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Abstract
In many materials development projects, scientists and research heads make decisions to guide the project direction. For example, scientists
may decide which processing steps to use, what elements to include in their material selection, or from what suppliers to source their mate-
rials. Research heads may decide whether to invest development effort in reducing the environmental impact or production cost of a material.
When making these decisions, it would be helpful to know how those decisions affect the achievable performance of the materials under con-
sideration. Often, these decisions are complicated by trade-offs in performance between competing properties. This paper presents an
approach for visualizing and evaluating design spaces, where a design space is defined as the set of possible materials under consideration
given specified constraints. This design space visualization approach is applied to two case studies with environmental impact motivations:
one in biodegradability for solvents, and the other in sustainable materials sourcing for Li-ion batteries. The results demonstrate how this
visualization approach can enable data-driven, quantitative decisions for project direction.

Introduction
Data-driven methods for materials development have become
increasingly prevalent over the past decade.[1–5] One wide-
spread machine learning approach for materials development
is screening.[2,6–8] In materials screening, a machine learning
model is trained to predict materials properties given the chem-
ical formula and processing information and then is applied to a
set of candidate materials to predict their properties. The mate-
rials predicted to have the best performance are then selected
for experimental testing. Meredig et al.[2] applied this screening
approach to sift through millions of potential ternary com-
pounds to surface thermodynamically stable combinations.
Ward et al.[9] showed how a similar approach could be used
to find bulk metallic glasses.

A related data-driven approach is sequential learning, also
known as active learning.[10,11] This workflow involves pairing
the machine learning model with a sampling or optimization
routine to select new experiments to perform, then iteratively
retraining the model using the new data so that it can provide
successively more informed suggestions. Ling et al.[12,13]

illustrated how this approach could be applied to a variety of
application cases, including the development of high-
temperature superconductors, resilient superalloys, and novel
thermoelectric materials. Sequential learning relies on having
a machine learning approach that includes uncertainty estimates
and is particularly valuable in application cases with sparse or
small data sets that might result in initial models with high
uncertainty.

Both materials screening and sequential learning provide
data-driven approaches to selecting which experiments to run
next. This paper discusses a related use case for machine learn-
ing in materials development: guiding project direction via
design space visualization. Design spaces are the set of possible
materials under consideration for an application given a set of
constraints. Kim et al.[14,15] recently showed that the quality
of a design space is correlated with the likelihood of a sequen-
tial learning project to find high-performing materials and pre-
sented a quantitative approach to predictively evaluate design
space quality. This paper builds on that framework, adapting
it for the use case of guiding project direction via visualizations
of the design space performance.

Conventional methods for making complex decisions with
multiple objectives and constraints, including multi-criteria
decision analysis (MCDA), which has been widely used in
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both health care[16] and natural resource management,[17] often
rely on expert opinions to evaluate both the importance of var-
ious criteria and the likelihood that a given approach will meet
them. The approaches presented in this study represent a data-
driven alternative for determining the likelihood that a set of
objective targets can be met given a set of constraints.

This communication presents a design space visualization
approach and demonstrates the visualization’s application to
two case studies: assessing the impact of imposing a biodegrad-
ability constraint on solvent performance and evaluating the
effect of constrained materials sourcing on lithium-ion battery
cathode performance.

Methodology
Our approach to design space visualization is focused on
assessing the likelihood that an enumerated set of candidate
materials (the design space) contains materials whose proper-
ties extend into any given point in a two-dimensional material
property space (called the “output space” below). Importantly,
these visualizations illustrate material property predictions and
their estimated uncertainties, which are calculated using predic-
tive machine learning models with well-calibrated uncertainty
estimates.[12] Within this scope, there are a variety of ways of
visualizing the performance of a given design space. In this
work, the focus is on two main strategies described below.

The first visualization strategy is the maximum joint proba-
bility density (MJPD), which provides insight into the probabil-
ity of reaching a given region in output space given the best
candidate in the design space. The second strategy, summed
probability density (SPD), gives the predicted density of candi-
dates in the output space. Both strategies utilize contour plots
with the output space shown on the x–y axes, with the z-axis
(represented using a color map) showing either the MJPD or
SPD at that point in the material property output space.

These strategies incorporate a similar treatment of candi-
dates and their predicted properties. Each output is described
as a normally distributed random variable Tk � N (mk , s

2
k)

with probability density wk . Since multiple objectives are of
concern, a candidate with d>1 objectives may be defined as a
set of random variables with a joint distribution ρ:
C = {Tk}

d
k=1 � r. The first main assumption in these

approaches is that the objectives are independent of one another,
such that the joint probability density can be calculated from:

wC =
∏d

k=1

wk

This can be a poor assumption in many cases where outputs are
co-variant. Future work will assess the impact of co-variance in
the outputs, as well as mitigation approaches. Despite this simpli-
fication, the resulting visualization is nevertheless useful for
understanding which regions of output space are achievable
with a given design space.

Additionally, a design space of n candidates is treated as a
set candidates, each being a set of random variables, each

with its own distribution described by the objective’s mean
and uncertainty, D = {Ci � ri}

n
i=1.

The MJPD takes the maximum value of the joint probability
density for each gridded point in output space, t0, over all n can-
didates in the design space, D:

MJPDD(t
0) = max

1≤i≤n
wCi

(t0)

Contour plots of the MJPD thus show the value of the joint
probability density for the candidate most likely to achieve
the property values at a given point in output space.

The second metric presented in this paper is the SPD, which
sums the joint probability density over all n candidates at a
given point in output space:

SPDD(t
0) = 1

n

∑n

i=1

wCi
(t0)

The resulting contour plot thus provides an indication of the
density of design space predictions in the output space, factor-
ing in the uncertainty of these predictions.

On an intuitive level, the MJPD plot indicates whether the
current data and model suggest that a region of performance
space is attainable by any single candidate in the design
space. Conversely, the SPD plots indicate how easy it is to
find a candidate in that region of performance space.

In this work, the machine learning algorithm of choice was a
random forest, and the uncertainty estimates were calculated
using jackknife-based methods detailed in Ling et al.[12]

Results
These design space visualization approaches are demonstrated
in two case studies: one in biodegradability of organic solvents
and another in sustainable sourcing for lithium battery applica-
tions. These two case studies were chosen because of the avail-
ability of public data. While these two case studies are both
related to environmental sustainability, these approaches are
broadly applicable to materials and chemicals development
projects. For simplicity, these case studies both focus on appli-
cation cases with exactly two output properties of interest.
However, these methods can also be applied to applications
with more output properties by creating multiple plots showing
the two metrics (MJPD and SPD) over pairwise combinations
of the output properties.

In each case study, the relevant data sets will be introduced,
and the accuracy of the associated models presented. Then, the
MJPD and SPD plots will be used to visualize trade-offs asso-
ciated with environmental sustainability.

Biodegradability case study
Two different data sets were used in this case study. The first,
from Reichardt et al.,[18] consists of 64 organic solvents along
with their SMILES strings and common properties of interest
such as their boiling point and relative polarity. A second
data set, from Mansouri et al.,[19] contains 1725 different
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simple organic molecules, with SMILES strings, features based
on their molecular structure, and a classification of “readily bio-
degradable” or “non-readily biodegradable.”

Three random forest machine learning models were trained
using the Citrination materials informatics platform.[20] Two
regression models were trained on the Reichardt data set, one
for boiling point and another for relative polarity, using the
SMILES string as the input for both. The Citrination system
automatically featurized the SMILES string using a subset of
the CDK feature library.[21] A third model was trained on the
Mansouri data set to classify the biodegradability of the molecule
given the SMILES string and associated molecular features.

Figure 1 shows the predicted versus actual plots and receiver
operator characteristic (ROC) plot for the regression and classi-
fication models, respectively. These plots were generated via
threefold cross-validation to assess the predictive accuracy of
the machine learning models for these properties. As these
plots show, the regression models for boiling point and relative
polarity have some predictive power but relatively high uncer-
tainty (root-mean-squared error normalized by the standard

deviation of 0.6 and 0.8, respectively). In contrast, the classifi-
cation model for ready biodegradability has extremely high
accuracy (with an area under ROC of 0.924).

Let us now examine how the design space visualization
approach could be applied in this case. In this hypothetical,
let us assume that researchers are trying to develop a new
organic solvent with high relative polarity and high boiling
point. Our design space of potential solvents includes the mol-
ecules from the Mansouri data set, and we want to determine to
what extent imposing a constraint that the molecule be readily
biodegradable will affect the achievable performance for those
two properties of interest.

In this use case, we require the two machine learning models
for boiling point and relative polarity but not the machine learn-
ing model for ready biodegradability. We use these two models
to make predictions across the Mansouri data set for the prop-
erties of interest, then compare the MJPD and SPD plots for the
readily biodegradable subset of the design space and the non-
readily biodegradable subset of the design space, as shown
in Fig. 2.

Figure 1. Visualizations of machine learning model accuracy for the biodegradability case study. Predicted versus actual plots for (a) boiling point and
(b) relative polarity, and receiver operator characteristic for predicting non-ready biodegradability (c).
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The plots in Fig. 2 suggest that there is no strong perfor-
mance trade-off between readily biodegradable and non-readily
biodegradable design spaces. The MJPD plot indicates that the
predicted achievable performance is quite similar in the two
design spaces. The SPD plot shows that the non-readily biode-
gradable design space has higher prediction density at higher
boiling points, but the readily biodegradable design space has
higher prediction density at higher relative polarities. In this
case study, overall, the readily biodegradable design space
seems at least as promising as the non-readily biodegradable
design space for maximizing these two properties of interest.

It should of course be noted that there is no guarantee that
the machine learning model is accurate over these design

spaces. Since the design spaces were sourced from a different
data set than the training data, the model is quite likely extrap-
olating for some of the design candidates. It is therefore critical to
employ machine learning models with well-calibrated uncer-
tainty estimates to capture this extra source of uncertainty due
to extrapolation.[22] One significant benefit of the design space
visualization strategies introduced in this paper—as opposed to
a simple scatter plot or kernel density estimate—is the incorpo-
ration of uncertainty estimates into the visualization.

Sustainable sourcing case study
Three data sets were used in this case study. The first data set,
which will henceforth be referred to as the “battery data set,”

Figure 2. Design space visualization plots for the readily biodegradable and non-readily biodegradable subsets of the design space. (a) is colored by the MJPD
metric and (b) is colored by the SPD metric.
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was based on the Materials Project[23] battery data set, subsam-
pled to 513 common transition-metal-containing oxides. The
stoichiometric range over the charged/discharged states was
averaged to yield a single chemical formula per cathode mate-
rial, and properties of interest include the specific energy and
the average charge/discharge voltage (versus Li/Li+) of the
corresponding cathode material. The second data set, herein
called the “sustainable sourcing data set”, was from Gaultois
et al.[24] Its usage for battery cathode materials was motivated
by the work of Ghadbeigi et al.[25] This data set includes the
crustal abundance (in ppm) of each element. The third data
set, which wewill call the “candidate cathode data set,” consists
of Li-containing compounds from the Open QuantumMaterials
Database[26,27] and the Crystallography Open Database,[28,29]

compiled on the Citrination platform. After removing materials
already present in the battery data set, the candidate cathode
data set contains 2851 compounds.

Two random forest machine learning models were trained
on the battery data set to predict the specific energy and average
charge/discharge voltage. The input to the model was the
charge/discharge-averaged material chemical formula, featur-
ized using a combination of MAGPIE library[9] features and
Citrine in-house element-based features available on the open
Citrination platform.

Figure 3 shows the predicted versus actual plots for these
two models. As this plot shows, relatively accurate models
were trained for both properties of interest. The normalized
root-mean-squared errors for the specific energy and average
voltage were 0.6 and 0.5, respectively.

In applying design space visualization to this case study, let
us assume that battery designers are trying to maximize specific
energy and tune the average voltage to a specific value. The
question that we would like to employ design space visualiza-
tion to answer is what the performance trade-off in these two
properties of interest is for materials that are scarce versus abun-
dant. We compute the material scarcity as a weighted average
of the elemental scarcity (the inverse of the elemental crustal
abundance) over the material composition.[25] We split the
materials listed in the candidate cathode data set into scarce
and abundant design spaces based on material scarcity relative
to a threshold of 10 ppb−1. This threshold yields 1595 and 1256
materials classified as abundant and scarce, respectively.1

We apply the MJPD and SPD design space visualizations to
these two design spaces, as shown in Fig. 4. The MJPD plots
show that the scarce design space provides a much wider
range of attainable performance. It suggests that the chance
of finding a single cathode material with high specific energy
is considerably higher with scarce cathode materials than
with abundant cathode materials. However, the model tends
to be most confident in its predictions of abundant materials
having low average voltage and low specific energy. This is

possibly because there are more abundant (314) than scarce
(199) materials in the training set, many of which have proper-
ties in that range. The SPD plot shows that the predicted prop-
erties of scarce cathode materials are highly centered around
550 Wh/kg and 3V versus Li/Li+. The predicted average volt-
age of abundant cathode materials spans a wider range.2

Figure 3. Visualizations of machine learning model accuracy for the battery
case study. Predicted versus actual plots for (a) specific energy and (b)
average voltage.

1 For reference, the popular NMC series cathodes have a scarcity of �20 ppb−1,

mostly due to the presence of Co.

2 As emphasized in the solvent case study section, these design space visualizations

depend on the training data and the model in addition to the candidate materials. The
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Together, these visualizations suggest that scarce materials pre-
sent the possibility of higher specific energy but more a con-
strained average voltage range. These plots therefore point to
a trade off between using abundantly available materials and
achieving maximal specific energy.

Conclusion
In the course of a materials development project, there are
many decisions that the researcher must make with respect to
the design space of potential materials to consider. These deci-
sions could pertain to what elements to include, whether to
invest in a new piece of equipment to broaden the potential pro-
cessing envelope, or whether to impose an additional con-
straint. In this paper, a design space visualization approach
was presented that enables researchers to use a data-driven
approach to assessing the impact of such decisions. This

visualization approach is applicable to development projects
where there are two or more properties of interest. In cases
where there are more than two properties of interest, the
MJPD and SPD plots can be generated for pairwise combina-
tions of the target properties to visualize trade-offs.
Furthermore, it is also possible to use this approach for cases
with more than two possible design spaces. For example, for
applications where toxicity, cost, and reliable sourcing are all
potential constraints, multiple design spaces could be created
with various combinations of constraints and their predicted
performances could be compared using these visualizations.

The visualization approach was demonstrated on two case
studies with relevance to environmental sustainability: one in bio-
degradability for organic solvents, and the other in sustainable
sourcing for battery cathodes. Through these case studies, it
was shown how the design space visualization approach could
be used to assess the trade-offs inherent in design decisions.
These particular case studies were chosen because of the mount-
ing pressure on the materials and chemical industries to produce
more environmentally sustainable materials. We therefore wanted

Figure 4. Design space visualization plots for the abundant and scarce design spaces. (a) is colored by the MJPD metric and (b) is colored by the SPD metric.

presence of cathode materials with predicted voltage near 7 V is due to a possibly erro-

neous entry near 12 V in the Materials Project battery data set.
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to demonstrate how data-driven approaches can be used to help
guide investments in environmental sustainability.

The application of machine learning methodologies to mate-
rials development has been widely applied to accelerating new
materials development via active learning or screening
approaches. The methods in this paper show a different use
case for machine learning in materials development: aiding
researchers assess the impact and trade-off of design decisions.
More broadly, this work shows that machine learning is not
confined to just suggesting which experiments to run next but
rather can be used to aid at every decision point in the research
process. At each of these decision points, the researcher can
bring the available data to bear in order to make an informed,
data-driven decision.
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