The Pedal Triangle.

By Professor J. E. A. Steggall.

The area of the pedal triangle of a given triangle is easily shown by trilinear co-ordinates to bear to that of the original triangle the ratio $R^{2}-S^{2}: 4 R^{2}$ where S is the distance of the point from the circumcentre of the triangle. A proof, by purely geometrical methods, of this theorem was read before the Society (Proceedings, Vol. III., pp. 78-79) by Mr Alison.

The following geometrical proof proceeds on somewhat different lines.

Figure 16.
Let $A B C$ be the triangle, P^{\prime} the point, $P^{\prime} L^{\prime}, P^{\prime} M^{\prime}, P^{\prime} N^{\prime}$ the perpendiculars; P the point where $A P^{\prime}$ meets the circumcircle, PL, PM, PN its perpendiculars, AK perpendicular to BC, OY perpendicular to AP.

Let $A L$ cut $M^{\prime} N^{\prime}$ in $L^{\prime \prime}$; then from similarity, $P^{\prime} L^{\prime \prime}$ is parallel to PL, and therefore collinear with P'L'.

$$
\begin{aligned}
& \text { Area } L^{\prime} M^{\prime} N^{\prime}: \text { area } P^{\prime} \mathbf{M}^{\prime} \mathbf{N}^{\prime}=L^{\prime} L^{\prime \prime}: L^{\prime \prime} \mathrm{P}^{\prime} \\
& \text { area } \mathrm{P}^{\prime} \mathbf{M}^{\prime} \mathrm{N}^{\prime} \text { : area } \mathrm{P} M \mathrm{~N}=\mathrm{L}^{\prime \prime} \mathrm{P}^{\prime 2}: \mathrm{LP}^{2} \\
& =\mathbf{A P}^{\prime} . \mathbf{L}^{\prime \prime} \mathbf{P}^{\prime}: \mathbf{A P} \cdot \mathbf{L P}
\end{aligned}
$$

$\operatorname{aren} \mathrm{PMN}:$ area $\mathrm{PBC}=\mathrm{PM}^{*}: \mathrm{PC}^{2}$
$=\mathrm{PY}^{2}: \mathrm{PO}^{2}$
$=\mathrm{PA}^{2}: 4 \mathrm{PO}^{2}$
because $\quad \angle \mathrm{PCM}=\mathrm{PBA}=\mathrm{POY}$.
Area PBC: area $\mathrm{ABC}=\mathrm{PL}: \mathrm{AK}$
$\therefore \quad$ area $L^{\prime} \mathrm{M}^{\prime} \mathrm{N}^{\prime}$: area $\mathrm{ABC}=\mathrm{L}^{\prime} \mathrm{L}^{\prime \prime} . \mathrm{AP}^{\prime} . \mathrm{AP}: 40 \mathrm{P}^{2} . \mathrm{AK}$
But $L^{\prime} L^{\prime \prime}: A K=L L^{\prime \prime}: A L=P P^{\prime}: A P$
$\therefore \quad L^{\prime} L^{\prime \prime} . A P=A K . P^{\prime}$
$\therefore \quad$ area $L^{\prime} \mathrm{M}^{\prime} \mathrm{N}^{\prime}$: area $\mathrm{ABC}=\mathrm{AK} . \mathrm{AP}^{\prime} \cdot \mathrm{PP}^{\prime}: 40 \mathrm{P}^{\circ} . \mathrm{AK}$
$=\mathrm{PP}^{\prime} . \mathrm{AP}^{\prime}: 4 \mathrm{OP}^{2}$
$=O P^{2}-\mathrm{OP}^{\prime 2}: 4 \mathrm{OP}^{2}$
which is the theorem required.

