The Pedal Triangle.

By Professor J. E. A. STEGGALL.

The area of the pedal triangle of a given triangle is easily shown by trilinear co-ordinates to bear to that of the original triangle the ratio $R^2 - S^2 : 4R^2$ where S is the distance of the point from the circumcentre of the triangle. A proof, by purely geometrical methods, of this theorem was read before the Society (*Proceedings*, Vol. III., pp. 78-79) by Mr Alison.

The following geometrical proof proceeds on somewhat different lines.

FIGURE 16.

Let ABC be the triangle, P' the point, P'L', P'M', P'N' the perpendiculars; P the point where AP' meets the circumcircle, PL, PM, PN its perpendiculars, AK perpendicular to BC, OY perpendicular to AP.

Let AL cut M'N' in L"; then from similarity, P'L'' is parallel to PL, and therefore collinear with P'L'.

Α	rea $\mathbf{L'M'N'}$: area $\mathbf{P'M'N'} = \mathbf{L'L''} : \mathbf{L''P'}$
ลเ	rea $P'M'N'$: area $P M N = L''P'^2 : LP^2$
	$= \mathbf{AP'} \cdot \mathbf{L''P'} : \mathbf{AP} \cdot \mathbf{LP}$
a	rea $P M N$: area $P B C = P M^2 : P C^2$
	$= \mathbf{P}\mathbf{Y}^2 : \mathbf{P}\mathbf{O}^2$
	$= \mathbf{PA}^2 : 4\mathbf{PO}^2$
because	$\angle PCM = PBA = POY.$
	Area PBC : area $ABC = PL : AK$
·`.	area $\mathbf{L}'\mathbf{M}'\mathbf{N}'$: area $\mathbf{ABC} = \mathbf{L}'\mathbf{L}''$. \mathbf{AP}' . $\mathbf{AP}: 4\mathbf{OP}^2$. \mathbf{AK}
But	$\mathbf{L'L''}:\mathbf{AK}=\mathbf{LL''}:\mathbf{AL}=\mathbf{PP'}:\mathbf{AP}$
	$L'L''$. $AP = AK \cdot PP'$
·•.	area $\mathbf{L'M'N'}$: area $\mathbf{ABC} = \mathbf{AK}$, $\mathbf{AP'} \cdot \mathbf{PP'}$: $\mathbf{4OP^2}$. \mathbf{AK}
	$= \mathbf{P}\mathbf{P}'. \mathbf{A}\mathbf{P}': 4\mathbf{O}\mathbf{P}^2$
	$= \mathbf{OP}^2 - \mathbf{OP}'^2 : 4\mathbf{OP}^2$

which is the theorem required.