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Temporal Correlations

19.1 Introduction

Our aim in this chapter is to extend the Bell inequality discussion in Chapter 17

to its temporal analogue, known as the Leggett–Garg (LG) inequality.

Bell inequalities involve spatial nonlocality, that is, signal observations dis-

tributed over space. It was shown by Leggett and Garg that analogous inequalities

involving temporal nonlocality can be formulated (Leggett and Garg, 1985). We

shall discuss one of these, known as the LG inequality .

We saw in Chapter 17 that Bell inequalities are based on certain classical

mechanics (CM) assumptions about the nature of reality. Likewise, the LG

inequality is based on two CM principles that are not incorporated into quantum

mechanics (QM).

Definition 19.1 The principle of macrorealism asserts that if a macroscopic

(that is, large-scale) system under observation (SUO) can be observed to be in

one of two or more macroscopically distinct states, then it will always be in one

or another of those states at any given time, not in a quantum superposition

of those states, even when it is not being observed.

This principle is a foundational principle in CM but is incompatible with QM

in at least two ways. First, it is vacuous, as it asserts the truth of a proposition

in the absence of empirical validation: how can we define the concept of always,

without introducing counterfactuality? Second, it is violated in quantum theory,

for instance, in path integral calculations.

This principle in embedded in the nexus of issues explored in this book. The

quantized detector network (QDN) version of it takes the form “If any SUO can

be observed in any number of possible states, then it will be observed in one of

them in any run.” This is a near tautology. The classical version says the same

thing but makes an additional assertion about something going on in the absence

of observation, which is the vacuous element that QM cannot accept.
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264 Temporal Correlations

Definition 19.2 The principle of noninvasive measurability asserts that the

actual state an SUO is in can always be determined cost-free, that is, without

having any effect on that state or on its subsequent dynamical evolution.

This principle is subtle. We experience its apparent validity all the time in our

ordinary lives: we look at objects and they appear not to change by those acts

of observation. However, quantum physics tells us otherwise, for all information

comes to us via quantum processes, and those involve quanta.1 Newton’s third

law, action and reaction are equal and opposite and act on different bodies, really

does have its quantum counterpart: no observation leaves the observed completely

unchanged.

The LG inequality involves temporal correlations, which measure and compare

changes in observables. We shall focus our attention on the temporal correlations

of the signal states of dynamically evolving bits and qubits.

19.2 Classical Bit Temporal Correlations

Without loss of content or generality, we shall restrict the discussion in this

section to an SUO consisting of N interacting classical bits. In such discussions,

it is not necessary to say what these bits represent physically. What matters

is that if the observer chose to look at any one of these bits, that bit would be

observed to be in precisely one of two possible states. We will refer to these states

as up and down. A useful mental image is that the up state represents a raised

flag denoting a signal, while the down state represents a lowered flag denoting

an absence of a signal.

Consider an experiment where at initial stage Σ0, all N of these bits are

definitely in the up state. We then allow the state of the SUO to evolve until

stage Σ1 and then we look at the state of the SUO at that stage.

Suppose that at stage Σ1 we find a total of Nup bits in the up state and

Ndown ≡ N −Nup bits in the down state. A natural question is: how different is

the state of the SUO at stage Σ1 compared with its state at Σ0?

There are many ways to answer this question, that is, to define temporal

change. Before we can do that, we need to clarify a metaphysical point, concerning

the notions of permanence and identity.

Change Is Contextual

Up to now, our exposition of QDN has emphasized that everything changes.

But on reflection, that is a vacuous inconsistency, for change can be measured

1 We have not been much concerned with Planck’s constant � so far in this book, but it
comes in here. Changes occurring to states of SUO when they are observed are quantified
by that unit of action, which is relatively negligible on our ordinary real-life (emergent)
scales of measurement.
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19.3 The Classical Leggett–Garg Inequality 265

only by observers. But those observers themselves change, according to their

own subjective experience. Therefore, any change in an SUO has to be carefully

distinguished from the changes going on naturally in the laboratory.

Leggett and Garg chose temporal correlations . We discussed these for single

qubits in the previous chapter.

Definition 19.3 If a classical bit is in the same state at stage Σn as it was

at an earlier stage Σm, then the states are said to be perfectly correlated, with

a correlation Cn,m = +1. If, conversely, a classical bit is in a different state at

stage Σn compared with its state at stage Σm, then the two states are said to

be perfectly anticorrelated, with a correlation Cn,m = −1.

Our interest will be in the average correlation C1,0. From the information given

above, we find

C1,0 =
Nup

N
− Ndown

N
=

2Nup

N
− 1. (19.1)

By inspection, it is easy to see that the average correlation satisfies the constraints

−1 � C1,0 � 1.

19.3 The Classical Leggett–Garg Inequality

The LG inequality is based on a three-stage experiment, as follows. An SUO

consisting of r classical bits, each in its up state at stage Σ0, evolves to stage Σ1,

and the average correlation C1,0 is measured. The state is then allowed to evolve

to stage Σ2, where two new average correlations are measured. One of these is

C2,1 and the other is C2,0.

We note that (1) each bit is followed from stage Σ0 to stage Σ1 and then

finally to stage Σ2 and its up or down state is observed noninvasively and

recorded at each stage, and (2) according to the CM principles of macrorealism

and noninvasive measurability, the observer will have all the information needed

to calculate these three ensemble average quantities precisely and without error.

Because the dynamics is assumed deterministic, only one run is required. If on

the other hand, the dynamics is classical stochastic, or the initial state is random,

then the argument can adjusted to take probabilities into account, with exactly

the same result.

Given these three correlations, we define the LG correlation K by

K ≡ C1,0 + C2,1 − C2,0. (19.2)

We derive the LG inequality −3 � K � 1 as follows.

Given an SUO of r bits, noninvasive measurability allows us to track any or all

of the bits in the SUO over the three stages, without interfering in the dynamics.

Suppose we tracked the ith bit in the SUO over the three stages Σ0, Σ1, and Σ2.
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266 Temporal Correlations

Table 19.1 Calculation of the possible values of the

LG correlation Ki for the ith bit

signal status at Σ0 up up up up
signal status at Σ1 up up down down
signal status at Σ2 up down up down

Ci
1,0 1 1 −1 −1

Ci
2,1 1 −1 −1 1

Ci
2,0 1 −1 1 −1

Ki 1 1 −3 1

Table 19.1 shows the possible up or down states of that bit at each stage, the

correlations associated with those bit states, and the LG correlation for that bit.

By inspection of Table 19.1, we see that the LG correlation Ki ≡ Ci
1,0 + Ci

2,1

− C1
2,0 for the ith bit lies in the interval [−3, 1]. This is perfectly general, being

valid for any interaction whatsoever between the bits in that SUO. Since this is

true for any bit in the SUO, we conclude that the average K satisfies the same

condition. Hence we arrive at the LG condition

− 3 � K � 1. (19.3)

There is no way that the LG inequality could ever be violated classically, given

the principles of macrorealism and noninvasive measurability.

19.4 Qubit Temporal Correlations

Extending the above classical bit discussion to the quantum case involves sig-

nificant differences. Specifically, each bit in the ensemble is replaced by a qubit,

and then all of the qubits are tensored together to create a quantum register of

rank r.

As will be appreciated by now, such registers are exceedingly complicated

structures. We will assume in the first instance that the qubits in the quantum

register do not interact with each other, but can interact with other elements of

their environment. This assumption means that we can meaningfully discuss the

evolution of a single qubit. We shall follow the evolution of a typical single qubit

in a noninteracting ensemble from initial stage Σ0 to intermediate stage Σ1 and

then to final stage Σ2.

We shall discuss the correlation C1,0 of two signal observations, at stage Σ0

and stage Σ1. Assuming that the semi-unitary operator acting on the chosen

qubit is in the standard form

U1,0 =

[
a1 −b∗1
b1 a∗1

]
, (19.4)

where |a1|2 + |b1|2 = 1 and we ignore an overall phase, we use the results of the

previous chapter to find
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C0,1 = |a1|2 − |b1|2 = 2|a1|2 − 1. (19.5)

As noted previously, this result is independent of the initial state of the qubit.

Now consider a further evolution from stage Σ1 to stage Σ2 with evolution

operator

U2,1 =

[
a2 −b∗2
b2 a∗2

]
, (19.6)

where |a2|2 + |b2|2 = 1. Then C2,1 = 2|a2|2 − 1.

According to QM principles, evolution from stage Σ0 to stage Σ2 is given by

the evolution operator U2,0 = U2,1U0,1. We find

U2,0 =

[
a2 −b∗2
b2 a∗2

] [
a1 −b∗1
b1 a∗1

]
=

[
a1a2 − b1b

∗
2 −a∗1b

∗
2 − b∗1a2

a1b2 + b1a
∗
2 a∗1a

∗
2 − b∗1b2

]
, (19.7)

from which we deduce

C2,0 = 2|a1a2 − b1b
∗
2|2 − 1. (19.8)

19.5 QDN Spin Correlation

In this section we show how QDN deals with spin correlation. The first thing

to note in the above calculation is that according to QDN principles, a single

persistent qubit representing a calibrated detector would show no changes in its

signal status, by definition. Because we wish to discuss an actual spin, such as

that of a proton, which would show changes in its signal status, bitification tells

us that we need two detector qubits, one for proton spin up and the other for

proton spin down. QDN qubits do not model angular momentum or spin per se

but yes/no logic.

Suppose then that we want to investigate temporal spin correlation for a single

proton. Following the discussion in previous sections, we will have a three-stage

process, represented by Figure 19.1.

The initial labstate Ψ0 is taken to be given by

Ψ0 ≡ (αÂ1
0 + βÂ2

0)00, (19.9)

where 10 detects spin up and 20 detects spin down.

U U

Figure 19.1. Stage diagram for a proton temporal spin correlation.
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We encounter here an example of a contextual subspace. Our rank-two quan-

tum register has four basis states, but only two of these are needed to describe

the spin dynamics. For example, semi-unitary evolution from stage Σ0 to stage

Σ1 is given by

U1,0Â
1
000 = a1Â

1
101 − b∗1Â

2
101,

U1,0Â
2
000 = b1Â

1
101 + a∗1Â

2
101, (19.10)

and similarly for evolution to stage Σ2.

It is not hard to see that in this case, the required temporal correlation

coefficient C1,0 is given by C1,0 = 2|a1|2 − 1, exactly as above. Our conclusion

is that, as elsewhere, QDN reproduces the standard QM results without any

difficulty. Note that the bitification process appears to make QDN quantum

registers unduly larger than the standard QM counterparts. That is not seen

as anything other than an advantage, because it permits the modeling of more

situations, such as labstates of signality greater than just one.

19.6 The Leggett–Garg Correlation

From the above correlations, using Definition 19.2 we find

K = 2|a1|2 + 2|a2|2 − 2|a1a2 − b1b
∗
2|2 − 1. (19.11)

Now the parameters of an experiment, such as a1, a2, . . . are under the control

of the experimentalist. It is reasonable therefore to assume that the parameters

a1, b1, a2, and b2 can be chosen to be whatever we wish, subject to the unitarity

constraints |a1|2 + |b1|2 = |a2|2 + |b2|2 = 1.

Consider the reparametrization

a1 = cos θ1, b1 = sin θ1e
iφ1 ,

a2 = cos θ2, b2 = sin θ2e
iφ2 , (19.12)

where θ1, θ2, φ1, and φ2 are real. Now take φ1 = φ2. Plotting K as θ1 and θ2
range from −π to π each gives Figure 19.2.

It is clear that there are values of the parameters where K exceeds the classical

limit +1. In fact, the maximum value of K over the region shown is 1.5, in

clear violation of the Leggett–Garg upper bound of one. This is an entirely non-

classical result that is the temporal analogue of the violation of Bell inequalities

in experiments such as those of Aspect (Aspect et al., 1982) and others.

19.7 Understanding the Leggett–Garg Prediction

The predicted QM violation of the Leggett–Garg inequality is another demonstra-

tion of the thesis running throughout this book: that empirical truth is contextual

and that QM is best regarded as a statement of the laws of entitlement, of what

we can legitimately say about SUOs, rather than an explicit description of those

SUOs.
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Figure 19.2. Values of K versus angle parameters θ1, θ2.

In view of the great predictive success of QM, it would be unwise to believe

that we can replace it. At best, we can enhance it. But that does not answer

the question, what is the origin of the discrepancy between the classical LG

inequality and the predicted QM violation of it?

Our view is that there must be hidden assumptions somewhere that, if iden-

tified, would explain the discrepancy. Since QM has never yet been proved

empirically incorrect while classical mechanics has, there must be something

that we have missed in the way we think classically. It is not QM that is wrong,

but our preconditioned classical way of thinking about physical reality that is

not quite right.

The answer is given clearly by Wheeler’s participatory principle that if we have

not actually done something, we should not make any undue assumption about it.

With this in mind, consider the LG correlation K discussed above. It is calcu-

lated from three separate correlations that classically could be calculated from a

single run. This is because of the assumed principle of noninvasive measurability

that is one of the standard assumptions of classical mechanics.

But, according to the requirements of quantum experimentation, the corre-

lation C2,0 cannot involve any observation at stage Σ1. The evolution operator

U2,0 has to be applied on the strict understanding that no attempt is made to

extract information between initial stage Σ0 and final stage Σ2.

The essential fact is that the principle of noninvasive measurability cannot be

assumed to hold in QM (although as discussed in Chapter 25, there are some

experiments that can be described in such terms). Classically, our normal human

conditioning is to think automatically that the stage-Σ1 signals observed in the

measurement of the correlation C1,0 should play a role in C2,0. But how can

they? They are not observed when the SUO evolves undisturbed from stage Σ0

to stage Σ2.

In order to calculate the LG quantity K, we would have to perform three

separate “subexperiments,” one for each of the three correlations involved. These
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270 Temporal Correlations

are separate experiments with separate contexts. Classically, we could believe

that we could get away with just one experiment. Quantum mechanically, we

have to recognize context is critical and perform three subexperiments.

The explanation then is that in the C2,0 subexperiment, there is a lack of which-

path information at stage time Σ1, analogous to the architecture of the double-slit

experiment, where an interference pattern on a screen is observed provided no

attempt is made to determine through which slit the particle had gone.
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