2

Differential geometry

The language of general relativity is differential geometry. The present chapter
provides a brief review of the ideas and notions of differential geometry that
will be used in this book. It also serves the purpose of setting the notation and
conventions. The chapter assumes a prior knowledge of the subject at the level,
say, of the first chapter of Choquet-Bruhat (2008) or Stewart (1991), or chapters
2 and 3 of Wald (1984). In view of the applications in later parts of this book,
some topics which may not be regarded as belonging to the standard baggage
of a relativist are discussed in some detail — for example, general (i.e. non-Levi-
Civita) connections, the so-called 1+ 3 split of tensors — that is, a split based on
a congruence of timelike curves, rather than on a foliation, as in the usual 3 41
— and the analysis of the geometry of submanifolds using a frame formalism.

2.1 Manifolds

The basic objects of study in differential geometry are differentiable manifolds.
Intuitively, a manifold is a space that, locally, looks like R™ for some n € N.
Despite this simplicity at a small scale, the global structure of a manifold can be
much more complicated and leads to considerations of differential topology.

2.1.1 On the definition of a manifold

A differentiable function f between open sets U,V C R", f : U — V, is
called a diffeomorphism if it is bijective and if its inverse f~! : V —
U is differentiable. If f and f~' are C* functions, then one has a C*-
diffeomorphism. Furthermore, if f and f~! are C* functions, one speaks of
a smooth diffeomorphism and one writes U ~ V. Throughout this book, the
word smooth will be used as a synonym for C'°°. The words function, map and
mapping will be used as synonyms of each other.

A topological space is a set with a well-defined notion of open and closed
sets. Given some topological space M, a chart on M is a pair (U, ), with
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U C M and ¢ a bijection from U to an open set ¢(U) C R™ such that given
peU

o(p) = (4, ..., 2").

The entries 2, ..., 2" are called local coordinates of the point p € U. The set

U is called the domain of the chart. Two charts (U1, p1) and (Us, p2) are said
to be C*-related if the map

@200 o1 (U NUs) — 0o (U NU)

and its inverse are C*. The map ¢; o @, ! defines changes of local coordinates
(x) = (z,...,2") — (y*) = (y',...,y") in the intersection Uy N Us; see
Figure 2.1. Thus, one can regard the coordinates (y*) as functions of the
coordinates (xz*). All throughout this book the Greek letters p, v, ... will be used
to denote coordinate indices. The functions y*(z', ..., 2") are C*¥ and, moreover,
the Jacobian det(dy*/0z") is different from zero.

A Ck-atlas on M is a collection of charts whose domains cover the set M.
The collection of all C*-related charts is called a mazimal atlas. The pair
consisting of the space M together with its maximal C*-atlas is called a C*-
differentiable manifold. If the charts are C'°-related, one speaks of a smooth
differentiable manifold. If for each ¢ in the atlas, the map ¢ : Y — R”™ has
the same n, then the manifold is said to have dimension n. In what follows,
the discussion will be restricted to manifolds of dimension 3 and 4.

Remark. In introductory discussions of differential geometry one generally
considers smooth structures. However, as will be seen in later chapters, when
one looks at general relativity from the perspective of conformal geometry, the

R™ R™

Figure 2.1 Schematic representation of the change of coordinates between
charts — see the main text for further details. The figure is adapted from
Stewart (1991).
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smoothness (or lack thereof) encodes important physical content. Accordingly,
one is led to consider the more general class of C*-differentiable manifolds.

The differentiable manifolds used in general relativity are generally assumed
to be Hausdorff and paracompact. A differentiable manifold is Hausdorff if
every two points in it admit non-intersecting open neighbourhoods. The reason
for requiring the Hausdorff condition is to ensure that a convergent sequence of
points cannot have more than one limit point. If M is paracompact, then there
exists a countable basis of open sets. Paracompactness is used in several basic
constructions in differential geometry. In particular, it is required to show that
every Riemannian manifold admits a metric. In what follows, all differentiable
manifolds to be considered will be assumed to be Hausdorff and paracompact.
Accordingly, in the rest of the book Hausdorff, paracompact differentiable
manifolds will be simply called manifolds.

Orientability

An open set of R™ is naturally oriented by the order of the coordinates (z*) =
(z1,...,2"). Hence, a chart (U, ¢) inherits an orientation from its image in R™. In
an orientable manifold the orientation of these charts matches together properly.
More precisely, a manifold is said to be orientable if its maximal atlas is such
that the Jacobian of the coordinate transformation for each pair of overlapping
charts is positive.

An alternative description of the notion of orientability in terms of orthonormal
frames will be given in Section 2.5.3. Orientability is a necessary and sufficient
condition for the existence of a spinorial structure on M; see, for example,

Chapter 3.

2.1.2 Manifolds with boundary

Manifolds with boundary arise naturally when discussing general relativity from
the perspective of conformal geometry. In order to introduce this concept one
requires the following subsets of R™:

H" = {(«', -+ ,2") € R" | 2" > 0},
OH" = {(z',--- ,2") € R™ | 2" = 0}.

One says that M is a manifold with boundary if it can be covered with charts
mapping open subsets of M either to open sets of R™ or to open subsets of H".
The boundary of M, OM, is the set of points p € M for which there is a chart
(U, ) with p € U such that p(Uf) C H" and ¢(p) € JH". The boundary OM
is an (n — 1)-dimensional differentiable manifold in its own right. Hence, it is a
submanifold of M — see Section 2.7.1.
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2.2 Vectors and tensors on a manifold

In order to probe the geometric properties of a manifold one needs vectors
and, more generally, tensors. This section provides a brief discussion of these
fundamental notions.

2.2.1 Some ancillary notions
Derivations

Denote by X(M) the set of scalar fields (i.e. functions) over M; that is,
smooth functions f : M — R.

Definition 2.1 (derivations) A derivation is a map D : X(M) — X(M)
such that:

(i) Action on constants. For all constant fields ¢, D(c) = 0.
(i) Linearity. For all f, g € X(M), D(f + g) = D(f) + D(g).
(iii) Leibnitz rule. For all f, g € X(M), D(fg9) = D(f)g+ [D(g).

The connection between derivations and covariant derivatives is discussed in
Section 2.4.1.

Curves

The notion of a vector is intimately related to that of a curve. Given an open
interval I = (a,b) C R where either or both of a, b can be infinite, a smooth
curve on M is a map v : I — M such that for any chart (U, ¢), the composition
poy : I — R™ is a smooth map. One often speaks of the curve y(s) with s € (a, b);
s is called the parameter of the curve. If the domain (a,b) of a curve can be
extended to, say, [a, b] while keeping ~(s) smooth, one has an extendible curve.
A curve which is not extendible is called inextendible.

A tangent vector to a curve ~(s) at a point p € M, to be denoted as ¥(p),
is the map defined by

3): fro ST, =3, FexM)

p

Given a chart (U, ¢) with local coordinates (x*), the components of 4(p) with
respect to the chart are given by

In a slight abuse of notation the points of the curve v will often be denoted by
x(s) € M and its tangent vector by &(s).
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2.2.2 Tangent vectors and covectors

To each point p € M, one can associate a vector space T|,(M), the tangent
space at p consisting of all the tangent vectors at p. In what follows, the elements
of this space will be simply known as wvectors. All throughout, vectors will
mostly be denoted with lowercase bold Latin letters: v, u, w, ... Abstract index
notation will also be used to denote vectors; see Section 2.2.6. The tangent space
T|,(M) can be characterised either as the set of derivations at p of smooth
functions on M or as the set of equivalence classes of curves through p under
a suitable equivalence relation. With the first characterisation one considers the
vectors as directional derivatives, while with the second one they are considered
as velocities. If the dimension of the manifold M is n, then T|,(M) is a
vector space of dimension n. Local coordinates (z*) in a neighbourhood of the
point p give a basis of T'|,(M) consisting of the partial derivative operators
{8/0x"}; where no confusion arises about which coordinates are meant, one
simply writes {0,}. In particular, for the vector tangent to a curve one has
that @(s) = 4#(s)@,. In this last expression and in what follows, Einstein’s
summation convention has been adopted — that is, repeated up and down
coordinate indices indicate summation for all values of the range of the index.
That is,

()8, = 3 #(5),.
pn=1

Covectors

The dual space T*|,(M), the cotangent space at p, is the vector space of
linear maps w : T|,(M) — R. Generic elements of T*|,(M) will be denoted
by lowercase bold Greek letters: a;, 8, w, . ... Being dual to T'|,(M), the space
T*|,(M) has also dimension n, and its elements are called covectors. If w acts
on v € T|,(M), then one writes (w,v) € R.

Given f € X(M), for each v € T'|,(M), one has that v(f) is a scalar. Hence,
[ defines a map, the differential of f, df : T|,(M) — R via

df(v) = v(f).

As a consequence of the linearity of v one has that df is linear, and thus df €
T*|,(M). Given a chart (U, ) with coordinates (z*), the coordinate differentials
dz* form a basis for T*|,(M), the so-called dual basis. The dual basis satisfies
(dzt, 8,) = 0., where §,* is the so-called Kronecker’s delta. It follows that
every covector w at p € M can be written as w = (w, d,,)dx*.

Bases

The previous discussion is extended in a natural way to more general bases. Given
any basis {eg} of T|,(M), its dual basis {w®} of T*|,(M) is defined by the
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condition (w?, e,) = 6. In the rest of the book, lowercase bold indices such as
a, b, ... denote spacetime frame indices ranging O, ...,3. These will be used
when working with four-dimensional manifolds. The lowercase bold Latin letters
1, 7, k, ... will range, depending on the context, over either 0, 1, 2 or 1, 2, 3.
For simplicity of presentation, and unless explicitly stated, a four-dimensional
manifold will be assumed in the subsequent discussion.

Given another pair of bases {&,} and {&°} of T|,(M) and T*|,(M),
respectively, these are related to the bases {e,} and {wP} by non-singular
matrices (A4°) and (A%,) such that

éq = Ay, % = A%WY, (2.1)

satisfying A%, A, = 6.2 so that (A4,%) and (A%) are inverses of each other. In
these last expressions and in what follows, Einstein’s summation convention
for repeated contravariant and covariant frame indices has been adopted so that
a sum from b = 0 to b = 3 is implied.

Condition (2.1) ensures that the new bases {&,} and {&"} are dual to each
other; that is, (&% &,) = 0,°. Given v € T|,(M), a € T*|,(M), the above
transformation rules for the bases imply

v=1%, = 0%, = (f)aAab)eb,
a  ~ ~

O = Qqw® = Ga@* = (AgA%)wb.

The two bases are said to have the same orientation if det(A4,%) > 0.

2.2.3 Higher rank tensors

Higher rank tensors can be constructed using elements of T'|,(M) and
T*|,(M) as basic building blocks. A contravariant tensor of rank k at the
point p is a multilinear map

M :T*,(M) x - x T*|,(M) — R,

k terms

that is, a function taking k covectors as arguments. Similarly, a covariant
tensor of rank | at the point p is a multilinear map

N :T|,(M) x - xT|,(M) — R,

| terms

that is, a function taking [ vectors as arguments. More generally, one can also
have tensors of mized type: a (k,l) tensor at p is a multilinear map

T:T7[p(M) x - X T (M) X T|p(M) x -+ - x T|,(M) — R,

k terms | terms

so that T takes k covectors and [ vectors as arguments. In particular, a (k,0)-
tensor corresponds to a contravariant tensor of rank k, while a (0,1)-tensor is
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a covariant tensor of rank [. The space of (k,l)-tensors at the point p will
be denoted by T}|,(M). In particular, one has the identifications T, (M) =
T|p(M) and T1|,(M) = T*|,(M). Formally, the space T}*|,(M) is obtained as
the tensor product of k copies of T*|,(M) and [ copies of T'|,(M). That is, one
has that

lelp(M) = T|p(M) ®---® T|p(M) ®T*|p(M) @@ T*lp(M) .

k terms | terms

The ordering given in the previous expression is known as the standard order.
Notice, however, that an arbitrary tensor does not need not to have its arguments
in standard order.

As an example of the previous discussion consider v € T|,(M) and a €
T*|,(M). Their tensor product v ® a is then defined by

(vea)(u,f) = (Bv){a,u), weT|(M), BeT M) (22

One readily sees that v ® « is a bilinear map and thus a (1, 1)-tensor at p € M.
The action of the tensor product given in Equation (2.2) can be extended directly
to an arbitrary (finite) number of tensors and covectors. If {€q } and {w®} denote,
respectively, bases of T'|,(M) and T*|,(M), then a basis of T}|,(M) is given by

{ebl®"‘®ebk®wal®"'®wal}.

The collection of all the tensor spaces of the form T}¥|,(M) is called the tensor
algebra at p and will be denoted by T°|,(M). The tensor algebra is defined by
means of a direct sum.

Symmetries of tensors

A covariant tensor of rank [, say, S, is said to be symmetric with respect to its
ith and jth arguments if
S0, 05,...,0) = 8(V1,..., V5, .,V ..,V (2.3)
Similarly, A it is said to be antisymmetric if
A(v1,...,04...,04,...,0)) = —A(V1,...,Vj,...,V;,...,0]). (2.4)

If the properties (2.3) and (2.4) hold under interchange of any arbitrary pair
of indices, one says that S is totally symmetric and A is totally antisym-
metric, respectively. The above definitions can be extended to contravariant
tensors of arbitrary rank. A totally antisymmetric covariant tensor of rank [ is
also called an [-form. Symmetry properties of tensors are best expressed in
terms of abstract index notation.
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2.2.4 Tensor fields

The discussion in the previous subsections concerned the notion of a tensor at
a point p € M. The tensor bundle over M, T*(M), is the disjoint union of
the tensor algebras T°|,(M) for all p € M:

M) = [] T°lM).

peEM

The disjoint union emphasises that although for p, ¢ € M, p # ¢, the spaces
T*[,(M) and T*|,(M) are isomorphic; they are regarded as different sets.
Important subsets of the tensor bundles are the tangent bundle and the
cotangent bundle given, respectively, by

TM)= [ TlM),  T*M)= [] T*,(M).
pEM pPEM

A smooth tensor field over M is a prescription of a tensor T' € T**|,(M) at
each p € M such that when T is represented locally in a system of coordinates
around p, the corresponding components are smooth functions on the local
chart and, more generally, across the atlas. This idea can be naturally extended
to consider tensor fields which are not smooth but just C* for some positive
integer k. An important property of tensor fields is that they are multilinear
over X(M). This property is often referred to as X-linearity. It can be used to
characterise tensors. More precisely, one has the following lemma which will be
used repeatedly (see Penrose and Rindler (1984) for a proof):

Lemma 2.1 (characterisation of tensors) A map
T:T*M) x -+ xT* (M) x T(M) x -+ x T(M) = X(M)

is induced by a (k,l)-tensor field if and only if it is multilinear over X(M).

The discussion of tensor fields and the tensor bundle is naturally carried out
using the language of fibre bundles; see, for example, Kobayashi and Nomizu
(2009). This point of view will, however, not be used in this book.

2.2.5 The commutator of vector fields

Given u, v € T(M), their commutator [u,v] € T(M) is the vector field
defined by

[, v]f = u(v(f)) —v(u(f)),

for f € X(M). Given a basis {es} one has that the components of the
commutator with respect to this basis are given by

[u,v]® = u(v®) — v(u®), u® = (wu), v?=(wv).

https://doi.org/10.1017/9781009291347.004 Published online by Cambridge University Press


https://doi.org/10.1017/9781009291347.004

2.2 Vectors and tensors on a manifold 35

One can readily verify that

[uvv] = 7[”?“’}7
[u+vvw] = [u7w] + [v>w]7

[, 0], w] + [0, ], u] + [[w, u], 0] = 0.

The last identity is known as the Jacobi identity — not to be confused with
the Jacobi identity for spinors, to be discussed in Chapter 3.

2.2.6 Abstract index notation for tensors

The presentation of tensors in this section has so far used an index-free
notation. In the sequel, the so-called abstract indexr notation will also be
used where convenient; see Penrose and Rindler (1984). To this end, lowercase
Latin indices will be employed. Accordingly, a vector field v € T'(M) will also be
written as v®. Similarly, for a € T*(M) one writes «,. More generally, a (k,[)-
tensor T" will be denoted by T, ..p,. It is tmportant to stress that the indices
in these expressions do not represent components with respect to some coordinates
or frame. These components are denoted, respectively, by Greek indices and bold
lowercase Latin indices such as in v* and v®. The role of the abstract indices is
to specify in a simple way the nature of the object under consideration and to
describe in a convenient fashion operations between tensors. In particular, the
action {a,v) of a 1-form on a vector is denoted in abstract index notation by
a,v®, while its tensor product o ® v is written as a,v’. Similarly, the operation
defined in Equation (2.2) is expressed as o, u®Bp0°.

The idea behind the use of abstract indices is to have a notation for tensorial
expressions that mirrors the expressions for their basis components (had a
basis been introduced). Using the index notation one can write only tensorial
expressions since no basis has been specified; see, for example, Wald (1984) for
a further discussion on this subject.

Each type of notation has its own advantages. In particular, the index-free
notation is better to describe conceptual and structural aspects, while the
abstract index notation is useful in explicit computations. In particular, the
abstract index notation allows the expression, in a convenient way, of tensors
whose arguments are not given in standard order as in F;°,.

An operation which has a particularly convenient description in terms of
abstract indices is the contraction between a contravariant and a covariant
index. For example, given Fy;°;, the contraction between the contravariant

¢ and, say, the covariant index 4 is denoted by F,;°.. Following the

index
convention that repeated indices are dummy indices one has, for example, that
Fup’e = Fu%q. Given a basis {e,} and a cobasis {w?}, their elements are
denoted, using abstract index notation, as eq® and w®,, respectively. If Fp,%q =
Furfaca®er’

and its associated cobasis {w®}, then the components of the contraction F,;°.

wC.eq® denotes the components of F,;°q with respect to a basis {eq }
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are given by Fgp€c.. Following FEinstein’s summation convention, a sum on the
index ¢ is understood. Although this definition is given in terms of components
with respect to a basis, the contraction is a geometric (i.e. coordinate- and base-
independent) operation transforming a tensor of rank (k,1) into a tensor of rank
(k—1,1-1).

Symmetries of tensors are expressed in a convenient fashion using abstract
index notation. For example, if S,; and A, denote, respectively, symmetric and
antisymmetric covariant tensors of rank 2, then Sy, = Sy, and Aqp = —Apg. More
generally, given My, its symmetric and antisymmetric parts are defined,
respectively, by the expressions

1
M(ab) = i(Mab + Mba), M[ab] = (Mab - Mba)~

1
2
The operations of symmetrisation and antisymmetrisation can be extended to
higher rank tensors. In particular, it is noticed that for a rank 3 covariant tensor

Twpe one has

1
T[abc] = ?(Tabc + Thca + Teab — Taco — Teba — Tbac)~

If a tensor Sg,...q, is symmetric with respect to the indices a1, ..., a;, then one
writes Sa,...a; = S(ay..-a;)- Similarly, if Ag,..q, is antisymmetric with respect to
ai,...,a;, one writes Agy,...ay = Afq;...q) and Ag,...q, is said to be an I-form.

Consistent with the abstract index notation for tensors, it is convenient to
introduce a similar convention to denote the various tensor spaces. Accordingly
the bundle TF(M) will, in the following, be denoted by T %, ., (M). In
particular, in this notation the tangent bundle T (M) is denoted by T*(M),
while the cotangent bundle T*(M) is given by T,(M).

A further discussion of the abstract index notation with specific remarks in
the treatment of spinors is given in Section 3.1.4.

2.3 Maps between manifolds

This section discusses maps between manifolds. In what follows let M and A
denote two manifolds. These manifolds could be the same.

2.3.1 Push-forwards and pull-backs

A map ¢ : N = M is said to be smooth (C*) if for every smooth function
f € X(M), the composition p*f = f oy : N — R is also smooth. Given p € N,
let T|,(N), T|p(p)(M) denote, respectively, the tangent spaces at p € N and
¢(p) € M. The map ¢ : N'— M induces a map @, : T|,(N) = T, (M), the
push-forward, through the formula

(pev)f(p) =v(fop)p), wveT[WN).

It can be readily verified that ¢, so defined is a X-linear map; that is, given
v, u € T|,(N) and a function f € X(M) one has ¢.(fv +u) = fo.v+ p.u.
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Note that the above definition is made in a point-wise manner. Smooth vector
fields do not, in general, push forward to smooth vector fields, except in the case
of diffeomorphisms. For example, if ¢ is not surjective, then there is no way
of deciding which vector to assign to a point not on the image of ¢. If ¢ is
not injective, then for some points of M, there may be several different vectors
obtained as push-forwards of a vector on A. However, given ¢ : N' — M a
diffeomorphism, for every v € T'(N') there exists a unique vector field on 7'(M)
obtained as the pull-back of v; see Lee (2002).

The push-forward ¢, : T(N) — T(M) can be used, in turn, to define a map
©* : T*(M) — T*(N), the pull-back, as

(prw,v) = (w,pv), weT* (M), wveTN).

Again, it can be readily verified that ¢* so defined is X-linear: ¢*(fw + ¢) =
fro*w + ¢*¢ for w, ¢ € T*(M). The pull-back commutes with the differential
d; that is, p*(df) = d(¢* f). Contrary to the case of push-forwards, pull-backs of
smooth covector fields always lead to smooth covector fields. There is no ambiguity
in the construction. In the case that ¢ : N'— M is a diffeomorphism, then the
inverse pull-back (¢*) ! is well defined so that covectors can be pulled back from
T*(N) to T*(M).

The operations of push-forward and pull-back can be extended in a natural
way, respectively, to arbitrary contravariant and covariant tensors. The case of
most relevance for the subsequent discussion is that of a covariant tensor of rank
2, g € Ta(M). Its pull-back p*g € To(N) satisfies

(¢"g)(u,v) = g(psu,pv),  u,veTN).

2.3.2 Lie derivatives

Smooth maps of the manifold into itself, ¢ : M — M, lead to the notion of the
Lie derivative. Given a vector v, the Lie derivative £, measures the change
of a tensor field along the integral curves of v.

In what follows, let f € X(M) denote a smooth function and u, v € T(M),
a € T*(M). The action of £, on functions and vectors is given by

Lof =v(f), Lou = [v,ul.

The Lie derivative can be extended to act on covectors by requiring the Leibnitz
rule

£ola,u) = (£ya,u) + (o, £,u).

A coordinate expression can be obtained from the latter. The action of £, can
be extended to arbitrary tensor fields by means of the Leibnitz rule

L£y(SOT)=L£,80T +S® £,T.
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The reader interested in the derivation of the above expressions and their precise
relation to the notions of push-forward and pull-back of tensor fields is referred
to, for example, Stewart (1991) where a list of coordinate expressions for the
computation of the derivatives is also provided.

2.4 Connections, torsion and curvature

This section discusses the further structure required on a manifold to describe
the geometric notion of curvature — a key ingredient of the equations of general
relativity.

2.4.1 Covariant derivatives and connections

The notion of linear connection allows one to relate tensors at different points
of the manifold M.

Definition 2.2 (linear connection) A linear connection (connection for
short) is a map V : THM) x THM) — THM) sending the pair of vector fields
(u,v) to a vector field V,u satisfying:

(i) Vytow = Vyw + Vyw
(i1) V(v +w) = Vyv + Vyw
(tii) Vv = fVyuv
() Vu(fv) = u(f)v+ [Vyv

for f € X(M). The vector Vv is called the covariant derivative of v with
respect to u.

Any manifold admits a connection. In four dimensions this can be shown
through the specification of 4 functions on the spacetime manifold M; see,
for example, Willmore (1993). The reason behind this result becomes more
transparent once the so-called connection coefficients have been introduced; see
Section 2.6.

As a consequence of the requirement (iv) V,v is not X-linear in v; however, it
is X-linear in w. Thus, using Lemma 2.1 for a fixed second argument it defines a
mixed (1, 1)-tensor. Using abstract index notation the latter is denoted by V,v°,
so that V,vb € T,%(M).

From the discussion in the previous paragraph it follows that one can regard
the connection V as a map V, : (M) — T,°(M). Moreover, a connection V
induces a map V, : Tp(M) — Tup(M) via

(Vawp)v® = Va(wbvb) — wy(Var?).

This map is fixed if one requires the Leibnitz rule to hold between the product of
a vector and a covector. To extend the covariant derivative to arbitrary tensors
one uses again the Leibnitz rule. For example, from
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Ve(waT“bcdub ¢ d) (Vewa)T® pequPvCw? +wa(VeT“bcd)ubvcwd
4+ wa T bcd(V u)vw? 4+ w T%equl (Vov®)w?
+ wWaT%equbv “(Vew )

it follows that
(VeT“bcd)waubvcwd = Ve(w,T* pequPv® d) (Ve wa)T“bcdubvcwd
—w T bcd(V u)vw? — W T%equl (Vov®)w?
— waT%pequlv “(Vew )
so that one obtains a X-linear map T%cq(M) = T pea(M).

The subsequent discussion will make use of the commutator of covariant
derivatives. This is defined as

[V, Vi] = ZV[aVb].
One has that
[Va, Vb](TA + SA) = [Va, Vb]TA + [Va, Vb]S_A,
[Va, Vo|(TaRB) = ([Va, Vo] Ta)Rp + Ta([Va, Vi Rp),

where 4 and g denote an arbitrary string of (covariant and contravariant) indices.

Covariant derivatives and derivations on a manifold are related in a natural
way: given a derivation D and a connection V on M there exists a unique
v € T(M) such that Df = vV, f for any f € X(M) ; see, for example, O’Neill
(1983).

2.4.2 Torsion of a connection

The notion of torsion arises from the analysis of the action of the commutator of
covariant derivatives on scalar fields. For convenience the abstract index notation
is used. Consider z% € T (M) and f, g € X(M). One readily has that

2V, Vo] (f + 9) = 2°°[Va, Vi f + 2°°[Va, Vig,
2%V, Vil (f9) = (2°°[Va, Vil f)g + f(2°[Va, Vilg).

It follows from the latter that the operator %[V, V] must be a derivation; see
Definition 2.1. Thus, there exists u® € (M) such that

2%V, Vo] = uV,. (2.5)

The map 2% + u?V, defined by Equation (2.5) is X-linear. It defines a tensor
3, the torsion tensor of the connection V, via u¢ = z%%,¢. Hence,

Vavbf - vbvaf = Eacbvcf, f € X(M) (26)
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One readily sees that
Eacb = _Ebctr

That is, the torsion is an antisymmetric tensor. If a connection V is such that
Y% = 0, then it is said to be torsion-free.

Remark. Alternatively, one could have defined the torsion via the relation

Y(u,v) = Vyuv — Vyu — [u, v], u, v € T(M). (2.7

2.4.8 Curvature of a connection

In order to discuss the notion of curvature of a connection it is convenient to
define the modified commutator of covariant derivatives

[[vaa vb]] = [va7 vb] - Eacbvo
Clearly, one has that [V,, V] f =0 for f € X(M) so that
[Va, Vo[ (fTa) = f[Va; Vi]Ta,

for 4 denoting an arbitrary string of covariant or contravariant indices. In
particular, one has that

[Va, Vel (fu®) = f[Va, Vi]us,
[Va, Vo] (u€ + v°) = [Va, Vi]u® + [Va, V]

From the previous expressions one concludes that the map u s [V,, V;]Ju? is
X-linear. Thus, using Lemma 2.1 it defines a tensor field R%.,;, the Riemann
curvature tensor of the connection V. One writes

[Va, ViJu? = ([Va, V] — % V) u? = R qpu®. (2.8)
Alternatively, one has that
(VaVy — Vi Vo) u® = R ppu’ + 2,5V ul.

The antisymmetry of [V, V,] on the indices , and  is inherited by the Riemann
curvature tensor, so that

d d
R cab = -R cba-

The action of the commutator of covariant derivatives can be extended to
other tensors using the Leibnitz rule. For example, from

[[Va, Vbﬂ (OJd’Ud) = ([[Va, Vbﬂwd) 'Ud + wd[[Va, Vbﬂvd,
one can conclude that

(VaVip — ViVa) wg = =R qapwe + 20V ewq.
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Similarly, evaluating [V, V,](S% swquv?), one concludes that

(vavb - vbva) Sdef = Rdcabscef - Rceabsdcf - Rcfabsdec + Eacbvcsdef~

Remark. The curvature can be defined in an alternative way via the relation

Riem(u,v)w = V,V,w — V,Vyw — Vi w, u, v, w € T(M), (2.9)

where the expression Riem(u,v)w corresponds to R%.,,wu®® in abstract

index notation.

Bianchi identities

In order to investigate further symmetries of the curvature tensor, consider the
triple derivative Vi,V Vg f of f € X(M). A computation shows, on the one
hand, that

2V VoV f =2V ViV f = [Vie, VbV f
=%V g Vaf — Rean Vaf,

and on the other hand that

W (VYo f = 2V Vi Vo f
= V0alVe, Volf = Viu (299 Vaf)
= V2 Vaf + 53 Vo Val.

Putting these two computations together and using the definition of the torsion
tensor, Equation (2.6), one concludes that

VS gVaf + RYeat) Vaf + LS aVef = 0.
As the scalar field f is arbitrary, one concludes that
R + Va6 + 28 % = 0. (2.10)

This is the so-called first Bianchi identity. In the case of a torsion-free
connection it takes the familiar form

Rd[cab] = 0.

As a consequence of the antisymmetry in the last two indices, the latter can be
written as

Rdcab + Rdabc + Rdbca =0.
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Next, consider the action of V[,V,V on a vector field v?. As in the case of
the first Bianchi identity, one can compute this object in two different ways. On
the one hand, one has that

2V [,V Vvt = 2V [,V Vot
= [V[a, Vb]Vc]vd
= [Via: Vel Vvt + 4V ¢ Vot
= - Re[cab]vevd =+ Rde[abvc]ve + 2[aebv|e\vc]vd7
and on the other hand that
2V, Vp Vvt = 2V, V[,V g0
= 2V[a[[Vb7 VC]HUd + V[a (Zbec]vevd)
= V[aRdeC]Ue + Rde[bcva]ve + V[aEbec]Vevd + E[becva]vevd.
Equating the two expressions for QV[QVbVC]fud and using the first Bianchi

identity, Equation (2.10), to eliminate covariant derivatives of the torsion tensor
one concludes that

d d
ViaR% ejpe) + Za” 6B e1ey = 0. (2.11)

This is the so-called second Bianchi identity. For a torsion-free connection
one obtains the well-known expression

ViR e = 0. (2.12)

2.4.4 Change of connection

Consider two connections V and V on the manifold M. A natural question to
be asked is whether there is any relation between these connections and their
associated torsion and curvature tensors. By definition one has that

(Va=Va)f=0, feX(M).
Moreover, one also has that

(Va = Va)(fv*) = f(Va = Vo)™

It follows that the map v® — (V, — V,)v? is X-linear, so that, invoking Lemma
2.1, there exists a tensor field, the transition tensor Q,°., such that

(Va = Va)o' = Qa’cv”. (2.13)
Now, from

(Va = Va) (wpo®) = 0,
one readily concludes that

(va - va)(*'-}b = _Qacbwc- (214)

https://doi.org/10.1017/9781009291347.004 Published online by Cambridge University Press


https://doi.org/10.1017/9781009291347.004

2.4 Connections, torsion and curvature 43

A different choice of covariant derivatives gives rise to a different choice of
transition tensor. The set of connections over a manifold M is an affine space:
given a connection V on the manifold, any other connection can be obtained by
a suitable choice of transition tensor. If @@ denotes the index-free version of the
tensor Qq”c, then the relation between the connection V and V will be denoted,
in a schematic way, as

vV-Vv=Q.

In Chapter 5 specific forms for the transition tensor will be investigated.

Transformation of the torsion and the curvature

A direct computation using Equations (2.6) and (2.13) renders the following

relation between the torsion tensors of the connections V and V:

S0 — Lo = —2Qu%- (2.15)

In particular, it follows that if Q,°, = %Zacb, then ¥,¢, = 0. That is, it is always
possible to construct a connection which is torsion-free.

An analogous, albeit lengthier computation using Equations (2.6) and (2.8)
renders the following relation between the respective curvature tensors:

RCaab — R%aab = 2V [4Qp°4 — Xa“4Qe d + 2Q[ |¢) Q) a- (2.16)

2.4.5 The geodesic and geodesic deviation equations

Given a covariant derivative V, one can introduce the notion of parallel
propagation. Given u, v € T(M), then w is said to be parallely propagated in
the direction of v if it satisfies the equation V,u = 0.

A geodesic v C M is a curve whose tangent vector is parallely propagated
along itself. Following the convention of Section 2.2.1, let & denote the tangent
vector to . One has that

Vizx = 0. (2.17)

A congruence of geodesics is the set of integral curves of a vector field
& satisfying Equation (2.17). Any vector z such that [&,z] = 0 is called a
deviation vector of the congruence of geodesics. Assuming that the connection
V is torsion-free so that Vgzz = V&, a computation shows that z satisfies the
geodesic deviation equation

ViViz = Riem(x, z)x.

Remark. The set of geodesics emanating from a point p € M allows one to
define a diffeomorphism between a neighbourhood of the origin of T'|,(M) and a
suitably small neighbourhood U of p, the so-called exponential map. A precise
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definition of the exponential map is given in Section 11.6.2. Further properties
and applications are given in Sections 14.2 and 18.4.1.

2.5 Metric tensors

A metric on the manifold M is a symmetric rank 2 covariant tensor field g
— to be denoted by g, in abstract index notation. The metric tensor g is said
to be non-degenerate if g(u,v) = 0 for all w if and only if v = 0. In the
sequel, and unless otherwise explicitly stated, it is assumed that all the metrics
under consideration are non-degenerate. If g(u,v) = 0, then the vectors w and
v are said to be orthogonal. Pointwise, the components gqap = g(eq,ep) with
respect to a basis {es} define a symmetric (n X n)-matrix (gqp). As this matrix
is symmetric, it has n real eigenvalues. The signature of g is the difference
between the number of positive and negative eigenvalues. If the signature is n or
—n, then g is said to be a Riemannian metric. If the signature is +(n — 2),
then g is a Lorentzian metric.

From the non-degeneracy of g it follows that there exists a unique contravariant
rank 2 tensor to be denoted by either g or g®® such that

gabgbC = 0,°.

In terms of components with respect to a basis this means that the matrices (gqp)
and (g°®) are inverses of each other. Accordingly, g* is also non-degenerate and
one obtains an isomorphism between the vector spaces T'|,(M) and T*|,(M).
More precisely, given v € T|,(M), then v’ = g(v,-) € T*|,(M) as g(u,v) €
R for any w € T|,(M). Similarly, given w € T*|,(M), one has that w =
g% (w,") € T|,(M). In terms of abstract indices, the operations > (flat) and *
(sharp) correspond to the operations of lowering and raising of indices by
means of gq, and g:

— b a — _ab
Vg = GabV, W =g Wy

The operations ” and ! are inverses of each other. They can be extended in a
natural way to tensors of arbitrary rank.

Given two manifolds M and M with metrics g and g, respectively, a
diffeomorphism ¢ : M — M is called an isometry if p*g = g. If an isometry
exists, then the pairs (M, g) and (M, g) are said to be isometric. If M = M
and g = g, one speaks of an isometry of M.

Remark. Most of the Lorentzian metrics to be considered in this book will
be associated to four-dimensional manifolds. These Lorentzian metrics will
be assumed to have signature —2. This convention leads one to consider
three-dimensional negative-definite Riemannian metrics, that is, metrics with
signature —3. In this book, only three-dimensional Riemannian manifolds will be
considered. In the sequel, the symbol g will be used to denote a generic Lorentzian
metric, while h will be used for a generic negative-definite Riemannian metric.
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Specifics for Lorentzian metrics

Following the standard terminology of general relativity, a pair (M, g) consisting
of a four-dimensional manifold and a Lorentzian metric will be called a
spacetime. The metric g can be used to classify vectors in a pointwise manner
as timelike, null or spacelike depending on whether g(v,v) > 0, g(v,v) =0
or g(v,v) < 0, respectively. A basis {eq} is said to be orthonormal if

g(ea7eb) = Tab, nabEdiag(la_la_17_1)'
It follows that g can be written as
g = Napw® @ WP, (2.18)

where {w®} denotes the coframe dual to {es}. A change of basis, as given by
Equation (2.1), preserving Equation (2.18), is called a Lorentz transforma-
tion. A calculation readily shows that for a Lorentz transformation one has
that

nabAacAbd = Ned-

Further aspects of Lorentz transformations are discussed in Sections 3.1.9, 3.1.12
and 5.1.1.

The set of null vectors at a point p € M is called the null cone at p and will
be denoted by C,. By definition timelike vectors lie inside the null cone, while
spacelike ones lie outside it. The null cone is made of two half cones. If one of
these half cones can be singled out and called the future half cone C;‘ and
the other the past half cone C,, then T|,(M) is said to be time oriented.
A timelike vector inside C;‘ is said to be future directed; similarly a timelike
vector inside C, is called past directed. If T(M) can be time oriented in a
continuous manner for all p € M, then (M, g) is said to be a time-oriented
spacetime. A curve v C M with a timelike, future-oriented tangent vector & is
said to be parametrised by its proper time if g(z, ) = 1.

Specifics for Riemannian metrics

A Riemannian metric h endows the tangent spaces of the manifold with an inner
product. Because of the signature conventions, this inner product is negative
definite. A basic result of Riemannian geometry is that every differential manifold
admits a Riemannian metric. The proof of this argument relies heavily on the
paracompactness of the manifold; see, for example, Choquet-Bruhat et al. (1982).

In the case of a Riemannian metric h, a basis {e;} is said to be orthonormal if

h(e;, e;) = —d;;5, 0;; = diag(1,1,1).
Thus, using the associated coframe basis {w®} one can write

h = —(5,-jwi X W,
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2.5.1 Metric connections and Levi-Civita connections

Two further conditions which are usually required from a connection are metric
compatibility and torsion-freeness. In this section the consequences of these
assumptions are briefly reviewed.

Metric connections

A connection V on M is said to be metric with respect to g if Vg =0 (i.e.
Vagse = 0). The Riemann curvature tensor of the connection V acquires, by
virtue of the metricity condition, a further symmetry. This can be better seen
by applying the modified commutator [V,, V] to the metric gqp. On the one
hand, by the assumption of metricity one has [V, V] ged = 0, while on the other
hand

IIVCM vb]]gcd = _Recabged - Redabgce = _Rdcab - Rcdaba

where Rgcqb = gae R cap- Hence, one concludes that

Rcdab - _Rdcab- (219)

The Levi-Civita connection

A connection V is said to be the Levi-Civita connection of the metric g
if V is torsion-free and metric with respect to g. The Fundamental Theorem of
Riemannian Geometry (also valid in the Lorentzian case) ensures that the Levi-
Civita connection of a metric g is unique. The proof of this result is well known
and readily available in most books on Riemannian geometry; see, for example,
Choquet-Bruhat et al. (1982). The Levi-Civita connection V of the metric g is
characterised by the so-called Koszul formula

29(Vou, w) = v(g(u, w)) + u(g(w,v)) — w(g(v, u))
—g(v,[u,w}) +g(u, [’UJ,UD +g(w,[v,u]). (2'20)

Of particular interest are the further symmetries that the Riemann tensor
of a Levi-Civita connection possesses. First of all, because of the metricity, the
curvature tensor has the symmetry given in Equation (2.19). Furthermore, as
the connection is torsion-free, the first Bianchi identity implies Rc[gqp) = 0. From
the latter one readily has that

2Rcqab = Redab + Racba
= —Rcabd — Revda — Rapac — Rdach
= —Racay — Rocad — Rodea — Radbe
= Raped + Rpade-
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Hence, one recovers the well-known symmetry of interchange of pairs

Rcdab = Rabcd-

Characterisation of flatness

An open subset U C M of a spacetime (M, g) is said to be flat if the metric g
on U is isometric to the Minkowski metric

n = de’ ® da”, (Muv) = diag(l,-1,—-1,-1).

In the case of a three-dimensional Riemannian manifold (S, k), flatness implies
a local isometry with the three-dimensional Fuclidean metric

0 = —dopda® @ da?, (0ap) = diag(1,1,1).

The Riemann tensor of a Levi-Civita connection provides a local characterisation
of the flatness of a manifold. More precisely, a metric is flat on ¢/ if and only
if its Riemann tensor vanishes on U. The if part of the result follows by direct
evaluation of the Riemann tensor. The only if part is more complicated; see, for
example, Choquet-Bruhat et al. (1982), page 310 for a proof.

Traces

A metric g on a manifold M allows one to introduce a further operation on
tensors which reduces their rank by 2 — the trace with respect to g. Given
T € Ty(M), its trace, trgT, is the scalar described in abstract index notation by
g®T,p,. Observing that ¢*T,;, = T?,, one sees that taking the trace of a tensor is
a generalisation of the operation of contraction. The operation of taking the trace
can be generalised to any pair of indices of the same type in an arbitrary tensor
— for example, g% Mapeq and g°¢M,peq denote the traces of Mypeq with respect
to the first and third arguments and the second and third ones, respectively.

Given a symmetric tensor on a four-dimensional manifold M, Top, = T(ap) €
Tap(M), its trace-free part T,y is given by

1
Tiapy = Tap — ZgabngTcw

In the case of a three-dimensional manifold S with metric h, the above definition
has to be modified to

_ Lk
Tujy =Ty — ghijh T,

for a symmetric tensor T;; € T;;(S). The operation of taking the trace-free part
of a tensor can be extended to tensors of arbitrary rank. Unfortunately, the
expressions to compute them become increasingly cumbersome. A more efficient
approach to describe this operation is in terms of spinors; see Chapters 3 and 4.
A tensor My, ...q, is said to be trace-free it My, ..q, = Myq,...q,}-
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2.5.2 Decomposition of the Riemann tensor

In what follows, consider a spacetime (M, g) and a connection V on M — not
necessarily the Levi-Civita connection of the metric g. Let R%.q denote the
Riemann curvature tensor of the connection V. A concomitant of R%.q is any
tensorial object which can be constructed from the curvature tensor by means of
the operations of covariant differentiation and contraction with g, and g%°. The
basic concomitant of R%.q is the Ricci tensor R.; defined by the contraction

Rpqa = R%aq.

When working in index-free notation the Ricci tensor will be denoted by Ric.
Using the contravariant metric g® one can define a further concomitant, the
Ricci scalar relative to the metric g, R, as

R = gbded.
A concomitant of R%,.q which will appear recurrently in this book is the

Schouten tensor relative to g, L,p. In four dimensions it is defined as

_ 1 1
Lazf ab T T4
b= 5 Ha— 33

The definition of the Schouten tensor is dimension dependent. The definition for
three dimensions will be discussed in Section 2.7. When working in index-free
notation the Schouten tensor will be denoted by Schouten. In the discussion of
spinors in Chapter 3 a further concomitant arises in a natural way: the trace-free
Ricci tensor ®gp. In four dimensions one has that

Rgab-

— 1= 1/ - 1=
<I)ab = §R{ab} = § (R(ab) - 4Rgab>7

where the overall factor of % is conventional. It is important to observe that the
tensors Ry and Lgp, are not symmetric unless V is a Levi-Civita connection.
Finally, one can define the Weyl tensor of V relative to g, C%.q, as the fully

trace-free part of R%.s. When working in index-free notation the Weyl tensor
will be denoted by Weyl.

The case of a Levi-Civita connection

If V is the Levi-Civita connection of the metric g, so that V = V, it can be
shown that

R 4ap = Caap + 2(6 (o Lyja — ajaly)), (2.21a)
= C%ab + 254" Lp)e, (2.21b)
where
Sap®t = 6,50 + 6,90, — gaprg™®.

This tensor will play a special role in the context of conformal geometry; see
Chapter 5. A spinorial derivation of this decomposition is provided in Chapter 3.
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Remark. The decomposition given by Equations (2.21a) and (2.21b) is unique;
that is, the Rieman tensor cannot be reconstructed from any other combination
of the Schouten and Weyl tensors. Moreover, if C¢,, = 0 and Ly, = 0, then
necessarily R4, = 0. These remarks also hold for the generalisations of the
decomposition to Weyl connections; see Section 5.3 and, in particular, Equation
(5.28a).

The Einstein tensor

An important concomitant of the Riemann tensor of a Levi-Civita connection V
is the Finstein tensor G defined in four dimensions by

1
Gab = Rab - iRgalr

Starting from the second Bianchi identity, Equation (2.12), contracting the
indices ¢ and ; and then contracting the resulting expression with ¢g®¢ yields

VRap = %VbR, that is, VeGyp, = 0.
That is, the Einstein tensor is divergence-free.
2.5.3 Volume forms and Hodge duals
The spacetime volume form of the metric g, €4pcq, is defined by the conditions
€abed = €[abed]s €abea€™ = —24,

and
a_ b_c_d
€abedo €1 €2e3” =1,

where {e,} is a g-orthonormal frame. A spacetime (M, g) has a non-vanishing
volume element if and only if M is orientable; see, for example, O’Neill (1983);
Willmore (1993). The following properties can be directly verified:

Caped€?T = —245,1P6,95,75,°), (2.22a)
6ab(:depqrd = *65a[p5bq6cr], (222b)
Eabcdequd = _4611 [pébq]v (2220)
6abchPde = *66(11); (222(1)

see, for example, Penrose and Rindler (1984). If V denotes the Levi-Civita
covariant derivative of the metric g, one can then readily verify that V epeqe = 0.
That is, the volume form is compatible with the Levi-Civita connection of the
metric g.
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The Hodge duals

Given an antisymmetric tensor F,; = Fl,3), one can use the volume form to
define its Hodge dual *Fy;, as

*

1
— d
ab = _ieabc Fey.

This definition can be naturally extended to any tensor with a pair of
antisymmetric indices. Using the identity (2.22c¢) one readily finds that

*ok _
ab — —Lab-

Of special relevance are the Hodge duals of the Riemann and Weyl tensors. If
Rapeq denotes the Riemann curvature of the Levi-Civita connection V, then one
can define a left dual and a right dual, respectively, by

1 1
*Rabcd = _§5abqupch7 Zbcd = _iecdquabpq-

The Hodge dual can be used to recast the Bianchi identities in an alternative
way. More precisely, one has that

1 1
Ra[bcd] = §[bp56q6d]rRapqr = _Eesbcd (EquTRaqu) = gfsbcdR*apsp-
Thus, the first Bianchi identity R,p.q = 0 is equivalent to
R =0. (2.23)

Furthermore,
LT Ry = V (1e e Rd ) = —VaR* "
5¢f [adV7 |e|be] al|5€r ebe all ey
Thus, one has that
VOR* 4ped = 0.
Finally, it is noticed that the duals of the Weyl tensor satisfy
*Cabed = C;bcd'

Sometimes it is convenient to make use of operations of dualisation on
one or three indices. Given an arbitrary tensor J, and another tensor Kgp.
antisymmetric in 45, one defines

1
Tt]abc = 6abchd; iKa = gﬁadeKbcm (224)
Using the properties of contractions of the volume form, it can be shown that
iJrJa = Jaa TiKabc = Kabe-

Further details on the calculations required to obtain all of the properties
discussed in this section can be found in Penrose and Rindler (1984).
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2.6 Frame formalisms

Frame formalisms have been used in many areas of relativity to analyse the
properties of the Einstein field equations and their solutions; see, for example,
Ellis and van Elst (1998); Ellis et al. (2012); Wald (1984). One of the advantages
of frame formalisms is that they lead to consider scalar objects and equations,
which are, in general, simpler to manipulate than their tensorial counterparts. A
further advantage of frames is that they lead to a straight forward transcription
of tensorial expressions into spinors; see Chapter 3.

The purpose of this section is to develop and fix the conventions of a frame
formalism used in Friedrich (2004).

2.6.1 Basic definitions and conventions

Given a spacetime (M, g), let {e,} denote a frame and let {w®} denote its dual
coframe basis. For the time being, this frame is not assumed to be g-orthogonal.
By definition one has that

(Wb eq) = 84" (2.25)

In what follows, it will be assumed one has a connection V which, for the time
being, is assumed to be general; that is, it is not necessarily metric or torsion-
free. The connection coefficients of V with respect to the frame {e,}, to be
denoted by I'g®,, are defined via

Vaeb = Facbec, (226)

where Vo, = €,*V, denotes the covariant directional derivative in the
direction of e,. As Vqep is a vector, it follows that

(W, Vaep) = (W Te%eq) = To%(w, eq) = [y

This expression could have been used, alternatively, as a definition of the
connection coefficients. In order to carry out computations one also needs an
expression for V,w?. By analogy with Equation (2.26) one can write V,w? =
Ualewt. The coefficients U,b. can be expressed in terms of the connection
coefficients T', %, by differentiating Equation (2.25) with respect to V4. Noting
that d4? is a constant scalar one has, on the one hand, that

Vd(<wb7 €a)) = ed(<""ba €a)) = ed(5ab) =0,
while, on the other hand, one has
Va((w® eq)) = (Vaw®, eq) + (W', Vaeq) = (Balc + Tab) (w°, €a),
so that UgP. = —T'4%.. Consequently, one has

Vaew? = —T',b.we. (2.27)
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It is observed that the specification of the 43 connection coefficients ', fully
determines the connection V; a generalisation of this argument shows that every
manifold admits a connection; see, for example, Willmore (1993).

Consider now v € T'(M) and o € T*(M). Writing the above in terms of the
frame and coframe, respectively, one has

v =1v%,, v? = (w*,v),

o= qaw?, aq = (o, eq).
In order to further develop the frame formalism it will be convenient to define
Vb = (wb, Vav), Vats = (Vaa, ep).
It follows from Equations (2.26) and (2.27) that
Vol = ea(vb) +gbev®, Vaap = eq(ap) — Tqpae. (2.28)

The above expressions extend in the obvious way to higher rank components.
Notice, in particular, that

Vabp® = —Ta%04° — T adp® = —Ta% + T = 0.

Metric connections

Now assume that the connection V is g-compatible (i.e. Vg = 0) and that the
frame {eg,} is g-orthogonal; that is, g(eq, €p) = 7ap. It follows then that

Va(g(es,ec)) = eq(npe) =0

and that

Va,g(eb7 ec) = g(vaeb7 ec) + g(eb> va,ec)'

Thus, using Equation (2.26) one concludes that
T'a% Nae + Taetpa = 0. (2.29)

Finally, in the case of a Levi-Civita connection and with the choice of a coordi-
nate basis {9}, the Koszul formula, Equation (2.20), shows that the connection
coefficients reduce to the classical expression for the Christoffel symbols:

v ]' v
Lux = 5977 (0ugox + Oxgup = FpGpux)-
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2.6.2 Frame description of the torsion and curvature
Following the spirit of the previous subsections, let
Ea.cb = eaaebbwcczacb

denote the components of the torsion tensor X, with respect to {es} and
{w?}. Given f € X(M), a short computation shows that

Eacbec(f) = vaeb(f) - Vbea(f)
= (eaen(f) —Tavec(f)) — (evea(f) — Tv aec(f))
= [ea, ep](f) — (Ta — 'v%a) ec(f),

where it has been used that V. f = eq(f). Thus, one obtains that
Ea"bec = [ea, eb] - (]_—\acb - ].—‘bca) €Ec. (230)

To obtain a frame description of the Riemann curvature tensor one makes use
of Equation (2.8) with u® = e4°, and contracts with eaepwe,y. One then has that

c _ a b_d c c
Rdab = ea”ep ed"w R gap-
Furthermore, one can compute

eaep’weVaVieat = wé.Va(Vpeq®) — w(Vaes’)(Vieat),
= wValolaes®) —we Lol pVysea
=wea(Tpla)es® +wo Tl aVaes® —TofpT 4%
=ea(Tv%) + Tofala®s — Taful's%4.

A similar computation can be carried out for eq%ep’w®.VyVaeq® so that one
p C b a
obtains

Raab = €a(Tp%a) — es(Taa) + T5%a(Tola — Ta’s)
+ bedracf - I‘lafdl_‘bcf - Zafbrfcd (2'31)

Remark. Equations (2.30) and (2.31) are sometimes known as the (Cartan)
structure equations. They can be conveniently expressed in the language of
differential forms; see, for example, Frankel (2003); Wald (1984).

2.7 Congruences and submanifolds

The formulation of an initial value problem in general relativity requires the
decomposition of tensorial objects in terms of temporal and spatial components.
This decomposition requires, in turn, an understanding of the way geometric
structures of the spacetime are inherited by suitable subsets thereof. For
concreteness, in what follows a spacetime (M, g) is assumed. Hence M is a
four-dimensional manifold and g denotes a Lorentzian metric.
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2.7.1 Basic notions

Submanifolds

Intuitively, a submanifold of M is a set N/ C M which inherits a manifold
structure from M. A more precise definition of submanifolds requires the concept

of embedding. Given two smooth manifolds M and N, an embedding is a map
¢ : N — M such that:

(a) The push-forward ¢, : T|,(N) — T, (M) is injective for every point
peN.
(b) The manifold N is diffeomorphic to the image ¢(N).

In terms of the above, one defines a submanifold N of M as the image,
©(S) € M, of a k-dimensional manifold S (k < 4) by an embedding ¢ : S —
M. Often it is convenient to identify A with ¢(S) and denote, in an abuse of
notation, both manifolds by N. A three-dimensional submanifold of M is called
a hypersurface. In what follows, a generic hypersurface will be denoted by
S. As a consequence of its manifold structure, one can associate to S tangent
and cotangent bundles, T'(S) and T*(S) and, more generally, a tensor bundle
T (S).

A vector u (u') on S can be associated to a vector of M by the push-forward
psu. A vector on v € T(M) is said to be mormal to S if g(v,p.u) = 0 for
all u € T(S). If € = g(v,v) = %1, one speaks of a unit normal vector — in
this case the surface is said to be timelike if ¢ = —1 and spacelike if ¢ = 1.
A hypersurface S of a Lorentzian manifold M is orientable if and only if there
exists a unique smooth normal vector field on S; see, for example, O’Neill (1983).

A natural way of specifying a hypersurface is as the level surface of some
function f € X(M). In this case one has that the gradient df € T*(M) gives
rise to a normal vector (df)* € T(M). The unit normal of S, v (v,), is then
defined as a unit 1-form in the direction of df; that is, g*(v,v) = . The normal
of S is defined in the restriction to S of the cotangent bundle 7%(M). In the
case of a spacelike hypersurface, the normal constructed in this way is taken,
conventionally, to be future pointing.

Foliations

A foliation of a spacetime (M, g) is a family, {S; }+er, of spacelike hypersurfaces
S;, such that

UsSi=M, 8§ n08,=0 for t;#t,
teR

The hypersurfaces S; are called the leaves or slices of the foliation. The foliation
{S:}ter can be defined in terms of a scalar field f € X(M) such that the leaves
of the foliation are level surfaces of f. That is, given p € S, then f(p) = t. The
scalar field f is said to be a time function. In what follows, it will be convenient
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to identify f and t. The normal of a foliation is a normalised vector field v
orthogonal to each leaf of a foliation. The gradient d¢ provides a further 1-form
normal to the leaves. In general, one has that

v = Ndt.

The proportionality factor IV is called the lapse of the foliation.

Distributions

A distribution 11 is an assignment at each p € M of a k-dimensional subspace
I1|, of the tangent space T'|,(M). The vector spaces II|,, are called hyperplanes
if their dimension is one less than that of M. A submanifold ' of M such that
II|, = T|,(N) for all p € NV is said to be an integrable manifold of II. If for
every p € M there is an integrable manifold, then II is said to be integrable.
One has the following result (see e.g. Choquet-Bruhat et al. (1982) for details):

Theorem 2.1 (Frobenius theorem) A distribution II on M is integrable if
and only if for u, v € II, one has [u,v] € II.

The projector associated to the distribution II is a tensor field h,°
satisfying ho’hy¢ = 0,¢ such that for v® € T(M) one has that h,v® € I

2.7.2 Geometry of congruences
Integral curves

A curve v : I — M is the integral curve of a vector v if the tangent vector
of the curve v coincides with v. Standard theorems of the theory of ordinary
differential equations — see, for example, Hartman (1987) — ensure that, given
v € T(M), for all p € M there exists an interval I 3 0 and a unique integral
curve v : I — M of v such that v(0) = p. If the domain of an integral curve is
R, then the integral curve is said to be complete.

Congruences

The notion of a congruence of geodesics has been discussed in Section 2.4.5. More
generally, a congruence of curves is the set of integral curves of a (nowhere
vanishing) vector field v on M. In the remaining part of this section it will be
assumed that the curves of a congruence are non-intersecting and timelike. This
will be the case of most relevance in this book. In what follows, t will denote
the vector field generating a timelike congruence. Without loss of generality it is
assumed that g(¢,t) = 1.

As in previous sections let {e,} denote a g-orthonormal frame. The orthonor-
mal frame can be adapted to the congruence defined by the vector field ¢ by
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setting eg = t. Given a point p € M, the tangent space T'|,(M) is naturally
split in a part tangential to t, to be denoted by (t)|, (the one-dimensional
subspace spanned by t), and a part orthogonal to it which will be denoted
by (¢)1], = (e;)|, (the three-dimensional subspace generated by {e;} with
1 =1, 2, 3). The space (t>J—|p is an example of a hyperplane. One writes then

TIp(M) = )] (&) |y, (2.32)

where @ denotes the direct sum of vectorial spaces — that is, any vector in
T|,(M) can be written in a unique way as the sum of an element in (t)|, and
an element in (¢)*|,. Hence, one sees that the congruence generated by t gives
rise to a three-dimensional distribution II. At every point p € M, the subspace
I, C T|,(M) corresponds to (e;)|,; that is, {e;} is a basis of II,,. In the sequel,
(t) and (¢) will denote, respectively, the disjoint union of all the spaces (t)|,
and (t)|--, p € M, and one has that IT = (£)*. The Frobenius theorem, Theorem
2.1, gives the necessary and sufficient conditions for the distribution defined by
(t)|;; to be integrable; that is, for the vector ¢ to be the unit normal of a foliation
{8} of the spacetime.

Making use of g* one obtains an analogous decomposition for the cotangent
space. Namely, one has that

T*[p(M) = ()] © (&) |, (2.33)

with (#*)4|, = (w:)|, . The decompositions (2.32) and (2.33) can be extended
in a natural way to higher rank tensors by considering tensor products. Given
a tensor T,, with components with respect to the frame {e,} given by T,p,
one has that T;; = ei“eijab and Too = t*t"T, correspond, respectively, to the
components of T, transversal and longitudinal to t; finally, Ty; = t%e; " Tt
and Tio = e;%4"T,;, are mized transversal-longitudinal components.

The covariant derivative of t

To further discuss the geometry of the congruence generated by the timelike
vector t it is convenient to introduce the Weingarten map x : (t)* — (t)*
defined by

One can readily verify that

9(t,x(w) = g(t, Vut) = ;Valg(t,)) =0, (234

so that indeed x(u) € (t)*. Hence, it is enough to consider the Weingarten map
evaluated on a basis {e;} of (t)*. Accordingly, one defines

xi = x(ei) = xife;, il = (W x;).
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In the following, it will be more convenient to work with x;; = nijik« The
scalars x;; can be considered as the components of a rank 2 covariant tensor on
X € (t)* ® (t)* — the Weingarten (or shape) tensor of the congruence. The
symmetric part 6;; = X(;;) and the antisymmetric part w;; = X35 are called the
expansion and the twist of the congruence, respectively. From g(t,e;) = 0 it
follows that g(V;t, e;) = —g(t, Vje;). Hence, one can compute

Xij = g(ei, x;) = g(ei, Vjt) = —g(t, Vje;)
= —g(t,Vie; — lei, €;]) = g(Vit,e;) + g(t, [e;, €;])
= 9(xi-€5) +9(t, [ei, €5])
= Xji + 9(t, [ei, &;]),
where in the third line it has been used that V;e; — Vje; = [e;,e;] as V
is torsion-free. Hence, by the Frobenius theorem, Theorem 2.1, the symmetry
relation x;; = X : holds if and only if the distribution (t)* is integrable. The

components x;; are related to the connection coeflicients of V as can be seen
from

xid = (W, xs) = (W, Vieg) = (w?, Ti%ep) = T'io.
Alternatively, one has that

Xij = Di®omej = —Ti%neo = —13%;,

where the last two equalities follow from the metricity of the connection; see
Equation (2.29). Now, from g(¢,t) = 1, it readily follows that g(Vat,t) = 0.
Consequently, one has that the acceleration of the congruence, a = Vgt =
Voeo, if non-vanishing, must be spatial; that is, g(a,t) = 0 so that a € (t)*.
Using the definition of connection coefficients of the connection V it follows that

at = (wi,a> =To%.

2.7.3 Geometry of hypersurfaces

Given a spacetime (M, g) and a hypersurface thereof, S, the embedding ¢ :
S — M induces on § a rank 2 covariant tensor h, the intrinsic metric or
first fundamental form of S via the pull-back of g to S:

h = ¢*g.

As a consequence of the definition of an embedding, the intrinsic metric h will
be non-degenerate if the hypersurface S is timelike or spacelike. Its signature
will be (4, —,—) in the former case and (—, —,—) in the latter. The (unique)
Levi-Civita connection of h will be denoted by D. Alternatively, one can define
the pull-back connection

OV :T(S)xT(S)—=T(S)
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s (9" V)ott) = Vo o (psu), u, v € T(S). (2.35)

It can be verified that ¢*V as defined above is indeed a linear connection. Given
a function f € X(M), the action of ¢*V on the pull-back ¢* f is defined by

(@ V)o@ f) = 0" (Vpuf) € TIM). (2.36)

In order to define the action of ©*V on covectors, one requires the Leibnitz rule

(Vo (e w,u) = ((¢"V)u (¢ w),u) + (¢*w, (¢"V)yu),

for w € T*(M) and u, v € T(S). A calculation using this expression with the
definitions (2.35) and (2.36) shows that for w € T*(M) one has

(" V)pp'w = ¢ (Vy,ow).

In a natural way, the embedding ¢ : S — M takes the connection V to the
connection D. More precisely, one has the following result:

Lemma 2.2 Given u, w € T(S)
Pr(Dwtr) = Vo w(pxu). (2.37)

Proof Given a function f € X(M) one has that

(" V)u (¢ V) (97 ) = (¢"V)u (" (Ve,o f))
=" (vso*uvsa*vf)
=" (v@*vvga*uf)
= (@ V) (" V)ule" ),

where to pass from the second to the third line it has been used that the
connection V is torsion-free. One thus concludes that the connection ¢*V is
indeed torsion free. Finally, it can be readily verified that one has compatibility
with the metric h. Indeed,

(©*"V)uh = (¢"V)u(¢"g) = ¢"(Vy,0g) =0,

where the last equality follows from the g-compatibility of the connection V. As
©*V is torsion-free and h-compatible, it follows from the fundamental theorem
of Riemannian geometry that it must coincide with the connection D. In other
words, one has that ¢*V = D, as given in Equation (2.37). O
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A frame formalism on hypersurfaces

The present discussion of the geometry of hypersurfaces is valid for both
the spacelike and timelike case. To accommodate these two possibilities, all
throughout, the following conventions concerning frame indices will be used:
if the hypersurface is timelike so that ¢ = 1, the frame indices 1, 7, k, ... take
the values 1, 2, 3; if the hypersurface is spacelike so that ¢ = —1, the indices
1, 3, k, ... take the values 0, 1, 2.

Following the conventions given in the previous paragraph, let {e;} C T(S)
denote a triad of h-orthogonal vectors. If S is spacelike one has that h(e;, e;) =
—0;5, while in the timelike case h(e;,e;) = diag(1,—1,—1). Using the push-
forward ¢. : T(S) — T(M) one obtains the vectors ¢.e; defined on the
restriction of T(M) to S. The triad {e;} can be naturally extended to a tetrad
{eq} on the restriction of T(M) to S by setting eg = 1! in the spacelike case and
e3 = V¥ in the timelike case. In order to discuss these two cases simultaneously,
the notation e will be used. Similarly, the notation w= will be used to denote
the normal element of the coframe, that is, w® or w3. Given v and o on the
restriction of T (M) and T*(M) to S, their components along the normal will
be denoted by v+ and « , respectively.

To simplify the presentation, the notation e; will often be used to denote both
the vectors of T'(S) and their push-forward to T'(M). The appropriate point of
view should be clear from the context. In the cases where confusion may arise,
it is convenient to make use of abstract index notation: given e; € T(S), we
shall write e;%; its push-forward ¢.e; € T(M) will be denoted by e;%. Similarly,
wt € T*(M) will be written as w?,, while the pull-back p*w® € T*(S) will be
denoted by w?;. Given u € T(S), one has that u* = (p*w®, u) = (W, p.u).
Written in index notation u%w?, = u‘w?;; that is, the (spatial) components of u
and its push-forward ¢,u coincide.

As a consequence of the existence of two covariant derivatives, one also has
two sets of directional covariant derivatives. Firstly, acting on spacetime objects,
Va = €q*V,, so that in particular V; = ¢;*V,. Secondly, acting on hypersurface-
defined objects, one has D; = e;*D;. The connection coefficients of D with
respect to {e;} are given by v;7x = (w7, D;er). Now, given u € T(S) and
a € T*(S) and defining

Diuj = <wj,Diu>, Diaj = <l).,;0¢,ej>7
one has, by analogy to Equation (2.28), that
Divd = e;(w?) + 77 ku®,  Diaj = ei(og) — vi*jon.

To investigate relations between the directional covariant derivatives V; and
D; one makes use of the formula (2.37) with w = e;, u = e; so that ¢, (D;e;) =
Vi(p«ej) = Vie; — the last equality given in a slight abuse of notation as,
strictly speaking, V; acts on spacetime objects. From the definition of connection
coefficients one has that
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Iidp = (W, Vier) = (w7, p.(Dier))
= (p*w?, Dier) = 77k (2.38)

Given a spatial vector u € T(M) (i.e. ut = n,u® = 0) and recalling that
Vaub = €q%wP V,u?, using Equation (2.28) one has that

Vaub = eq(u®) + Tobpu®. (2.39)

Restricting the free frame indices in the above expression and using (2.38) one
finds
Viuj = e,-(uj) + Fijk.uk

— e(u?) + 79 = Diad.

The intrinsic curvature tensors on the hypersurface

In order to describe the intrinsic curvature of the submanifold S, one considers
the three-dimensional Riemann curvature tensor rklij of the Levi-Civita
connection D of the intrinsic metric h. Given v € T(S), and recalling that D is
torsion-free, one has by analogy to Equation (2.8) that

DiDj’Uk — .DjDi’Uk = rkh-jvl.
As Tklz‘j is the Riemann tensor of a Levi-Civita connection one has the symmetries

Tkli; = Tkllij = Tki[ig] = T[kI][ij]>
Thiij = Tijkls ki) = 0.
In what follows, let 7; = r*; and r = hlrj; denote, respectively, the Ricci
tensors and scalars of D. It is convenient to also consider the trace-free part

of the three-dimensional Ricci tensor s;; and the three-dimensional
Schouten tensor l;; given by

1

ET’hij.

Sij = T{ij} = Tij — gfhij, lij = si5 +
The three-dimensionality of the submanifold S leads to the decomposition

Thiij = 2Rl + 2Rl (2.40)

A computation using the above expressions shows that the second Bianchi
identity Dp7jxm = 0 takes, in this case, the form

. 1
Dlsij = EDJ'T'.
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Given the h-orthogonal triad {e;} and its associated coframe basis {w®} one
defines the components rklij = eiiejjwkkellrklij. A computation similar to that
leading to Equation (2.31) yields

%5 = ei(v*1) — e;(viF) + (™ — ™)
+ %™ m = 1" m (2.41)

Moreover, the definition of the torsion tensor implies:
lei, e5] = (15 — %) ex. (2.42)

Remark. Equations (2.41) and (2.42) are the three-dimensional analogue of the
(Cartan) structure Equations (2.30) and (2.31).

FExtrinsic curvature

The discussion in Section 2.7.2 concerning the Weingarten map can be specialised
to the case of the tangent space of a hypersurface. This leads to the notion of
extrinsic curvature or second fundamental form of the hypersurface S.
The latter is defined via the map K : T'(S) x T'(S) — R given by

K(u,v) = (Vuv,v) = g(Vurf v). (2.43)
From the discussion of the Weingarten map it follows that K as defined above is
a symmetric three-dimensional tensor. In abstract index notation the latter will
be written as Kj;.
Now, given an orthonormal frame {e;} on S and choosing v = e; and u = ¢;
in formula (2.43) one finds that the components K;; are given by

Kij = Viv; = (Vv &) = (Vjwb, e;) (2.44)

so that, comparing Equation (2.44) with the definition of the connection
coefficients one finds that

Kij =13 11aj
= —FiajnaJ_ = —GFiJ'j. (2.45)

Now, looking again at Equation (2.39) and setting a — ¢, b — _L one obtains

Vot = ei(UJ‘) + Tt po®

=Ttk = —eKpo®, (2.46)

as v € T(S) so that v- = 0.
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The Gauss-Codazzi and Codazzi-Mainardi equations

The curvature tensors of the connections V and D are related to each other by
means of the Gauss-Codazzi equation

Rijri = rijia + KinKji — KaKjg, (2.47)
and the Codazzi-Mainardi equation
R,;J_jk = Dij.i — Dk-Kji~ (248)

The proof of the Gauss-Codazzi equation follows by considering the commu-
tator of V, Equation (2.8), acting on the frame vectors e;:

VaVier® = ViVaer® = Reaaper” = Repap.
Contracting the previous equation with e,-“ejbwkc, and using
Vier® = wPTp%ea,

together with formulae (2.38) and (2.46) and the expression for the components
of the three-dimensional Riemann tensor in terms of the connection coefficients,
Equation (2.41), yields (2.47). The proof of the Codazzi-Mainardi Equation
(2.48) involves less computation. In this case one evaluates the commutator of

b

covariant derivatives on the covector v. Contracting with e;%e;’ex® one readily

finds that
ViVjvk — ViVirk = — R ks,

where Rt i = Recapvaertei®e ;. Now, using Equation (2.44) one finds that
ViKjk — Vi Ki = =R pij.

Formula (2.48) follows from the above expression by noticing that V;K;, =
D; K as Kjj, corresponds to the spatial components of a spatial tensor.

A remark concerning foliations

The discussion in the previous subsections was restricted to a single hypersurface
S. However, it can be readily extended to a foliation {S;}. In this case the
contravariant version of the normal v and the unit vector t generating the
congruence coincide. Moreover, one has a distribution which is integrable so
that the Weingarten tensor x € ((£)* @ (t)*)|,, for p € M can be identified
with the second fundamental form K € T|,(Syp)) ® T'[p(Sipy) where t(p) € R
is the only value of the time function such that p € S;(,). In particular one has

that Xij = X(ij)-
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2.8 Further reading

There is a vast choice of books on differential geometry ranging from introductory
texts to comprehensive monographs. An introductory discussion geared towards
applications in general relativity can be found in the first chapter of Stewart
(1991) or the second and third chapters of Wald (1984). A more extensive
introduction with broader applications in physics is Frankel (2003). A more
advanced discussion, again aimed at applications in physics, is the classical
textbook by Choquet-Bruhat et al. (1982). A systematic and coherent discussion
of the theory from a modern mathematical point of view covering topological
manifolds, smooth manifolds and differential geometry can be found in Lee
(1997, 2000, 2002). A more concise alternative to the latter three books is given
in Willmore (1993). A monograph on Lorentzian geometry with applications to
general relativity is O’Neill (1983). Readers who like the style of this reference will
also find the brief summary of differential geometry given in the first chapter of
O’Neill (1995) useful. The present discussion of differential geometry has avoided
the use of the language of fibre bundles. Readers interested in the latter are
referred to Taubes (2011).

Books on numerical relativity like Baumgarte and Shapiro (2010) and
Alcubierre (2008) also provide introductions to the 341 decomposition of general
relativity. In these references, the reader will encounter an approach to this topic
based on the so-called projection formalism. A more detailed discussion, also
aimed at numerical relativity, can be found in Gourgoulhon (2012).
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