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Differential geometry

The language of general relativity is differential geometry. The present chapter

provides a brief review of the ideas and notions of differential geometry that

will be used in this book. It also serves the purpose of setting the notation and

conventions. The chapter assumes a prior knowledge of the subject at the level,

say, of the first chapter of Choquet-Bruhat (2008) or Stewart (1991), or chapters

2 and 3 of Wald (1984). In view of the applications in later parts of this book,

some topics which may not be regarded as belonging to the standard baggage

of a relativist are discussed in some detail – for example, general (i.e. non-Levi-

Civita) connections, the so-called 1+3 split of tensors – that is, a split based on

a congruence of timelike curves, rather than on a foliation, as in the usual 3 + 1

– and the analysis of the geometry of submanifolds using a frame formalism.

2.1 Manifolds

The basic objects of study in differential geometry are differentiable manifolds.

Intuitively, a manifold is a space that, locally, looks like Rn for some n ∈ N.

Despite this simplicity at a small scale, the global structure of a manifold can be

much more complicated and leads to considerations of differential topology.

2.1.1 On the definition of a manifold

A differentiable function f between open sets U , V ⊂ Rn, f : U → V, is

called a diffeomorphism if it is bijective and if its inverse f−1 : V →
U is differentiable. If f and f−1 are Ck functions, then one has a Ck-

diffeomorphism. Furthermore, if f and f−1 are C∞ functions, one speaks of

a smooth diffeomorphism and one writes U ≈ V. Throughout this book, the
word smooth will be used as a synonym for C∞. The words function, map and

mapping will be used as synonyms of each other.

A topological space is a set with a well-defined notion of open and closed

sets. Given some topological space M, a chart on M is a pair (U , ϕ), with
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28 Differential geometry

U ⊂ M and ϕ a bijection from U to an open set ϕ(U) ⊂ Rn such that given

p ∈ U

ϕ(p) ≡ (x1, . . . , xn).

The entries x1, . . . , xn are called local coordinates of the point p ∈ U . The set

U is called the domain of the chart. Two charts (U1, ϕ1) and (U2, ϕ2) are said

to be Ck-related if the map

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2)

and its inverse are Ck. The map ϕ1 ◦ ϕ−1
2 defines changes of local coordinates

(xμ) = (x1, . . . , xn) �→ (yμ) = (y1, . . . , yn) in the intersection U1 ∩ U2; see

Figure 2.1. Thus, one can regard the coordinates (yμ) as functions of the

coordinates (xμ). All throughout this book the Greek letters μ, ν, . . . will be used

to denote coordinate indices. The functions yμ(x1, . . . , xn) are Ck and, moreover,

the Jacobian det(∂yμ/∂xν) is different from zero.

A Ck-atlas on M is a collection of charts whose domains cover the set M.

The collection of all Ck-related charts is called a maximal atlas. The pair

consisting of the space M together with its maximal Ck-atlas is called a Ck-

differentiable manifold. If the charts are C∞-related, one speaks of a smooth

differentiable manifold. If for each ϕ in the atlas, the map ϕ : U → Rn has

the same n, then the manifold is said to have dimension n. In what follows,

the discussion will be restricted to manifolds of dimension 3 and 4.

Remark. In introductory discussions of differential geometry one generally

considers smooth structures. However, as will be seen in later chapters, when

one looks at general relativity from the perspective of conformal geometry, the

R
n

R
n

U2U1

ϕ1 ϕ2

ϕ2 ◦ ϕ1
−1

Figure 2.1 Schematic representation of the change of coordinates between
charts – see the main text for further details. The figure is adapted from
Stewart (1991).
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2.1 Manifolds 29

smoothness (or lack thereof) encodes important physical content. Accordingly,

one is led to consider the more general class of Ck-differentiable manifolds.

The differentiable manifolds used in general relativity are generally assumed

to be Hausdorff and paracompact. A differentiable manifold is Hausdorff if

every two points in it admit non-intersecting open neighbourhoods. The reason

for requiring the Hausdorff condition is to ensure that a convergent sequence of

points cannot have more than one limit point. If M is paracompact, then there

exists a countable basis of open sets. Paracompactness is used in several basic

constructions in differential geometry. In particular, it is required to show that

every Riemannian manifold admits a metric. In what follows, all differentiable

manifolds to be considered will be assumed to be Hausdorff and paracompact.

Accordingly, in the rest of the book Hausdorff, paracompact differentiable

manifolds will be simply called manifolds.

Orientability

An open set of Rn is naturally oriented by the order of the coordinates (xμ) =

(x1, . . . , xn). Hence, a chart (U , ϕ) inherits an orientation from its image in Rn. In

an orientable manifold the orientation of these charts matches together properly.

More precisely, a manifold is said to be orientable if its maximal atlas is such

that the Jacobian of the coordinate transformation for each pair of overlapping

charts is positive.

An alternative description of the notion of orientability in terms of orthonormal

frames will be given in Section 2.5.3. Orientability is a necessary and sufficient

condition for the existence of a spinorial structure on M; see, for example,

Chapter 3.

2.1.2 Manifolds with boundary

Manifolds with boundary arise naturally when discussing general relativity from

the perspective of conformal geometry. In order to introduce this concept one

requires the following subsets of Rn:

Hn ≡ {(x1, · · · , xn) ∈ Rn | xn ≥ 0},
∂Hn ≡ {(x1, · · · , xn) ∈ Rn | xn = 0}.

One says that M is a manifold with boundary if it can be covered with charts

mapping open subsets of M either to open sets of Rn or to open subsets of Hn.

The boundary of M, ∂M, is the set of points p ∈ M for which there is a chart

(U , ϕ) with p ∈ U such that ϕ(U) ⊂ Hn and ϕ(p) ∈ ∂Hn. The boundary ∂M
is an (n − 1)-dimensional differentiable manifold in its own right. Hence, it is a

submanifold of M – see Section 2.7.1.
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30 Differential geometry

2.2 Vectors and tensors on a manifold

In order to probe the geometric properties of a manifold one needs vectors

and, more generally, tensors. This section provides a brief discussion of these

fundamental notions.

2.2.1 Some ancillary notions

Derivations

Denote by X(M) the set of scalar fields (i.e. functions) over M; that is,

smooth functions f : M → R.

Definition 2.1 (derivations) A derivation is a map D : X(M) → X(M)

such that:

(i) Action on constants. For all constant fields c, D(c) = 0.

(ii) Linearity. For all f, g ∈ X(M), D(f + g) = D(f) +D(g).

(iii) Leibnitz rule. For all f, g ∈ X(M), D(fg) = D(f)g + fD(g).

The connection between derivations and covariant derivatives is discussed in

Section 2.4.1.

Curves

The notion of a vector is intimately related to that of a curve. Given an open

interval I = (a, b) ⊂ R where either or both of a, b can be infinite, a smooth

curve on M is a map γ : I → M such that for any chart (U , ϕ), the composition

ϕ◦γ : I → Rn is a smooth map. One often speaks of the curve γ(s) with s ∈ (a, b);

s is called the parameter of the curve. If the domain (a, b) of a curve can be

extended to, say, [a, b] while keeping γ(s) smooth, one has an extendible curve.

A curve which is not extendible is called inextendible.

A tangent vector to a curve γ(s) at a point p ∈ M, to be denoted as γ̇(p),

is the map defined by

γ̇(p) : f �→ d

ds
(f ◦ γ)

∣∣
p
= γ̇(f)

∣∣
p
, f ∈ X(M).

Given a chart (U , ϕ) with local coordinates (xμ), the components of γ̇(p) with

respect to the chart are given by

ẋμ(p) ≡ d

ds
xμ(γ(s))

∣∣
p
.

In a slight abuse of notation the points of the curve γ will often be denoted by

x(s) ∈ M and its tangent vector by ẋ(s).
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2.2 Vectors and tensors on a manifold 31

2.2.2 Tangent vectors and covectors

To each point p ∈ M, one can associate a vector space T |p(M), the tangent

space at p consisting of all the tangent vectors at p. In what follows, the elements

of this space will be simply known as vectors. All throughout, vectors will

mostly be denoted with lowercase bold Latin letters: v, u, w, . . . Abstract index

notation will also be used to denote vectors; see Section 2.2.6. The tangent space

T |p(M) can be characterised either as the set of derivations at p of smooth

functions on M or as the set of equivalence classes of curves through p under

a suitable equivalence relation. With the first characterisation one considers the

vectors as directional derivatives, while with the second one they are considered

as velocities. If the dimension of the manifold M is n, then T |p(M) is a

vector space of dimension n. Local coordinates (xμ) in a neighbourhood of the

point p give a basis of T |p(M) consisting of the partial derivative operators

{∂/∂xμ}; where no confusion arises about which coordinates are meant, one

simply writes {∂μ}. In particular, for the vector tangent to a curve one has

that ẋ(s) = ẋμ(s)∂μ. In this last expression and in what follows, Einstein’s

summation convention has been adopted – that is, repeated up and down

coordinate indices indicate summation for all values of the range of the index.

That is,

ẋμ(s)∂μ ≡
n∑

μ=1

ẋμ(s)∂μ.

Covectors

The dual space T ∗|p(M), the cotangent space at p, is the vector space of

linear maps ω : T |p(M) → R. Generic elements of T ∗|p(M) will be denoted

by lowercase bold Greek letters: α, β, ω, . . . . Being dual to T |p(M), the space

T ∗|p(M) has also dimension n, and its elements are called covectors. If ω acts

on v ∈ T |p(M), then one writes 〈ω,v〉 ∈ R.

Given f ∈ X(M), for each v ∈ T |p(M), one has that v(f) is a scalar. Hence,

f defines a map, the differential of f , df : T |p(M) → R via

df(v) = v(f).

As a consequence of the linearity of v one has that df is linear, and thus df ∈
T ∗|p(M). Given a chart (U , ϕ) with coordinates (xμ), the coordinate differentials

dxμ form a basis for T ∗|p(M), the so-called dual basis . The dual basis satisfies

〈dxμ,∂ν〉 = δν
μ, where δν

μ is the so-called Kronecker’s delta . It follows that

every covector ω at p ∈ M can be written as ω = 〈ω,∂μ〉dxμ.

Bases

The previous discussion is extended in a natural way to more general bases. Given

any basis {ea} of T |p(M), its dual basis {ωb} of T ∗|p(M) is defined by the
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32 Differential geometry

condition 〈ωb, ea〉 = δa
b. In the rest of the book, lowercase bold indices such as

a, b, . . . denote spacetime frame indices ranging 0, . . . ,3. These will be used

when working with four-dimensional manifolds. The lowercase bold Latin letters

i, j, k, . . . will range, depending on the context, over either 0, 1, 2 or 1, 2, 3.

For simplicity of presentation, and unless explicitly stated, a four-dimensional

manifold will be assumed in the subsequent discussion.

Given another pair of bases {ẽa} and {ω̃b} of T |p(M) and T ∗|p(M),

respectively, these are related to the bases {ea} and {ωb} by non-singular

matrices (Aa
b) and (Aa

b) such that

ẽa = Aa
beb, ω̃a = Aa

bω
b, (2.1)

satisfying Aa
bA

b
c = δc

a so that (Aa
b) and (Aa

b) are inverses of each other. In

these last expressions and in what follows, Einstein’s summation convention

for repeated contravariant and covariant frame indices has been adopted so that

a sum from b = 0 to b = 3 is implied.

Condition (2.1) ensures that the new bases {ẽa} and {ω̃b} are dual to each

other; that is, 〈ω̃b, ẽa〉 = δa
b. Given v ∈ T |p(M), α ∈ T ∗|p(M), the above

transformation rules for the bases imply

v = vaea = ṽaẽa = (ṽaAa
b)eb,

α = αaω
a = α̃aω̃

a = (α̃aA
a
b)ω

b.

The two bases are said to have the same orientation if det(Aa
b) > 0.

2.2.3 Higher rank tensors

Higher rank tensors can be constructed using elements of T |p(M) and

T ∗|p(M) as basic building blocks. A contravariant tensor of rank k at the

point p is a multilinear map

M : T ∗|p(M)× · · · × T ∗|p(M)︸ ︷︷ ︸
k terms

−→ R,

that is, a function taking k covectors as arguments. Similarly, a covariant

tensor of rank l at the point p is a multilinear map

N : T |p(M)× · · · × T |p(M)︸ ︷︷ ︸
l terms

−→ R,

that is, a function taking l vectors as arguments. More generally, one can also

have tensors of mixed type : a (k, l) tensor at p is a multilinear map

T : T ∗|p(M)× · · · × T ∗|p(M)︸ ︷︷ ︸
k terms

×T |p(M)× · · · × T |p(M)︸ ︷︷ ︸
l terms

−→ R,

so that T takes k covectors and l vectors as arguments. In particular, a (k, 0)-

tensor corresponds to a contravariant tensor of rank k, while a (0, l)-tensor is
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2.2 Vectors and tensors on a manifold 33

a covariant tensor of rank l. The space of (k, l)-tensors at the point p will

be denoted by T k
l |p(M). In particular, one has the identifications T 1|p(M) =

T |p(M) and T1|p(M) = T ∗|p(M). Formally, the space T k
l |p(M) is obtained as

the tensor product of k copies of T ∗|p(M) and l copies of T |p(M). That is, one

has that

T k
l |p(M) = T |p(M)⊗ · · · ⊗ T |p(M)︸ ︷︷ ︸

k terms

⊗T ∗|p(M)⊗ · · · ⊗ T ∗|p(M)︸ ︷︷ ︸
l terms

.

The ordering given in the previous expression is known as the standard order.

Notice, however, that an arbitrary tensor does not need not to have its arguments

in standard order.

As an example of the previous discussion consider v ∈ T |p(M) and α ∈
T ∗|p(M). Their tensor product v ⊗α is then defined by

(v ⊗α)(u,β) = 〈β,v〉〈α,u〉, u ∈ T |p(M), β ∈ T ∗|p(M). (2.2)

One readily sees that v⊗α is a bilinear map and thus a (1, 1)-tensor at p ∈ M.

The action of the tensor product given in Equation (2.2) can be extended directly

to an arbitrary (finite) number of tensors and covectors. If {ea} and {ωb} denote,
respectively, bases of T |p(M) and T ∗|p(M), then a basis of T k

l |p(M) is given by

{eb1
⊗ · · · ⊗ ebk

⊗ ωa1 ⊗ · · · ⊗ ωal}.

The collection of all the tensor spaces of the form T k
l |p(M) is called the tensor

algebra at p and will be denoted by T •|p(M). The tensor algebra is defined by

means of a direct sum.

Symmetries of tensors

A covariant tensor of rank l, say, S, is said to be symmetric with respect to its

ith and jth arguments if

S(v1, . . . ,vi, . . . ,vj , . . . ,vl) = S(v1, . . . ,vj , . . . ,vi, . . . ,vl). (2.3)

Similarly, A it is said to be antisymmetric if

A(v1, . . . ,vi, . . . ,vj , . . . ,vl) = −A(v1, . . . ,vj , . . . ,vi, . . . ,vl). (2.4)

If the properties (2.3) and (2.4) hold under interchange of any arbitrary pair

of indices, one says that S is totally symmetric and A is totally antisym-

metric, respectively. The above definitions can be extended to contravariant

tensors of arbitrary rank. A totally antisymmetric covariant tensor of rank l is

also called an l-form . Symmetry properties of tensors are best expressed in

terms of abstract index notation.
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2.2.4 Tensor fields

The discussion in the previous subsections concerned the notion of a tensor at

a point p ∈ M. The tensor bundle over M, T•(M), is the disjoint union of

the tensor algebras T •|p(M) for all p ∈ M:

T•(M) ≡
∐
p∈M

T •|p(M).

The disjoint union emphasises that although for p, q ∈ M, p �= q, the spaces

T •|p(M) and T •|q(M) are isomorphic; they are regarded as different sets.

Important subsets of the tensor bundles are the tangent bundle and the

cotangent bundle given, respectively, by

T (M) ≡
∐
p∈M

T |p(M), T ∗(M) ≡
∐
p∈M

T ∗|p(M).

A smooth tensor field over M is a prescription of a tensor T ∈ T •|p(M) at

each p ∈ M such that when T is represented locally in a system of coordinates

around p, the corresponding components are smooth functions on the local

chart and, more generally, across the atlas. This idea can be naturally extended

to consider tensor fields which are not smooth but just Ck for some positive

integer k. An important property of tensor fields is that they are multilinear

over X(M). This property is often referred to as X-linearity. It can be used to

characterise tensors. More precisely, one has the following lemma which will be

used repeatedly (see Penrose and Rindler (1984) for a proof):

Lemma 2.1 (characterisation of tensors) A map

T : T ∗(M)× · · · × T ∗(M)× T (M)× · · · × T (M) → X(M)

is induced by a (k, l)-tensor field if and only if it is multilinear over X(M).

The discussion of tensor fields and the tensor bundle is naturally carried out

using the language of fibre bundles ; see, for example, Kobayashi and Nomizu

(2009). This point of view will, however, not be used in this book.

2.2.5 The commutator of vector fields

Given u, v ∈ T (M), their commutator [u,v] ∈ T (M) is the vector field

defined by

[u,v]f ≡ u(v(f))− v(u(f)),

for f ∈ X(M). Given a basis {ea} one has that the components of the

commutator with respect to this basis are given by

[u,v]a = u(va)− v(ua), ua ≡ 〈ωa,u〉, va ≡ 〈ωa,v〉.
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One can readily verify that

[u,v] = −[v,u],

[u+ v,w] = [u,w] + [v,w],

[[u,v],w] + [[v,w],u] + [[w,u],v] = 0.

The last identity is known as the Jacobi identity – not to be confused with

the Jacobi identity for spinors, to be discussed in Chapter 3.

2.2.6 Abstract index notation for tensors

The presentation of tensors in this section has so far used an index-free

notation . In the sequel, the so-called abstract index notation will also be

used where convenient; see Penrose and Rindler (1984). To this end, lowercase

Latin indices will be employed. Accordingly, a vector field v ∈ T (M) will also be

written as va. Similarly, for α ∈ T ∗(M) one writes αa. More generally, a (k, l)-

tensor T will be denoted by T a1···ak
b1···bl . It is important to stress that the indices

in these expressions do not represent components with respect to some coordinates

or frame. These components are denoted, respectively, by Greek indices and bold

lowercase Latin indices such as in vμ and va. The role of the abstract indices is

to specify in a simple way the nature of the object under consideration and to

describe in a convenient fashion operations between tensors. In particular, the

action 〈α,v〉 of a 1-form on a vector is denoted in abstract index notation by

αav
a, while its tensor product α⊗ v is written as αav

b. Similarly, the operation

defined in Equation (2.2) is expressed as αau
aβbv

b.

The idea behind the use of abstract indices is to have a notation for tensorial

expressions that mirrors the expressions for their basis components (had a

basis been introduced). Using the index notation one can write only tensorial

expressions since no basis has been specified; see, for example, Wald (1984) for

a further discussion on this subject.

Each type of notation has its own advantages. In particular, the index-free

notation is better to describe conceptual and structural aspects, while the

abstract index notation is useful in explicit computations. In particular, the

abstract index notation allows the expression, in a convenient way, of tensors

whose arguments are not given in standard order as in Fab
c
d.

An operation which has a particularly convenient description in terms of

abstract indices is the contraction between a contravariant and a covariant

index. For example, given Fab
c
d, the contraction between the contravariant

index c and, say, the covariant index d is denoted by Fab
c
c. Following the

convention that repeated indices are dummy indices one has, for example, that

Fab
c
c = Fab

d
d. Given a basis {ea} and a cobasis {ωa}, their elements are

denoted, using abstract index notation, as ea
a and ωa

a, respectively. If Fab
c
d ≡

Fab
c
dea

aeb
bωc

ced
d denotes the components of Fab

c
d with respect to a basis {ea}

and its associated cobasis {ωa}, then the components of the contraction Fab
c
c
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are given by Fab
c
c. Following Einstein’s summation convention, a sum on the

index c is understood. Although this definition is given in terms of components

with respect to a basis, the contraction is a geometric (i.e. coordinate- and base-

independent) operation transforming a tensor of rank (k, l) into a tensor of rank

(k − 1, l − 1).

Symmetries of tensors are expressed in a convenient fashion using abstract

index notation. For example, if Sab and Aab denote, respectively, symmetric and

antisymmetric covariant tensors of rank 2, then Sab = Sba and Aab = −Aba. More

generally, given Mab, its symmetric and antisymmetric parts are defined,

respectively, by the expressions

M(ab) ≡
1

2
(Mab +Mba), M[ab] ≡

1

2
(Mab −Mba).

The operations of symmetrisation and antisymmetrisation can be extended to

higher rank tensors. In particular, it is noticed that for a rank 3 covariant tensor

Tabc one has

T[abc] ≡
1

3!
(Tabc + Tbca + Tcab − Tacb − Tcba − Tbac).

If a tensor Sa1···al
is symmetric with respect to the indices a1, . . . , al, then one

writes Sa1···al
= S(a1···al). Similarly, if Aa1···al

is antisymmetric with respect to

a1, . . . , al, one writes Aa1···al
= A[a1···al] and Aa1···al

is said to be an l-form.

Consistent with the abstract index notation for tensors, it is convenient to

introduce a similar convention to denote the various tensor spaces. Accordingly

the bundle Tk
l (M) will, in the following, be denoted by Ta1···ak

b1···bl(M). In

particular, in this notation the tangent bundle T (M) is denoted by Ta(M),

while the cotangent bundle T ∗(M) is given by Ta(M).

A further discussion of the abstract index notation with specific remarks in

the treatment of spinors is given in Section 3.1.4.

2.3 Maps between manifolds

This section discusses maps between manifolds. In what follows let M and N
denote two manifolds. These manifolds could be the same.

2.3.1 Push-forwards and pull-backs

A map ϕ : N → M is said to be smooth (C∞) if for every smooth function

f ∈ X(M), the composition ϕ∗f ≡ f ◦ ϕ : N → R is also smooth. Given p ∈ N ,

let T |p(N ), T |ϕ(p)(M) denote, respectively, the tangent spaces at p ∈ N and

ϕ(p) ∈ M. The map ϕ : N → M induces a map ϕ∗ : T |p(N ) → T |ϕ(p)(M), the

push-forward, through the formula

(ϕ∗v)f(p) ≡ v(f ◦ ϕ)(p), v ∈ T |p(N ).

It can be readily verified that ϕ∗ so defined is a X-linear map; that is, given

v, u ∈ T |p(N ) and a function f ∈ X(M) one has ϕ∗(fv + u) = fϕ∗v + ϕ∗u.
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Note that the above definition is made in a point-wise manner. Smooth vector

fields do not, in general, push forward to smooth vector fields, except in the case

of diffeomorphisms. For example, if ϕ is not surjective, then there is no way

of deciding which vector to assign to a point not on the image of ϕ. If ϕ is

not injective, then for some points of M, there may be several different vectors

obtained as push-forwards of a vector on N . However, given ϕ : N → M a

diffeomorphism, for every v ∈ T (N ) there exists a unique vector field on T (M)

obtained as the pull-back of v; see Lee (2002).

The push-forward ϕ∗ : T (N ) → T (M) can be used, in turn, to define a map

ϕ∗ : T ∗(M) → T ∗(N ), the pull-back, as

〈ϕ∗ω,v〉 ≡ 〈ω, ϕ∗v〉, ω ∈ T ∗(M), v ∈ T (N ).

Again, it can be readily verified that ϕ∗ so defined is X-linear: ϕ∗(fω + ζ) =

f∗ϕ∗ω + ϕ∗ζ for ω, ζ ∈ T ∗(M). The pull-back commutes with the differential

d; that is, ϕ∗(df) = d(ϕ∗f). Contrary to the case of push-forwards, pull-backs of

smooth covector fields always lead to smooth covector fields. There is no ambiguity

in the construction. In the case that ϕ : N → M is a diffeomorphism, then the

inverse pull-back (ϕ∗)−1 is well defined so that covectors can be pulled back from

T ∗(N ) to T ∗(M).

The operations of push-forward and pull-back can be extended in a natural

way, respectively, to arbitrary contravariant and covariant tensors. The case of

most relevance for the subsequent discussion is that of a covariant tensor of rank

2, g ∈ T2(M). Its pull-back ϕ∗g ∈ T2(N ) satisfies

(ϕ∗g)(u,v) = g(ϕ∗u, ϕ∗v), u, v ∈ T (N ).

2.3.2 Lie derivatives

Smooth maps of the manifold into itself, ϕ : M → M, lead to the notion of the

Lie derivative. Given a vector v, the Lie derivative £v measures the change

of a tensor field along the integral curves of v.

In what follows, let f ∈ X(M) denote a smooth function and u, v ∈ T (M),

α ∈ T ∗(M). The action of £v on functions and vectors is given by

£vf ≡ v(f), £vu ≡ [v,u].

The Lie derivative can be extended to act on covectors by requiring the Leibnitz

rule

£v〈α,u〉 = 〈£vα,u〉+ 〈α,£vu〉.

A coordinate expression can be obtained from the latter. The action of £v can

be extended to arbitrary tensor fields by means of the Leibnitz rule

£v(S ⊗ T ) = £vS ⊗ T + S ⊗£vT .
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The reader interested in the derivation of the above expressions and their precise

relation to the notions of push-forward and pull-back of tensor fields is referred

to, for example, Stewart (1991) where a list of coordinate expressions for the

computation of the derivatives is also provided.

2.4 Connections, torsion and curvature

This section discusses the further structure required on a manifold to describe

the geometric notion of curvature – a key ingredient of the equations of general

relativity.

2.4.1 Covariant derivatives and connections

The notion of linear connection allows one to relate tensors at different points

of the manifold M.

Definition 2.2 (linear connection) A linear connection (connection for

short) is a map ∇ : T1(M)×T1(M) → T1(M) sending the pair of vector fields

(u,v) to a vector field ∇vu satisfying:

(i) ∇u+vw = ∇uw +∇vw

(ii) ∇u(v +w) = ∇uv +∇uw

(iii) ∇fuv = f∇uv

(iv) ∇u(fv) = u(f)v + f∇uv

for f ∈ X(M). The vector ∇uv is called the covariant derivative of v with

respect to u.

Any manifold admits a connection. In four dimensions this can be shown

through the specification of 43 functions on the spacetime manifold M; see,

for example, Willmore (1993). The reason behind this result becomes more

transparent once the so-called connection coefficients have been introduced; see

Section 2.6.

As a consequence of the requirement (iv) ∇uv is not X-linear in v; however, it

is X-linear in u. Thus, using Lemma 2.1 for a fixed second argument it defines a

mixed (1, 1)-tensor. Using abstract index notation the latter is denoted by ∇av
b,

so that ∇av
b ∈ Ta

b(M).

From the discussion in the previous paragraph it follows that one can regard

the connection ∇ as a map ∇a : Tb(M) → Ta
b(M). Moreover, a connection ∇

induces a map ∇a : Tb(M) → Tab(M) via

(∇aωb)v
b = ∇a(ωbv

b)− ωb(∇av
b).

This map is fixed if one requires the Leibnitz rule to hold between the product of

a vector and a covector. To extend the covariant derivative to arbitrary tensors

one uses again the Leibnitz rule. For example, from
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∇e(ωaT
a
bcdu

bvcwd) = (∇eωa)T
a
bcdu

bvcwd + ωa(∇eT
a
bcd)u

bvcwd

+ ωaT
a
bcd(∇eu

b)vcwd + ωaT
a
bcdu

b(∇ev
c)wd

+ ωaT
a
bcdu

bvc(∇ew
d),

it follows that

(∇eT
a
bcd)ωau

bvcwd = ∇e(ωaT
a
bcdu

bvcwd)− (∇eωa)T
a
bcdu

bvcwd

− ωaT
a
bcd(∇eu

b)vcwd − ωaT
a
bcdu

b(∇ev
c)wd

− ωaT
a
bcdu

bvc(∇ew
d),

so that one obtains a X-linear map Ta
bcd(M) → Te

a
bcd(M).

The subsequent discussion will make use of the commutator of covariant

derivatives. This is defined as

[∇a,∇b] ≡ 2∇[a∇b].

One has that

[∇a,∇b](TA + SA) = [∇a,∇b]TA + [∇a,∇b]SA,

[∇a,∇b](TARB) = ([∇a,∇b]TA)RB + TA([∇a,∇b]RB),

where A and B denote an arbitrary string of (covariant and contravariant) indices.

Covariant derivatives and derivations on a manifold are related in a natural

way: given a derivation D and a connection ∇ on M there exists a unique

v ∈ T (M) such that Df = va∇af for any f ∈ X(M) ; see, for example, O’Neill

(1983).

2.4.2 Torsion of a connection

The notion of torsion arises from the analysis of the action of the commutator of

covariant derivatives on scalar fields. For convenience the abstract index notation

is used. Consider xab ∈ Tab(M) and f, g ∈ X(M). One readily has that

xab[∇a,∇b](f + g) = xab[∇a,∇b]f + xab[∇a,∇b]g,

xab[∇a,∇b](fg) = (xab[∇a,∇b]f)g + f(xab[∇a,∇b]g).

It follows from the latter that the operator xab[∇a,∇b] must be a derivation; see

Definition 2.1. Thus, there exists ua ∈ Ta(M) such that

xab[∇a,∇b] = ua∇a. (2.5)

The map xab �→ ua∇a defined by Equation (2.5) is X-linear. It defines a tensor

Σ, the torsion tensor of the connection ∇, via uc = xabΣa
c
b. Hence,

∇a∇bf −∇b∇af = Σa
c
b∇cf, f ∈ X(M). (2.6)

https://doi.org/10.1017/9781009291347.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.004


40 Differential geometry

One readily sees that

Σa
c
b = −Σb

c
a.

That is, the torsion is an antisymmetric tensor. If a connection ∇ is such that

Σa
c
b = 0, then it is said to be torsion-free.

Remark. Alternatively, one could have defined the torsion via the relation

Σ(u,v) = ∇uv −∇vu− [u,v], u, v ∈ T (M). (2.7)

2.4.3 Curvature of a connection

In order to discuss the notion of curvature of a connection it is convenient to

define the modified commutator of covariant derivatives

�∇a,∇b� ≡ [∇a,∇b]− Σa
c
b∇c.

Clearly, one has that �∇a,∇b�f = 0 for f ∈ X(M) so that

�∇a,∇b�(fTA) = f�∇a,∇b�TA,

for A denoting an arbitrary string of covariant or contravariant indices. In

particular, one has that

�∇a,∇b�(fu
c) = f�∇a,∇b�u

c,

�∇a,∇b�(u
c + vc) = �∇a,∇b�u

c + �∇a,∇b�v
c.

From the previous expressions one concludes that the map ud �→ �∇a,∇b�u
d is

X-linear. Thus, using Lemma 2.1 it defines a tensor field Rd
cab, the Riemann

curvature tensor of the connection ∇. One writes

�∇a,∇b�u
d = ([∇a,∇b]− Σa

c
b∇c)u

d = Rd
cabu

c. (2.8)

Alternatively, one has that

(∇a∇b −∇b∇a)u
d = Rd

cabu
c +Σa

c
b∇cu

d.

The antisymmetry of �∇a,∇b� on the indices a and b is inherited by the Riemann

curvature tensor, so that

Rd
cab = −Rd

cba.

The action of the commutator of covariant derivatives can be extended to

other tensors using the Leibnitz rule. For example, from

�∇a,∇b�(ωdv
d) = (�∇a,∇b�ωd) v

d + ωd�∇a,∇b�v
d,

one can conclude that

(∇a∇b −∇b∇a)ωd = −Rc
dabωc +Σa

c
b∇cωd.
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Similarly, evaluating �∇a,∇b�(S
d
efωdu

evf ), one concludes that

(∇a∇b −∇b∇a)S
d
ef = Rd

cabS
c
ef −Rc

eabS
d
cf −Rc

fabS
d
ec +Σa

c
b∇cS

d
ef .

Remark. The curvature can be defined in an alternative way via the relation

Riem(u,v)w = ∇u∇vw −∇v∇uw −∇[u,v]w, u, v, w ∈ T (M), (2.9)

where the expression Riem(u,v)w corresponds to Rd
cabw

cuavb in abstract

index notation.

Bianchi identities

In order to investigate further symmetries of the curvature tensor, consider the

triple derivative ∇[a∇b∇c]f of f ∈ X(M). A computation shows, on the one

hand, that

2∇[a∇b∇c]f = 2∇[[a∇b]∇c]f = [∇[a,∇b]∇c]f

= Σ[a
d
b∇|d|∇c]f −Rd

[cab]∇df,

and on the other hand that

2∇[a∇b∇c]f = 2∇[a∇[b∇c]]f

= ∇[a[∇b,∇c]]f = ∇[a

(
Σb

d
c]∇df

)
= ∇[aΣb

d
c]∇df +Σ[b

d
c∇a]∇df.

Putting these two computations together and using the definition of the torsion

tensor, Equation (2.6), one concludes that

∇[aΣb
d
c]∇df +Rd

[cab]∇df +Σ[a
d
bΣc]

e
d∇ef = 0.

As the scalar field f is arbitrary, one concludes that

Rd
[cab] +∇[aΣb

d
c] +Σ[a

e
bΣc]

d
e = 0. (2.10)

This is the so-called first Bianchi identity . In the case of a torsion-free

connection it takes the familiar form

Rd
[cab] = 0.

As a consequence of the antisymmetry in the last two indices, the latter can be

written as

Rd
cab +Rd

abc +Rd
bca = 0.
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Next, consider the action of ∇[a∇b∇c] on a vector field vd. As in the case of

the first Bianchi identity, one can compute this object in two different ways. On

the one hand, one has that

2∇[a∇b∇c]v
d = 2∇[[a∇b]∇c]v

d

= [∇[a,∇b]∇c]v
d

= �∇[a,∇b�∇c]v
d +Σ[a

e
b∇|e|∇c]v

d

= −Re
[cab]∇ev

d +Rd
e[ab∇c]v

e +Σ[a
e
b∇|e|∇c]v

d,

and on the other hand that

2∇[a∇b∇c]v
d = 2∇[a∇[b∇c]]v

d

= 2∇[a�∇b,∇c]�v
d +∇[a

(
Σb

e
c]∇ev

d
)

= ∇[aR
d
|e|bc]v

e +Rd
e[bc∇a]v

e +∇[aΣb
e
c]∇ev

d +Σ[b
e
c∇a]∇ev

d.

Equating the two expressions for 2∇[a∇b∇c]v
d and using the first Bianchi

identity, Equation (2.10), to eliminate covariant derivatives of the torsion tensor

one concludes that

∇[aR
d
|e|bc] +Σ[a

f
bR

d
|e|c]f = 0. (2.11)

This is the so-called second Bianchi identity . For a torsion-free connection

one obtains the well-known expression

∇[aR
d
|e|bc] = 0. (2.12)

2.4.4 Change of connection

Consider two connections ∇ and ∇̄ on the manifold M. A natural question to

be asked is whether there is any relation between these connections and their

associated torsion and curvature tensors. By definition one has that

(∇̄a −∇a)f = 0, f ∈ X(M).

Moreover, one also has that

(∇̄a −∇a)(fv
a) = f(∇̄a −∇a)v

a.

It follows that the map vb �→ (∇̄a −∇a)v
a is X-linear, so that, invoking Lemma

2.1, there exists a tensor field, the transition tensor Qa
b
c, such that

(∇̄a −∇a)v
b = Qa

b
cv

c. (2.13)

Now, from

(∇̄a −∇a)(ωbv
b) = 0,

one readily concludes that

(∇̄a −∇a)ωb = −Qa
c
bωc. (2.14)
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A different choice of covariant derivatives gives rise to a different choice of

transition tensor. The set of connections over a manifold M is an affine space:

given a connection ∇ on the manifold, any other connection can be obtained by

a suitable choice of transition tensor. If Q denotes the index-free version of the

tensor Qa
b
c, then the relation between the connection ∇ and ∇̄ will be denoted,

in a schematic way, as

∇̄−∇ = Q.

In Chapter 5 specific forms for the transition tensor will be investigated.

Transformation of the torsion and the curvature

A direct computation using Equations (2.6) and (2.13) renders the following

relation between the torsion tensors of the connections ∇̄ and ∇:

Σ̄a
c
b − Σa

c
b = −2Q[a

c
b]. (2.15)

In particular, it follows that if Qa
c
b =

1
2Σa

c
b, then Σ̄a

c
b = 0. That is, it is always

possible to construct a connection which is torsion-free.

An analogous, albeit lengthier computation using Equations (2.6) and (2.8)

renders the following relation between the respective curvature tensors:

R̄c
dab −Rc

dab = 2∇[aQb]
c
d − Σa

e
bQe

c
d + 2Q[a

c
|e|Qb]

e
d. (2.16)

2.4.5 The geodesic and geodesic deviation equations

Given a covariant derivative ∇, one can introduce the notion of parallel

propagation . Given u, v ∈ T (M), then u is said to be parallely propagated in

the direction of v if it satisfies the equation ∇vu = 0.

A geodesic γ ⊂ M is a curve whose tangent vector is parallely propagated

along itself. Following the convention of Section 2.2.1, let ẋ denote the tangent

vector to γ. One has that

∇ẋẋ = 0. (2.17)

A congruence of geodesics is the set of integral curves of a vector field

ẋ satisfying Equation (2.17). Any vector z such that [ẋ, z] = 0 is called a

deviation vector of the congruence of geodesics. Assuming that the connection

∇ is torsion-free so that ∇ẋz = ∇zẋ, a computation shows that z satisfies the

geodesic deviation equation

∇ẋ∇ẋz = Riem(ẋ, z)ẋ.

Remark. The set of geodesics emanating from a point p ∈ M allows one to

define a diffeomorphism between a neighbourhood of the origin of T |p(M) and a

suitably small neighbourhood U of p, the so-called exponential map. A precise
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definition of the exponential map is given in Section 11.6.2. Further properties

and applications are given in Sections 14.2 and 18.4.1.

2.5 Metric tensors

A metric on the manifold M is a symmetric rank 2 covariant tensor field g

– to be denoted by gab in abstract index notation. The metric tensor g is said

to be non-degenerate if g(u,v) = 0 for all u if and only if v = 0. In the

sequel, and unless otherwise explicitly stated, it is assumed that all the metrics

under consideration are non-degenerate. If g(u,v) = 0, then the vectors u and

v are said to be orthogonal . Pointwise, the components gab ≡ g(ea, eb) with

respect to a basis {ea} define a symmetric (n× n)-matrix (gab). As this matrix

is symmetric, it has n real eigenvalues. The signature of g is the difference

between the number of positive and negative eigenvalues. If the signature is n or

−n, then g is said to be a Riemannian metric. If the signature is ±(n − 2),

then g is a Lorentzian metric.

From the non-degeneracy of g it follows that there exists a unique contravariant

rank 2 tensor to be denoted by either g� or gab such that

gabg
bc = δa

c.

In terms of components with respect to a basis this means that the matrices (gab)

and (gab) are inverses of each other. Accordingly, g� is also non-degenerate and

one obtains an isomorphism between the vector spaces T |p(M) and T ∗|p(M).

More precisely, given v ∈ T |p(M), then v� ≡ g(v, ·) ∈ T ∗|p(M) as g(u,v) ∈
R for any u ∈ T |p(M). Similarly, given ω ∈ T ∗|p(M), one has that ω� ≡
g�(ω, ·) ∈ T |p(M). In terms of abstract indices, the operations � (flat) and �

(sharp) correspond to the operations of lowering and raising of indices by

means of gab and gab:

va ≡ gabv
b, ωa ≡ gabωb.

The operations � and � are inverses of each other. They can be extended in a

natural way to tensors of arbitrary rank.

Given two manifolds M and M̄ with metrics g and ḡ, respectively, a

diffeomorphism ϕ : M → M̄ is called an isometry if ϕ∗ḡ = g. If an isometry

exists, then the pairs (M, g) and (M̄, ḡ) are said to be isometric. If M = M̄
and g = ḡ, one speaks of an isometry of M.

Remark. Most of the Lorentzian metrics to be considered in this book will

be associated to four-dimensional manifolds. These Lorentzian metrics will

be assumed to have signature −2. This convention leads one to consider

three-dimensional negative-definite Riemannian metrics, that is, metrics with

signature −3. In this book, only three-dimensional Riemannian manifolds will be

considered. In the sequel, the symbol g will be used to denote a generic Lorentzian

metric, while h will be used for a generic negative-definite Riemannian metric.
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Specifics for Lorentzian metrics

Following the standard terminology of general relativity, a pair (M, g) consisting

of a four-dimensional manifold and a Lorentzian metric will be called a

spacetime . The metric g can be used to classify vectors in a pointwise manner

as timelike, null or spacelike depending on whether g(v,v) > 0, g(v,v) = 0

or g(v,v) < 0, respectively. A basis {ea} is said to be orthonormal if

g(ea, eb) = ηab, ηab ≡ diag(1,−1,−1,−1).

It follows that g can be written as

g = ηabω
a ⊗ ωb, (2.18)

where {ωa} denotes the coframe dual to {ea}. A change of basis, as given by

Equation (2.1), preserving Equation (2.18), is called a Lorentz transforma-

tion. A calculation readily shows that for a Lorentz transformation one has

that

ηabA
a
cA

b
d = ηcd.

Further aspects of Lorentz transformations are discussed in Sections 3.1.9, 3.1.12

and 5.1.1.

The set of null vectors at a point p ∈ M is called the null cone at p and will

be denoted by Cp. By definition timelike vectors lie inside the null cone, while

spacelike ones lie outside it. The null cone is made of two half cones. If one of

these half cones can be singled out and called the future half cone C+
p and

the other the past half cone C−
p , then T |p(M) is said to be time oriented.

A timelike vector inside C+
p is said to be future directed ; similarly a timelike

vector inside C−
p is called past directed . If T (M) can be time oriented in a

continuous manner for all p ∈ M, then (M, g) is said to be a time-oriented

spacetime . A curve γ ⊂ M with a timelike, future-oriented tangent vector ẋ is

said to be parametrised by its proper time if g(ẋ, ẋ) = 1.

Specifics for Riemannian metrics

A Riemannian metric h endows the tangent spaces of the manifold with an inner

product. Because of the signature conventions, this inner product is negative

definite. A basic result of Riemannian geometry is that every differential manifold

admits a Riemannian metric. The proof of this argument relies heavily on the

paracompactness of the manifold; see, for example, Choquet-Bruhat et al. (1982).

In the case of a Riemannian metric h, a basis {ei} is said to be orthonormal if

h(ei, ej) = −δij , δij ≡ diag(1, 1, 1).

Thus, using the associated coframe basis {ωi} one can write

h = −δijω
i ⊗ ωj .
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2.5.1 Metric connections and Levi-Civita connections

Two further conditions which are usually required from a connection are metric

compatibility and torsion-freeness. In this section the consequences of these

assumptions are briefly reviewed.

Metric connections

A connection ∇ on M is said to be metric with respect to g if ∇g = 0 (i.e.

∇agbc = 0). The Riemann curvature tensor of the connection ∇ acquires, by

virtue of the metricity condition, a further symmetry. This can be better seen

by applying the modified commutator �∇a,∇b� to the metric gab. On the one

hand, by the assumption of metricity one has �∇a,∇b�gcd = 0, while on the other

hand

�∇a,∇b�gcd = −Re
cabged −Re

dabgce = −Rdcab −Rcdab,

where Rdcab ≡ gdeR
e
cab. Hence, one concludes that

Rcdab = −Rdcab. (2.19)

The Levi-Civita connection

A connection ∇ is said to be the Levi-Civita connection of the metric g

if ∇ is torsion-free and metric with respect to g. The Fundamental Theorem of

Riemannian Geometry (also valid in the Lorentzian case) ensures that the Levi-

Civita connection of a metric g is unique. The proof of this result is well known

and readily available in most books on Riemannian geometry; see, for example,

Choquet-Bruhat et al. (1982). The Levi-Civita connection ∇ of the metric g is

characterised by the so-called Koszul formula

2g(∇vu,w) = v(g(u,w)) + u(g(w,v))−w(g(v,u))

− g(v, [u,w]) + g(u, [w,v]) + g(w, [v,u]). (2.20)

Of particular interest are the further symmetries that the Riemann tensor

of a Levi-Civita connection possesses. First of all, because of the metricity, the

curvature tensor has the symmetry given in Equation (2.19). Furthermore, as

the connection is torsion-free, the first Bianchi identity implies Rc[dab] = 0. From

the latter one readily has that

2Rcdab = Rcdab +Rdcba

= −Rcabd −Rcbda −Rdbac −Rdacb

= −Racdb −Rbcad −Rbdca −Radbc

= Rabcd +Rbadc.
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Hence, one recovers the well-known symmetry of interchange of pairs

Rcdab = Rabcd.

Characterisation of flatness

An open subset U ⊂ M of a spacetime (M, g) is said to be flat if the metric g

on U is isometric to the Minkowski metric

η ≡ ημνdx
μ ⊗ dxν , (ημν) ≡ diag(1,−1,−1,−1).

In the case of a three-dimensional Riemannian manifold (S,h), flatness implies

a local isometry with the three-dimensional Euclidean metric

δ ≡ −δαβdx
α ⊗ dxβ , (δαβ) ≡ diag(1, 1, 1).

The Riemann tensor of a Levi-Civita connection provides a local characterisation

of the flatness of a manifold. More precisely, a metric is flat on U if and only

if its Riemann tensor vanishes on U . The if part of the result follows by direct

evaluation of the Riemann tensor. The only if part is more complicated; see, for

example, Choquet-Bruhat et al. (1982), page 310 for a proof.

Traces

A metric g on a manifold M allows one to introduce a further operation on

tensors which reduces their rank by 2 – the trace with respect to g. Given

T ∈ T2(M), its trace, trgT , is the scalar described in abstract index notation by

gabTab. Observing that gabTab = T a
a, one sees that taking the trace of a tensor is

a generalisation of the operation of contraction. The operation of taking the trace

can be generalised to any pair of indices of the same type in an arbitrary tensor

– for example, gacMabcd and gbcMabcd denote the traces of Mabcd with respect

to the first and third arguments and the second and third ones, respectively.

Given a symmetric tensor on a four-dimensional manifold M, Tab = T(ab) ∈
Tab(M), its trace-free part T{ab} is given by

T{ab} ≡ Tab −
1

4
gabg

cdTcd.

In the case of a three-dimensional manifold S with metric h, the above definition

has to be modified to

T{ij} ≡ Tij −
1

3
hijh

klTkl,

for a symmetric tensor Tij ∈ Tij(S). The operation of taking the trace-free part

of a tensor can be extended to tensors of arbitrary rank. Unfortunately, the

expressions to compute them become increasingly cumbersome. A more efficient

approach to describe this operation is in terms of spinors; see Chapters 3 and 4.

A tensor Ma1···ak
is said to be trace-free if Ma1···ak

= M{a1···ak}.
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2.5.2 Decomposition of the Riemann tensor

In what follows, consider a spacetime (M, g) and a connection ∇̄ on M – not

necessarily the Levi-Civita connection of the metric g. Let R̄a
bcd denote the

Riemann curvature tensor of the connection ∇̄. A concomitant of R̄a
bcd is any

tensorial object which can be constructed from the curvature tensor by means of

the operations of covariant differentiation and contraction with gab and gab. The

basic concomitant of R̄a
bcd is the Ricci tensor R̄cd defined by the contraction

R̄bd ≡ R̄a
bad.

When working in index-free notation the Ricci tensor will be denoted by Ric.

Using the contravariant metric gab one can define a further concomitant, the

Ricci scalar relative to the metric g, R̄, as

R̄ ≡ gbdR̄bd.

A concomitant of R̄a
bcd which will appear recurrently in this book is the

Schouten tensor relative to g, L̄ab. In four dimensions it is defined as

L̄ab =
1

2
R̄ab −

1

12
R̄gab.

The definition of the Schouten tensor is dimension dependent. The definition for

three dimensions will be discussed in Section 2.7. When working in index-free

notation the Schouten tensor will be denoted by Schouten. In the discussion of

spinors in Chapter 3 a further concomitant arises in a natural way: the trace-free

Ricci tensor Φ̄ab. In four dimensions one has that

Φ̄ab ≡
1

2
R̄{ab} =

1

2

(
R̄(ab) −

1

4
R̄gab

)
,

where the overall factor of 1
2 is conventional. It is important to observe that the

tensors R̄ab and L̄ab are not symmetric unless ∇̄ is a Levi-Civita connection.

Finally, one can define the Weyl tensor of ∇̄ relative to g, C̄a
bcd, as the fully

trace-free part of R̄a
bcd. When working in index-free notation the Weyl tensor

will be denoted by Weyl.

The case of a Levi-Civita connection

If ∇̄ is the Levi-Civita connection of the metric g, so that ∇̄ = ∇, it can be

shown that

Rc
dab = Cc

dab + 2(δc[aLb]d − gd[aLb]
c), (2.21a)

= Cc
dab + 2Sd[a

ceLb]e, (2.21b)

where

Sab
cd = δa

cδb
d + δa

dδb
c − gabg

cd.

This tensor will play a special role in the context of conformal geometry; see

Chapter 5. A spinorial derivation of this decomposition is provided in Chapter 3.

https://doi.org/10.1017/9781009291347.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.004


2.5 Metric tensors 49

Remark. The decomposition given by Equations (2.21a) and (2.21b) is unique;

that is, the Rieman tensor cannot be reconstructed from any other combination

of the Schouten and Weyl tensors. Moreover, if Cc
dab = 0 and Lab = 0, then

necessarily Rc
dab = 0. These remarks also hold for the generalisations of the

decomposition to Weyl connections; see Section 5.3 and, in particular, Equation

(5.28a).

The Einstein tensor

An important concomitant of the Riemann tensor of a Levi-Civita connection ∇
is the Einstein tensor G defined in four dimensions by

Gab ≡ Rab −
1

2
Rgab.

Starting from the second Bianchi identity, Equation (2.12), contracting the

indices d and b and then contracting the resulting expression with gae yields

∇aRab =
1

2
∇bR, that is, ∇aGab = 0.

That is, the Einstein tensor is divergence-free.

2.5.3 Volume forms and Hodge duals

The spacetime volume form of the metric g, εabcd, is defined by the conditions

εabcd = ε[abcd], εabcdε
abcd = −24,

and

εabcde0
ae1

be2
ce3

d = 1,

where {ea} is a g-orthonormal frame. A spacetime (M, g) has a non-vanishing

volume element if and only if M is orientable; see, for example, O’Neill (1983);

Willmore (1993). The following properties can be directly verified:

εabcdε
pqrs = −24δa

[pδb
qδc

rδd
s], (2.22a)

εabcdε
pqrd = −6δa

[pδb
qδc

r], (2.22b)

εabcdε
pqcd = −4δa

[pδb
q], (2.22c)

εabcdε
pbcd = −6δa

p; (2.22d)

see, for example, Penrose and Rindler (1984). If ∇ denotes the Levi-Civita

covariant derivative of the metric g, one can then readily verify that ∇aεbcde = 0.

That is, the volume form is compatible with the Levi-Civita connection of the

metric g.
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The Hodge duals

Given an antisymmetric tensor Fab = F[ab], one can use the volume form to

define its Hodge dual ∗Fab as

∗Fab ≡ −1

2
εab

cdFcd.

This definition can be naturally extended to any tensor with a pair of

antisymmetric indices. Using the identity (2.22c) one readily finds that

∗∗Fab = −Fab.

Of special relevance are the Hodge duals of the Riemann and Weyl tensors. If

Rabcd denotes the Riemann curvature of the Levi-Civita connection ∇, then one

can define a left dual and a right dual , respectively, by

∗Rabcd ≡ −1

2
εab

pqRpqcd, R∗
abcd ≡ −1

2
εcd

pqRabpq.

The Hodge dual can be used to recast the Bianchi identities in an alternative

way. More precisely, one has that

Ra[bcd] = δ[b
pδc

qδd]
rRapqr = −1

6
εsbcd (ε

spqrRapqr) =
1

3
εsbcdR

∗
ap

sp.

Thus, the first Bianchi identity Ra[bcd] = 0 is equivalent to

R∗
ab

cb = 0. (2.23)

Furthermore,

1

2
εf

abc∇[aR
d
|e|bc] = ∇a

(
1

2
εf

abcRd
ebc

)
= −∇aR

∗d
ef

a.

Thus, one has that

∇aR∗
abcd = 0.

Finally, it is noticed that the duals of the Weyl tensor satisfy

∗Cabcd = C∗
abcd.

Sometimes it is convenient to make use of operations of dualisation on

one or three indices. Given an arbitrary tensor Ja and another tensor Kabc

antisymmetric in abc one defines

†Jabc ≡ εabc
dJd,

‡Ka ≡ 1

6
εa

bcdKbcd. (2.24)

Using the properties of contractions of the volume form, it can be shown that

‡†Ja = Ja,
†‡Kabc = Kabc.

Further details on the calculations required to obtain all of the properties

discussed in this section can be found in Penrose and Rindler (1984).
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2.6 Frame formalisms

Frame formalisms have been used in many areas of relativity to analyse the

properties of the Einstein field equations and their solutions; see, for example,

Ellis and van Elst (1998); Ellis et al. (2012); Wald (1984). One of the advantages

of frame formalisms is that they lead to consider scalar objects and equations,

which are, in general, simpler to manipulate than their tensorial counterparts. A

further advantage of frames is that they lead to a straight forward transcription

of tensorial expressions into spinors; see Chapter 3.

The purpose of this section is to develop and fix the conventions of a frame

formalism used in Friedrich (2004).

2.6.1 Basic definitions and conventions

Given a spacetime (M, g), let {ea} denote a frame and let {ωb} denote its dual

coframe basis. For the time being, this frame is not assumed to be g-orthogonal.

By definition one has that

〈ωb, ea〉 = δa
b. (2.25)

In what follows, it will be assumed one has a connection ∇ which, for the time

being, is assumed to be general ; that is, it is not necessarily metric or torsion-

free. The connection coefficients of ∇ with respect to the frame {ea}, to be

denoted by Γa
b
c, are defined via

∇aeb = Γa
c
bec, (2.26)

where ∇a ≡ ea
a∇a denotes the covariant directional derivative in the

direction of ea. As ∇aeb is a vector, it follows that

〈ωc,∇aeb〉 = 〈ωc,Γa
d
bed〉 = Γa

d
b〈ωc, ed〉 = Γa

c
b.

This expression could have been used, alternatively, as a definition of the

connection coefficients. In order to carry out computations one also needs an

expression for ∇aω
b. By analogy with Equation (2.26) one can write ∇aω

b =

�a
b
cω

c. The coefficients �a
b
c can be expressed in terms of the connection

coefficients Γa
c
b by differentiating Equation (2.25) with respect to ∇d. Noting

that δa
b is a constant scalar one has, on the one hand, that

∇d(〈ωb, ea〉) = ed(〈ωb, ea〉) = ed(δa
b) = 0,

while, on the other hand, one has

∇d(〈ωb, ea〉) = 〈∇dω
b, ea〉+ 〈ωb,∇dea〉 =

(
�d

b
c + Γd

b
c

)
〈ωc, ea〉,

so that �d
b
c = −Γd

b
c. Consequently, one has

∇aω
b = −Γa

b
cω

c. (2.27)

https://doi.org/10.1017/9781009291347.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.004


52 Differential geometry

It is observed that the specification of the 43 connection coefficients Γa
b
c fully

determines the connection ∇; a generalisation of this argument shows that every

manifold admits a connection; see, for example, Willmore (1993).

Consider now v ∈ T (M) and α ∈ T ∗(M). Writing the above in terms of the

frame and coframe, respectively, one has

v = vaea, va ≡ 〈ωa,v〉,
α = αaω

a, αa ≡ 〈α, ea〉.

In order to further develop the frame formalism it will be convenient to define

∇av
b ≡ 〈ωb,∇av〉, ∇aαb ≡ 〈∇aα, eb〉.

It follows from Equations (2.26) and (2.27) that

∇av
b = ea(v

b) + Γa
b
cv

c, ∇aαb = ea(αb)− Γa
c
bαc. (2.28)

The above expressions extend in the obvious way to higher rank components.

Notice, in particular, that

∇aδb
c = −Γa

d
bδd

c − Γa
c
dδb

d = −Γa
c
b + Γa

c
b = 0.

Metric connections

Now assume that the connection ∇ is g-compatible (i.e. ∇g = 0) and that the

frame {ea} is g-orthogonal; that is, g(ea, eb) = ηab. It follows then that

∇a (g(eb, ec)) = ea(ηbc) = 0

and that

∇ag(eb, ec) = g(∇aeb, ec) + g(eb,∇aec).

Thus, using Equation (2.26) one concludes that

Γa
d
b ηdc + Γa

d
c ηbd = 0. (2.29)

Finally, in the case of a Levi-Civita connection and with the choice of a coordi-

nate basis {∂μ}, the Koszul formula, Equation (2.20), shows that the connection

coefficients reduce to the classical expression for the Christoffel symbols:

Γμ
ν
λ =

1

2
gνρ(∂μgρλ + ∂λgμρ − ∂ρgμλ).
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2.6.2 Frame description of the torsion and curvature

Following the spirit of the previous subsections, let

Σa
c
b ≡ ea

aeb
bωc

cΣa
c
b

denote the components of the torsion tensor Σa
c
b with respect to {ea} and

{ωa}. Given f ∈ X(M), a short computation shows that

Σa
c
bec(f) = ∇aeb(f)−∇bea(f)

= (eaeb(f)− Γa
c
bec(f))− (ebea(f)− Γb

c
aec(f))

= [ea, eb](f)− (Γa
c
b − Γb

c
a) ec(f),

where it has been used that ∇af = ea(f). Thus, one obtains that

Σa
c
bec = [ea, eb]− (Γa

c
b − Γb

c
a) ec. (2.30)

To obtain a frame description of the Riemann curvature tensor one makes use

of Equation (2.8) with uc = ed
c, and contracts with ea

aeb
bωc

d. One then has that

Rc
dab ≡ ea

aeb
bed

dωc
cR

c
dab.

Furthermore, one can compute

ea
aeb

bωc
c∇a∇bed

c = ωc
c∇a(∇bed

c)− ωc
c(∇aeb

b)(∇bed
c),

= ωc
c∇a(Γb

f
def

c)− ωc
cΓa

f
b∇fed

c

= ωc
cea(Γb

f
d)ef

c + ωc
cΓb

f
d∇aef

c − Γa
f
bΓf

c
d

= ea(Γb
c
d) + Γb

f
dΓa

c
f − Γa

f
bΓf

c
d.

A similar computation can be carried out for ea
aeb

bωc
c∇b∇aed

c so that one

obtains

Rc
dab = ea(Γb

c
d)− eb(Γa

c
d) + Γf

c
d(Γb

f
a − Γa

f
b)

+ Γb
f
dΓa

c
f − Γa

f
dΓb

c
f − Σa

f
bΓf

c
d. (2.31)

Remark. Equations (2.30) and (2.31) are sometimes known as the (Cartan)

structure equations. They can be conveniently expressed in the language of

differential forms; see, for example, Frankel (2003); Wald (1984).

2.7 Congruences and submanifolds

The formulation of an initial value problem in general relativity requires the

decomposition of tensorial objects in terms of temporal and spatial components.

This decomposition requires, in turn, an understanding of the way geometric

structures of the spacetime are inherited by suitable subsets thereof. For

concreteness, in what follows a spacetime (M, g) is assumed. Hence M is a

four-dimensional manifold and g denotes a Lorentzian metric.
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2.7.1 Basic notions

Submanifolds

Intuitively, a submanifold of M is a set N ⊂ M which inherits a manifold

structure fromM. A more precise definition of submanifolds requires the concept

of embedding. Given two smooth manifolds M and N , an embedding is a map

ϕ : N → M such that:

(a) The push-forward ϕ∗ : T |p(N ) → T |ϕ(p)(M) is injective for every point

p ∈ N .

(b) The manifold N is diffeomorphic to the image ϕ(N ).

In terms of the above, one defines a submanifold N of M as the image,

ϕ(S) ⊂ M, of a k-dimensional manifold S (k < 4) by an embedding ϕ : S →
M. Often it is convenient to identify N with ϕ(S) and denote, in an abuse of

notation, both manifolds by N . A three-dimensional submanifold of M is called

a hypersurface . In what follows, a generic hypersurface will be denoted by

S. As a consequence of its manifold structure, one can associate to S tangent

and cotangent bundles, T (S) and T ∗(S) and, more generally, a tensor bundle

T•(S).
A vector u (ui) on S can be associated to a vector of M by the push-forward

ϕ∗u. A vector on v ∈ T (M) is said to be normal to S if g(v, ϕ∗u) = 0 for

all u ∈ T (S). If ε ≡ g(v,v) = ±1, one speaks of a unit normal vector – in

this case the surface is said to be timelike if ε = −1 and spacelike if ε = 1.

A hypersurface S of a Lorentzian manifold M is orientable if and only if there

exists a unique smooth normal vector field on S; see, for example, O’Neill (1983).

A natural way of specifying a hypersurface is as the level surface of some

function f ∈ X(M). In this case one has that the gradient df ∈ T ∗(M) gives

rise to a normal vector (df)� ∈ T (M). The unit normal of S, ν (νa), is then

defined as a unit 1-form in the direction of df ; that is, g�(ν,ν) = ε. The normal

of S is defined in the restriction to S of the cotangent bundle T ∗(M). In the

case of a spacelike hypersurface, the normal constructed in this way is taken,

conventionally, to be future pointing.

Foliations

A foliation of a spacetime (M, g) is a family, {St}t∈R, of spacelike hypersurfaces

St, such that ⋃
t∈R

St = M, St1 ∩ St2 = Ø for t1 �= t2.

The hypersurfaces St are called the leaves or slices of the foliation. The foliation

{St}t∈R can be defined in terms of a scalar field f ∈ X(M) such that the leaves

of the foliation are level surfaces of f . That is, given p ∈ St, then f(p) = t. The

scalar field f is said to be a time function . In what follows, it will be convenient
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to identify f and t. The normal of a foliation is a normalised vector field ν

orthogonal to each leaf of a foliation. The gradient dt provides a further 1-form

normal to the leaves. In general, one has that

ν = Ndt.

The proportionality factor N is called the lapse of the foliation.

Distributions

A distribution Π is an assignment at each p ∈ M of a k-dimensional subspace

Π|p of the tangent space T |p(M). The vector spaces Π|p are called hyperplanes

if their dimension is one less than that of M. A submanifold N of M such that

Π|p = T |p(N ) for all p ∈ N is said to be an integrable manifold of Π. If for

every p ∈ M there is an integrable manifold, then Π is said to be integrable.

One has the following result (see e.g. Choquet-Bruhat et al. (1982) for details):

Theorem 2.1 (Frobenius theorem) A distribution Π on M is integrable if

and only if for u, v ∈ Π, one has [u,v] ∈ Π.

The projector associated to the distribution Π is a tensor field ha
b

satisfying ha
bhb

c = δa
c such that for va ∈ T(M) one has that ha

bva ∈ Π.

2.7.2 Geometry of congruences

Integral curves

A curve γ : I → M is the integral curve of a vector v if the tangent vector

of the curve γ coincides with v. Standard theorems of the theory of ordinary

differential equations – see, for example, Hartman (1987) – ensure that, given

v ∈ T (M), for all p ∈ M there exists an interval I � 0 and a unique integral

curve γ : I → M of v such that γ(0) = p. If the domain of an integral curve is

R, then the integral curve is said to be complete .

Congruences

The notion of a congruence of geodesics has been discussed in Section 2.4.5. More

generally, a congruence of curves is the set of integral curves of a (nowhere

vanishing) vector field v on M. In the remaining part of this section it will be

assumed that the curves of a congruence are non-intersecting and timelike. This

will be the case of most relevance in this book. In what follows, t will denote

the vector field generating a timelike congruence. Without loss of generality it is

assumed that g(t, t) = 1.

As in previous sections let {ea} denote a g-orthonormal frame. The orthonor-

mal frame can be adapted to the congruence defined by the vector field t by
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setting e0 = t. Given a point p ∈ M, the tangent space T |p(M) is naturally

split in a part tangential to t, to be denoted by 〈t〉|p (the one-dimensional

subspace spanned by t), and a part orthogonal to it which will be denoted

by 〈t〉⊥|p = 〈ei〉|p (the three-dimensional subspace generated by {ei} with

i = 1, 2, 3). The space 〈t〉⊥|p is an example of a hyperplane. One writes then

T |p(M) = 〈t〉|p ⊕ 〈t〉⊥|p, (2.32)

where ⊕ denotes the direct sum of vectorial spaces – that is, any vector in

T |p(M) can be written in a unique way as the sum of an element in 〈t〉|p and

an element in 〈t〉⊥|p. Hence, one sees that the congruence generated by t gives

rise to a three-dimensional distribution Π. At every point p ∈ M, the subspace

Πp ⊂ T |p(M) corresponds to 〈ei〉|p; that is, {ei} is a basis of Πp. In the sequel,

〈t〉 and 〈t〉⊥ will denote, respectively, the disjoint union of all the spaces 〈t〉|p
and 〈t〉|⊥p , p ∈ M, and one has that Π = 〈t〉⊥. The Frobenius theorem, Theorem

2.1, gives the necessary and sufficient conditions for the distribution defined by

〈t〉|⊥p to be integrable; that is, for the vector t to be the unit normal of a foliation

{St} of the spacetime.

Making use of g� one obtains an analogous decomposition for the cotangent

space. Namely, one has that

T ∗|p(M) = 〈t�〉|p ⊕ 〈t�〉⊥|p, (2.33)

with 〈t�〉⊥|p = 〈ωi〉|p . The decompositions (2.32) and (2.33) can be extended

in a natural way to higher rank tensors by considering tensor products. Given

a tensor Tab with components with respect to the frame {ea} given by Tab,

one has that Tij ≡ ei
aej

bTab and T00 ≡ tatbTab correspond, respectively, to the

components of Tab transversal and longitudinal to t; finally, T0i ≡ taei
bTab

and Ti0 ≡ ei
atbTab are mixed transversal-longitudinal components.

The covariant derivative of t

To further discuss the geometry of the congruence generated by the timelike

vector t it is convenient to introduce the Weingarten map χ : 〈t〉⊥ → 〈t〉⊥
defined by

χ(u) ≡ ∇ut, u ∈ 〈t〉⊥.

One can readily verify that

g(t,χ(u)) = g(t,∇ut) =
1

2
∇u(g(t, t)) = 0, (2.34)

so that indeed χ(u) ∈ 〈t〉⊥. Hence, it is enough to consider the Weingarten map

evaluated on a basis {ei} of 〈t〉⊥. Accordingly, one defines

χi ≡ χ(ei) = χi
jej , χi

j ≡ 〈ωj ,χi〉.
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In the following, it will be more convenient to work with χij ≡ ηjkχi
k. The

scalars χij can be considered as the components of a rank 2 covariant tensor on

χ ∈ 〈t〉⊥⊗〈t〉⊥ – the Weingarten (or shape) tensor of the congruence. The

symmetric part θij ≡ χ(ij) and the antisymmetric part ωij ≡ χ[ij] are called the

expansion and the twist of the congruence, respectively. From g(t, ei) = 0 it

follows that g(∇jt, ei) = −g(t,∇jei). Hence, one can compute

χij = g(ei,χj) = g(ei,∇jt) = −g(t,∇jei)

= −g(t,∇iej − [ei, ej ]) = g(∇it, ej) + g(t, [ei, ej ])

= g(χi, ej) + g(t, [ei, ej ])

= χji + g(t, [ei, ej ]),

where in the third line it has been used that ∇iei − ∇jei = [ei, ej ] as ∇
is torsion-free. Hence, by the Frobenius theorem, Theorem 2.1, the symmetry

relation χij = χji holds if and only if the distribution 〈t〉⊥ is integrable. The

components χij are related to the connection coefficients of ∇ as can be seen

from

χi
j = 〈ωj , χi〉 = 〈ωj ,∇ie0〉 = 〈ωj ,Γi

b
0eb〉 = Γi

j
0.

Alternatively, one has that

χij = Γi
c
0ηcj = −Γi

c
jηc0 = −Γi

0
j ,

where the last two equalities follow from the metricity of the connection; see

Equation (2.29). Now, from g(t, t) = 1, it readily follows that g(∇at, t) = 0.

Consequently, one has that the acceleration of the congruence, a ≡ ∇0t =

∇0e0, if non-vanishing, must be spatial; that is, g(a, t) = 0 so that a ∈ 〈t〉⊥.
Using the definition of connection coefficients of the connection ∇ it follows that

ai ≡ 〈ωi,a〉 = Γ0
i
0.

2.7.3 Geometry of hypersurfaces

Given a spacetime (M, g) and a hypersurface thereof, S, the embedding ϕ :

S → M induces on S a rank 2 covariant tensor h, the intrinsic metric or

first fundamental form of S via the pull-back of g to S:

h ≡ ϕ∗g.

As a consequence of the definition of an embedding, the intrinsic metric h will

be non-degenerate if the hypersurface S is timelike or spacelike. Its signature

will be (+,−,−) in the former case and (−,−,−) in the latter. The (unique)

Levi-Civita connection of h will be denoted by D. Alternatively, one can define

the pull-back connection

ϕ∗∇ : T (S)× T (S) → T (S)
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via

ϕ∗
(
(ϕ∗∇)vu

)
≡ ∇ϕ∗v(ϕ∗u), u, v ∈ T (S). (2.35)

It can be verified that ϕ∗∇ as defined above is indeed a linear connection. Given

a function f ∈ X(M), the action of ϕ∗∇ on the pull-back ϕ∗f is defined by

(ϕ∗∇)v(ϕ
∗f) ≡ ϕ∗(∇ϕ∗vf) ∈ T (M). (2.36)

In order to define the action of ϕ∗∇ on covectors, one requires the Leibnitz rule

(ϕ∗∇)v〈ϕ∗ω,u〉 = 〈(ϕ∗∇)v(ϕ
∗ω),u〉+ 〈ϕ∗ω, (ϕ∗∇)vu〉,

for ω ∈ T ∗(M) and u, v ∈ T (S). A calculation using this expression with the

definitions (2.35) and (2.36) shows that for ω ∈ T ∗(M) one has

(ϕ∗∇)vϕ
∗ω ≡ ϕ∗(∇ϕ∗vω).

In a natural way, the embedding ϕ : S → M takes the connection ∇ to the

connection D. More precisely, one has the following result:

Lemma 2.2 Given u, w ∈ T (S)

ϕ∗(Dwu) = ∇ϕ∗w(ϕ∗u). (2.37)

Proof Given a function f ∈ X(M) one has that

(ϕ∗∇)u ((ϕ∗∇)v(ϕ
∗f)) = (ϕ∗∇)u (ϕ∗(∇ϕ∗vf))

= ϕ∗ (∇ϕ∗u∇ϕ∗vf)

= ϕ∗ (∇ϕ∗v∇ϕ∗uf)

= (ϕ∗∇)v ((ϕ
∗∇)u(ϕ

∗f)) ,

where to pass from the second to the third line it has been used that the

connection ∇ is torsion-free. One thus concludes that the connection ϕ∗∇ is

indeed torsion free. Finally, it can be readily verified that one has compatibility

with the metric h. Indeed,

(ϕ∗∇)vh = (ϕ∗∇)v(ϕ
∗g) = ϕ∗(∇ϕ∗vg) = 0,

where the last equality follows from the g-compatibility of the connection ∇. As

ϕ∗∇ is torsion-free and h-compatible, it follows from the fundamental theorem

of Riemannian geometry that it must coincide with the connection D. In other

words, one has that ϕ∗∇ = D, as given in Equation (2.37).
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A frame formalism on hypersurfaces

The present discussion of the geometry of hypersurfaces is valid for both

the spacelike and timelike case. To accommodate these two possibilities, all

throughout, the following conventions concerning frame indices will be used:

if the hypersurface is timelike so that ε = 1, the frame indices i, j, k, . . . take

the values 1, 2, 3; if the hypersurface is spacelike so that ε = −1, the indices

i, j, k, . . . take the values 0, 1, 2.

Following the conventions given in the previous paragraph, let {ei} ⊂ T (S)
denote a triad of h-orthogonal vectors. If S is spacelike one has that h(ei, ej) =

−δij , while in the timelike case h(ei, ej) = diag(1,−1,−1). Using the push-

forward ϕ∗ : T (S) → T (M) one obtains the vectors ϕ∗ei defined on the

restriction of T (M) to S. The triad {ei} can be naturally extended to a tetrad

{ea} on the restriction of T (M) to S by setting e0 = ν� in the spacelike case and

e3 = ν� in the timelike case. In order to discuss these two cases simultaneously,

the notation e⊥ will be used. Similarly, the notation ω⊥ will be used to denote

the normal element of the coframe, that is, ω0 or ω3. Given v and α on the

restriction of T (M) and T ∗(M) to S, their components along the normal will

be denoted by v⊥ and α⊥, respectively.

To simplify the presentation, the notation ei will often be used to denote both

the vectors of T (S) and their push-forward to T (M). The appropriate point of

view should be clear from the context. In the cases where confusion may arise,

it is convenient to make use of abstract index notation: given ei ∈ T (S), we
shall write ei

i; its push-forward ϕ∗ei ∈ T (M) will be denoted by ei
a. Similarly,

ωi ∈ T ∗(M) will be written as ωi
a, while the pull-back ϕ∗ωi ∈ T ∗(S) will be

denoted by ωi
i. Given u ∈ T (S), one has that ui ≡ 〈ϕ∗ωi,u〉 = 〈ωi, ϕ∗u〉.

Written in index notation uaωi
a = uiωi

i; that is, the (spatial) components of u

and its push-forward ϕ∗u coincide.

As a consequence of the existence of two covariant derivatives, one also has

two sets of directional covariant derivatives. Firstly, acting on spacetime objects,

∇a = ea
a∇a, so that in particular∇i = ei

a∇a. Secondly, acting on hypersurface-

defined objects, one has Di = ei
iDi. The connection coefficients of D with

respect to {ei} are given by γi
j
k ≡ 〈ωj , Diek〉. Now, given u ∈ T (S) and

α ∈ T ∗(S) and defining

Diu
j ≡ 〈ωj , Diu〉, Diαj ≡ 〈Diα, ej〉,

one has, by analogy to Equation (2.28), that

Diu
j = ei(u

j) + γi
j
ku

k, Diαj = ei(αj)− γi
k
jαk.

To investigate relations between the directional covariant derivatives ∇i and

Di one makes use of the formula (2.37) with w = ei, u = ej so that ϕ∗(Diej) =

∇i(ϕ∗ej) = ∇iej – the last equality given in a slight abuse of notation as,

strictly speaking, ∇i acts on spacetime objects. From the definition of connection

coefficients one has that
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Γi
j
k = 〈ωj ,∇iek〉 = 〈ωj , ϕ∗(Diek)〉
= 〈ϕ∗ωj , Diek〉 = γi

j
k. (2.38)

Given a spatial vector u ∈ T (M) (i.e. u⊥ ≡ nau
a = 0) and recalling that

∇au
b ≡ ea

aωb
b∇au

b, using Equation (2.28) one has that

∇au
b = ea(u

b) + Γa
b
ku

k. (2.39)

Restricting the free frame indices in the above expression and using (2.38) one

finds

∇iu
j = ei(u

j) + Γi
j
ku

k

= ei(u
j) + γi

j
ku

k = Diu
j .

The intrinsic curvature tensors on the hypersurface

In order to describe the intrinsic curvature of the submanifold S, one considers

the three-dimensional Riemann curvature tensor rklij of the Levi-Civita

connection D of the intrinsic metric h. Given v ∈ T (S), and recalling that D is

torsion-free, one has by analogy to Equation (2.8) that

DiDjv
k −DjDiv

k = rklijv
l.

As rklij is the Riemann tensor of a Levi-Civita connection one has the symmetries

rklij = r[kl]ij = rkl[ij] = r[kl][ij],

rklij = rijkl, rk[lij] = 0.

In what follows, let rlj ≡ rklkj and r ≡ hljrlj denote, respectively, the Ricci

tensors and scalars of D. It is convenient to also consider the trace-free part

of the three-dimensional Ricci tensor sij and the three-dimensional

Schouten tensor lij given by

sij ≡ r{ij} = rij −
1

3
rhij , lij ≡ sij +

1

12
rhij .

The three-dimensionality of the submanifold S leads to the decomposition

rklij = 2hk[ilj]l + 2hl[j li]k. (2.40)

A computation using the above expressions shows that the second Bianchi

identity D[irjk]lm = 0 takes, in this case, the form

Disij =
1

6
Djr.
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Given the h-orthogonal triad {ei} and its associated coframe basis {ωi} one

defines the components rklij ≡ ei
iej

jωk
kel

lrklij . A computation similar to that

leading to Equation (2.31) yields

rklij = ei(γj
k
l)− ej(γi

k
l) + γm

k
l(γj

m
i − γi

m
j)

+ γj
m

lγi
k
m − γi

m
lγj

k
m. (2.41)

Moreover, the definition of the torsion tensor implies:

[ei, ej ] =
(
γi

k
j − γj

k
i

)
ek. (2.42)

Remark. Equations (2.41) and (2.42) are the three-dimensional analogue of the

(Cartan) structure Equations (2.30) and (2.31).

Extrinsic curvature

The discussion in Section 2.7.2 concerning the Weingarten map can be specialised

to the case of the tangent space of a hypersurface. This leads to the notion of

extrinsic curvature or second fundamental form of the hypersurface S.
The latter is defined via the map K : T (S)× T (S) → R given by

K(u,v) ≡ 〈∇uν,v〉 = g(∇uν
�,v). (2.43)

From the discussion of the Weingarten map it follows that K as defined above is

a symmetric three-dimensional tensor. In abstract index notation the latter will

be written as Kij .

Now, given an orthonormal frame {ei} on S and choosing v = ei and u = ej
in formula (2.43) one finds that the components Kij are given by

Kij = ∇iνj ≡ 〈∇jν, ei〉 = 〈∇jω
⊥, ei〉 (2.44)

so that, comparing Equation (2.44) with the definition of the connection

coefficients one finds that

Kij = Γi
a
⊥ηaj

= −Γi
a
jηa⊥ = −εΓi

⊥
j . (2.45)

Now, looking again at Equation (2.39) and setting a �→ i, b �→ ⊥ one obtains

∇iv
⊥ = ei(v

⊥) + Γi
⊥

kv
k

= Γi
⊥

kv
k = −εKikv

k, (2.46)

as v ∈ T (S) so that v⊥ = 0.
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The Gauss-Codazzi and Codazzi-Mainardi equations

The curvature tensors of the connections ∇ and D are related to each other by

means of the Gauss-Codazzi equation

Rijkl = rijkl +KikKjl −KilKjk, (2.47)

and the Codazzi-Mainardi equation

Ri⊥jk = DjKki −DkKji. (2.48)

The proof of the Gauss-Codazzi equation follows by considering the commu-

tator of ∇, Equation (2.8), acting on the frame vectors el:

∇a∇bel
c −∇b∇ael

c = Rc
dabel

d ≡ Rc
lab.

Contracting the previous equation with ei
aej

bωk
c, and using

∇bel
c = ωb

bΓb
a
lea

c,

together with formulae (2.38) and (2.46) and the expression for the components

of the three-dimensional Riemann tensor in terms of the connection coefficients,

Equation (2.41), yields (2.47). The proof of the Codazzi-Mainardi Equation

(2.48) involves less computation. In this case one evaluates the commutator of

covariant derivatives on the covector ν. Contracting with ei
aej

bek
c one readily

finds that

∇i∇jνk −∇j∇iνk = −R⊥
kij ,

where R⊥
kij ≡ Rd

cabνdek
cei

aej
b. Now, using Equation (2.44) one finds that

∇iKjk −∇jKik = −R⊥
kij .

Formula (2.48) follows from the above expression by noticing that ∇iKjk =

DiKjk as Kjk corresponds to the spatial components of a spatial tensor.

A remark concerning foliations

The discussion in the previous subsections was restricted to a single hypersurface

S. However, it can be readily extended to a foliation {St}. In this case the

contravariant version of the normal ν� and the unit vector t generating the

congruence coincide. Moreover, one has a distribution which is integrable so

that the Weingarten tensor χ ∈
(
〈t〉⊥ ⊗ 〈t〉⊥

)
|p, for p ∈ M can be identified

with the second fundamental form K ∈ T |p(St(p)) ⊗ T |p(St(p)) where t(p) ∈ R

is the only value of the time function such that p ∈ St(p). In particular one has

that χij = χ(ij).
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2.8 Further reading

There is a vast choice of books on differential geometry ranging from introductory

texts to comprehensive monographs. An introductory discussion geared towards

applications in general relativity can be found in the first chapter of Stewart

(1991) or the second and third chapters of Wald (1984). A more extensive

introduction with broader applications in physics is Frankel (2003). A more

advanced discussion, again aimed at applications in physics, is the classical

textbook by Choquet-Bruhat et al. (1982). A systematic and coherent discussion

of the theory from a modern mathematical point of view covering topological

manifolds, smooth manifolds and differential geometry can be found in Lee

(1997, 2000, 2002). A more concise alternative to the latter three books is given

in Willmore (1993). A monograph on Lorentzian geometry with applications to

general relativity is O’Neill (1983). Readers who like the style of this reference will

also find the brief summary of differential geometry given in the first chapter of

O’Neill (1995) useful. The present discussion of differential geometry has avoided

the use of the language of fibre bundles. Readers interested in the latter are

referred to Taubes (2011).

Books on numerical relativity like Baumgarte and Shapiro (2010) and

Alcubierre (2008) also provide introductions to the 3+1 decomposition of general

relativity. In these references, the reader will encounter an approach to this topic

based on the so-called projection formalism. A more detailed discussion, also

aimed at numerical relativity, can be found in Gourgoulhon (2012).
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