x) < \, yet T2 is not ergodic. 
Hence, the condition \{x :f(x) = 0 or 1} = 0 does not imply mixing. 

THEOREM. If (Tf,Pf) has summably convergent conditional entropy, and \{x : 
f(x) = 0 or 1} = 0, then (Tf,Pf) is weakly Bernoulli. 

PROOF. In the proof of the corresponding theorem for E[N] finite, we established a 
value Â  such that (/>

/)f _U (Pf)zf on each atom A G (/*/)%» for all m, /. We now do 
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exactly the same thing, using the entropy condition instead of E[N]. (This is essentially 
the same argument as [3], repeated here for completeness.) given e > 0, there exists 
S > 0 such that for any partitions & and Q,, h{V) - h(*P \ Q) < S implies <P _Lf Q,. By 
the finite sum hypothesis, given <5, we can choose N such that for all positive integers m 
and /, we have 

o<h(pr\^)-h(pr\p°_^k) 
^ ( / T I / ^ - W l ^ o o ) 

m 

= E[A(/*'î :2) - Kn^)] 
m 

= E[*(^l^)-*(^l^io)]<«-

Then we have the requisite e-independence conditioned on atoms of P~L The rest of the 
argument follows as before. 

It is interesting to note that the baker's transformation with two-step/ where (7}, Py) 
failed to be a random Markov chain also gives an example of a process which has condi­
tionally convergent entropy, yet which is not a random Markov chain. We do not require 
uniform convergence of the martingale: instead, sufficiently rapid convergence in an L1 

sense will suffice. 

We also note that by stationarity, the class of processes for which we have summably 
convergent conditional entropy is closed under taking inverses. 

In section 10, we give an example of a random Markov process which does not have 
finite expected step size, but which has summably convergent conditional entropy, show­
ing that for random Markov chains, E[N] < oo is not a necessary condition for weak 
Bernoullicity. It would be interesting to know if the entropy condition is necessary. 

We can show that finite expected step size implies the entropy condition. We begin 
the analysis by constructing another sum. Except for countably many x G [0,1), there 
is a natural sequence of A* G (Pf)\ which is nested decreasing to x x [0,1]. Let fx(k) 
be the fluctuation off on n(Ak), le.,fx(k) = | supx£7r{Ak)f(x) - mfxe7T{Ak)f(x)\. Let Sx = 
££! / , (*) . Then 

f oo r 

s= sxd\ = Y: Mk) 
J k=\J 

is the desired sum. 
Now by definition E[N] = Y,knj<2~k, and this sum will be finite iff we have 

J2kAnk2~k < oo, where A% — n^ — n*_i. In fact, since 

k 

we have a uniform bound on Sx. On the other hand, the entropy condition requires no 
uniform bound on Sx, as we utilize in section 10. 
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For t < 2 1, we have —tlogt — (1 — t)log(l — i) < 2{—t\ogt). Hence to show that 
E/ h{P\Px) — h(P\P™) < oo, it suffices to consider the following sum 

oo nk+l-\ r ( 1 r \ 

k=l j=nk uA/Gp/ 

1 [ AvAf(tj)d\{t)d\(t), 
JTT(UAI) V ' 

JMJUJJ^-X^L^^^ dX(t) 

A(7T(UA/)) MUAI) 

where the A/ are atoms in P\k+X ~ and v\ (t) = —t log t. Note that for fixed k, on each UAh 

we have that max^u^/CO — min7r(uA/)/(0 < 2~k+l. Hence, by the concavity of i/i, it 
suffices to assume that 0 <f(t) < 2~k+l. 

Fixing U = 7r(UA/), we can rewrite 

where R — 2~k+x is the maximum range of/, and \i is the measure on [0, R] induced by 
/ , i.e., 

We use the following technical lemma. 

LEMMA. There exists a constant M > 0 such that for each x > 0 we have 

0 < sup v\ (Epis)) - EJi/i(sj) < Mx, 
LieProb [(U] 

where E^ is the expected value with respect to the probability measure \i on [0,x]. 

PROOF. For x — \,v\ (Ep,(t)) — E^(i/i(t)) is a continuous function of ft. Hence by 
the compactness of the unit ball, it assumes a maximum value, which we denote by M. 
For x < 1, we consider the map Cx : [0,1 ] —> [0, x] defined by t;x(t) = tx. Any probability 
measure // on [0,x] then induces a probability measure /2 = // o £ - 1 on [0,1], so that 

i/{(E^(s)) -E^i/iisj) = v\{Efi{tx)) -Efi(yi(tx)). 

On the other hand, v\{af5) — flv\(oc) + oa/i(/3), so 

vx{EfL{tx))-EfL{vx(tx)) = i / i ( ^ ( 0 ) - ^ ( ^ K O + ^iC*)) 

= Ep,{i)v\(x)+xv\ (Efi(tj) - xEfiv\{t) - v\(x)Ep,(t) 

= x[vl(E^t)-Eflvl(t)l 

Thus the sum S is majorized by 

0 0 w*+i — 1 0 0 

E E M2~'+1 < E^^+i2~*+1 < «3. 

We can summarize these results in the following theorem. 
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THEOREM. If a random Markov chain has finite expected step size, then it has 

summably convergent conditional entropy. Moreover, the integrand in the entropy con­

dition is uniformly bounded. 

9. A sufficient condition for having summably convergent conditional entropy. 

DEFINITION. Let g: [0,1] —> [0, oo) denote a monotone nondecreasing function sat­
isfying JQ — x~{g(x)dx < oo. We say tha t / satisfies a g-uniformity condition if 

{f(x{)-f(x2)\ <g(\x{ -*2 | ) , foral l*i ,*2 € [0,1). 

THEOREM. Suppose thatf satisfies a g-uniformity for some g. Then if there exists 
c > 0 such that c < f(x) < 1 — c, we have that (Tf,Pf) has summably convergent 
conditional entropy. 

PROOF. Let IT: [0,1) x [0,1] —> [0,1) be the projection ir(x,y) = x. Let A e (P/)". 
Then TT(A) is a left closed, right open interval in [0,1). Since c < f(x) < 1 — c, it follows 
thatA(?r(A)) <(l-c)n. 

Hence, if JCI,JC2 G TT(A), then 

[f(x{)-f(X2)\ <g((l-c)n). 

Thus 

xm) LfdX ~m=E(^)w -™ * *((1 - c)")> 
for each x G ir(A), where E(/|7r(Py)i)(jc) = fn(x) denotes the conditional expectation. 
Define 

-xlogx - (I - x)\og(l - x), 0 < x < l 
i/(x) — i ^ , 

1 0, otherwise. 

£ h(Pf\(Pf)l) - h(Pf\(Pf)?) < £ /"' \V(fn(x)) - u{f(x))\ < CXD, 

It follows that 

h(pf\(Pf)i)-h(pf\(pf)r)<" 

since by the intermediate value theorem 

• l - c > 
'(/nto) - v(f(xj)\ < l o g ( - ^ ) g ( ( l - cf), 

and 
00 \ r 1 # W J 

dx 

by the standard change of variables argument. 
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10. A weak Bernoulli example. The condition that c < f(x) < 1 — c allowed 
us to guarantee that supAG(/> )n JJL(A) decreases exponentially in n. Although the Shannon 
McMillan Breiman Theorem assures us that /z(A) decays exponentially for most atoms, it 
is not true in general that the supremum will decrease this fast, even if (7), Pf) is weakly 
Bernoulli. As an example, we consider the generalized Baker's transformation (Tf,Pf) 
with/(jt) = 1 — x. 

Denote by Art, j = 1, . . . , 2", the atoms of (P/)", from left to right. By symmetry, 
one observes that A(7r(A")) = A^A^^+j)) for subscripts j — 1,... ,2 n _ 1 . Again by 
symmetry, it suffices to consider iteration under the map ipf(x) — Jçjf(x) dt — * — y • The 
map is monotone, and one can see by induction that 

n+\ v ; n+1 

and 

A(TT(A2)) = < ~2. 

By monotonicity of/, A(TT(AY)) > A(TT(AJ1)) fory = 1,2,... ,2". By symmetry, 

A(7T(A")) = XiniA^n)). Moreover, a computation reveals that 

A(TT(A2)) = A(TT(^(A5-!)) ) = A(^(A^,)), 

so by induction A^AÎJ)) > A(7r(Ap),i/ = 2 , . . . , 2n — 1, for all positive integers n. 
Thus, there exists a constant M > 0 such that 

K - tf| < H[fn ~f\) < -\fn - / | ( l0g [/n " / | + 1) < ( ^ ^ ) 

on UJJ2lAJ and |i//n - vf\ < f on A? and An
ln. Hence E ^ j Jo vfn -vfd\< oo. Thus 

(Tf,Pf) has summably convergent conditional entropy, hence by the results of section 8, 
the process is weakly Bernoulli. 

On the other hand, as noted above, sup7 A(7r(An)) > ^y. Thus it follows that the 
expected step size is infinite. 
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