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Abstract. We give a simple proof of a statement extending Fu’s (J.H.G. Fu,
Erratum to ‘some remarks on legendrian rectiable currents’, Manuscripta Math. 113(3)
(2004), 397–401) result: ‘If � is a set of locally finite perimeter in �2, then there is no
function f ∈ C1(�2) such that ∇f (x1, x2) = (x2, 0) at a.e. (x1, x2) ∈ �’. We also prove
that every measurable set can be approximated arbitrarily closely in L1 by subsets
that do not contain enhanced density points. Finally, we provide a new proof of a
Poincaré-type lemma for locally finite perimeter sets, which was first stated by Delladio
(S. Delladio, Functions of class C1 subject to a Legendre condition in an enhanced
density set, to appear in Rev. Mat. Iberoamericana).

2010 Mathematics Subject Classification. Primary 28Axx, 28A75, 49Q15;
Secondary 26A45.

1. Introduction. In [3] we introduced the notions of enhanced density point and
enhanced density set.

DEFINITION 1.1. Let � be a measurable subset of �n. Then x ∈ �n is said to be a
‘ point of enhanced density of �’ if

lim
r↓0

Ln(B(x, r)\�)
rn+1

= 0.

By �• we denote the set of all the points of enhanced density of �. We say that ‘� is
an enhanced density set’ whenever Ln(�\�•) = 0.

The family of enhanced density sets includes locally finite perimeter sets (we refer
the reader to [2, Section 3.3] or [5, Definition 7.5.4] for the definition). In fact, even
stronger density property proved by Delladio [3] holds.

THEOREM 1.1. Let � be a locally finite perimeter subset of �n. Then

lim
r↓0

Ln(B(x, r)\�)

rn+ n
n−1

= 0

at a.e. x ∈ �. In particular, � is an enhanced density set.

The following result, given in [3], provides a generalisation of the classical
Poincare’s Lemma.
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THEOREM 1.2. Let λ and μ be differential forms of class C1 in �n, respectively, of
degree h and h + 1 (with h ≥ 0). If

K := {x ∈ �n | dλ(x) = μ(x)},

then K• ⊂ K and (dμ)|K• = 0.

REMARK 1.1. Let f ∈ C1(�n), g ∈ C1(�n, �n) and

K := {x ∈ �n | ∇f (x) = g(x)}.

If we apply Theorem 1.2 with

λ := f, μ :=
n∑

j=1

gj dxj

and observe that

K = {x ∈ �n | dλ(x) = μ(x)}, dμ =
n∑

i,j=1
i<j

(
∂gj

∂xi
− ∂gi

∂xj

)
dxi ∧ dxj,

then we obtain K• ⊂ K and

(curl g)|K• = 0,

where curl is defined as in [1].

This note collects the following three independent results related to enhanced
density sets.
� The first one extends [4, Corollary 2], which states, ‘If � is a set of locally finite

perimeter in �2, then there is no function f ∈ C1(�2) such that ∇f (x1, x2) = (x2, 0) at
a.e. (x1, x2) ∈ �’. Observe that this fact, proved by Fu [4] through a quite technical
argument based on integral currents, is an immediate and GMT-free consequence
of Remark 1.1 and Theorem 1.1.

� The second one states that every measurable set can be approximated arbitrarily
closely in L1 by subsets that do not contain enhanced density points.

� The third one is a direct proof, using nothing but Stokes for Whitney’s flat chains,
of a Poincaré-type lemma for locally finite perimeter sets.

2. Statements and proofs of the results

2.1. Generalisation of [4, Corollary 2]

THEOREM 1.3. Let � be an enhanced density set, e.g. a locally finite perimeter subset
of �n. Let μ be a differential form of class C1 in �n (and degree h ≥ 1) and assume that

Ln(� ∩ E) > 0, E := {x ∈ �n | dμ(x) 
= 0}.

Then there is no differential form of class C1 in �n (and degree h − 1) such that dλ = μ

a.e. in � ∩ E.
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We will obtain Theorem 1.3 as a trivial corollary of Theorem 1.4 below. In order
to prove the latter, we state a simple proposition.

PROPOSITION 1.1. The following facts hold:
(i) Let � and �′ be measurable subsets of �n such that ‘ � is a subset of �′ in measure’,

i.e. Ln(�\�′) = 0. Then one has �• ⊂ �′
•.

(ii) Let � and A be, respectively, a measurable subset of �nand an open subset of �n.
Then �• ∩ A ⊂ (� ∩ A)• holds, while the opposite inclusion is false in general.

Proof. The assertion (i) is obvious. As for (ii), let x ∈ �• ∩ A and observe that since
A is open, then

B(x, r)\(� ∩ A) = (B(x, r)\�) ∪ (B(x, r)\A) = B(x, r)\�

provided r is small enough. Hence,

lim
r↓0

Ln(B(x, r)\(� ∩ A))
rn+1

= lim
r↓0

Ln(B(x, r)\�)
rn+1

= 1,

namely x ∈ (� ∩ A)•. The assertion about the opposite inclusion is proved by the
following example, where we assume n = 2. Let

� := �2\{(0, 0)}, A := �.

Then one has

�• ∩ A = A, (� ∩ A)• = �2.

�
THEOREM 1.4. Let � be a measurable subset of �n, μ be a differential form of class

C1 in �n (and degree h ≥ 1) and assume that

Ln(� ∩ E) > 0, E := {x ∈ �n | dμ(x) 
= 0}.

If there exists a differential form λ of class C1 in �n (and degree h − 1) such that dλ = μ

a.e. in � ∩ E, then � is not an enhanced density set.

Proof. Let K be defined as in Theorem 1.2. Since E is open, it follows from
Proposition 1.1 that

�• ∩ E ⊂ (� ∩ E)• ⊂ K•.

Then the set �• ∩ E has to be empty, by Theorem 1.2. Hence,

Ln(�\�•) ≥ Ln((� ∩ E)\(�• ∩ E)) = Ln(� ∩ E) > 0,

namely � is not an enhanced density set. �

2.2. Approximation by sets without enhanced density points

THEOREM 1.5. Let ε > 0 be fixed arbitrarily. Then there exists an open subset A of
�n such that Ln(A) ≤ ε and (�\A)• is empty for all measurable subsets � of �n.

https://doi.org/10.1017/S001708951100022X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951100022X


634 SILVANO DELLADIO

Proof. Let g ∈ C1(�n, �n) be such that curl g(x) 
= 0 at all x ∈ �n. Consider the
open subsets of �n

�0 := {|x| < 1}, �j := {j < |x| < j + 1} (j = 1, 2, . . .).

Then, for all j we can find
(i) an open neighbourhood A′

j of ∂�j such that

Ln(A′
j) ≤ ε

2j+2
,

(ii) an open subset A′′
j of �j and a function fj ∈ C1

0(�j) such that

Ln(A′′
j ) ≤ ε

2j+2
,

and

(∇fj)|�j\A′′
j
= g|�j\A′′

j
(1.1)

by [1, Theorem 1].
From (1.1) and Remark 1.1, it follows that (for j = 0, 1, . . .) there are no points of

enhanced density of the set

Rj := �j\(A′
j ∪ A′′

j ) ⊂ �j\A′′
j .

Since Rj ⊂⊂ �j for all j, there are no points of enhanced density of

∞⋃
j=0

Rj =
∞⋃

j=0

�j\(A′
j ∪ A′′

j ) = �n\A,

where A is the open set defined by

A :=
∞⋃

j=0

(A′
j ∪ A′′

j ).

The conclusion follows from Proposition 1.1(i) and by observing that

Ln(A) ≤
∞∑

j=0

[L(A′
j) + L(A′′

j )] ≤
∞∑

j=0

ε

2j+1
= ε.

�

2.3. A Poincaré-type lemma for locally finite perimeter sets. The following fact is
an immediate consequence of Theorems 1.1 and 1.2. It has first been stated in [3]. Here
we give an alternative short proof using nothing but Stokes for Whitney’s flat chains
[6]. This new proof is based on a global argument that could reveal to be useful for
treating similar issues in the context of integral currents.

THEOREM 1.6. Let λ and μ be C1 forms of degree h and h + 1, respectively, with
0 ≤ h ≤ n − 2. Assume that dλ = μ almost everywhere in a locally finite perimeter set
�. Then one also has dμ = 0 almost everywhere in �.
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Proof. Let ω be any smooth form of degree n − h − 2 with compact support. Then
one has (adopting the notation of [5, Section 7.2])

∫
�

dμ ∧ ω =
∫

�

d(μ ∧ ω) + (−1)h
∫

�

μ ∧ dω

= ∂[[�]](μ ∧ ω) + (−1)h
∫

�

μ ∧ dω

= ∂[[�]](dλ ∧ ω) + (−1)h
∫

�

μ ∧ dω

= ∂[[�]](d(λ ∧ ω)) + (−1)h+1∂[[�]](λ ∧ dω) + (−1)h
∫

�

μ ∧ dω.

Now, by [5, Remark 7.5.6 and Theorem 7.9.2], a locally finite perimeter set is a flat
chain in the sense of Whitney. We get

∂[[�]](d(λ ∧ ω)) = 0

by [6, Chapter V, Section 3]. Hence,
∫

�

dμ ∧ ω = (−1)h+1
∫

�

d(λ ∧ dω) + (−1)h
∫

�

μ ∧ dω

= −(−1)h
∫

�

dλ ∧ dω + (−1)h
∫

�

μ ∧ dω

= 0.

The conclusion follows from the arbitrariness of ω. �
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