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1. Introduction and notation

Let A be an associative algebra over the field F. We denote by
the lattice of all subalgebras of A. By an .^-isomorphism (lattice isomor-
phism) of the algebra A onto an algebra B over the same field, we mean
an isomorphism

of 3? (A) onto ^f(B). We investigate the extent to which the algebra B
is determined by the assumption that it is =S?-isomorphic to a given algebra
A. In this paper, we are mainly concerned with the case in which A is a finite-
dimensional semi-simple algebra.

The one-to-one map a : A -> B of an algebra A over the field F onto
an algebra B over F is called a semi-isomorphism1 if

(i) a is semi-linear (that is, for some automorphism <x of F,

for all a1( a2 e A and all k1, A2 e F), and
(ii) a is multiplicative or anti-multiplicative (that is, either (xy)<r

= x"y<T fo r a l l x , y e A , o r (zy)a = y x " fo r a l l x , y e A ) .
We remark that, for maps a : A -> B of not necessarily associative

rings, such that (z+y)" = x^+y" for all x.yeA, the apparently weaker
condition

(ii') for each pair x, y of elements of A, either {xy)a — x'y" or
(xy)a = yx", in fact implies (ii). 2

Since any semi-isomorphism of an algebra A onto an algebra B induces
an .^-isomorphism, from the assumption that A is ^?-isomorphic to B, we
cannot in general hope to prove any stronger relationship between A and B
than semi-isomorphism. However the algebra Mn(F) of all nxn matrices
over the ground field F has the property that any algebra semi-isomorphic

1 Closely related concepts are discussed in Ancochea [1], Hua [4] and Kaplansky [6].
1 Jacobson, N.: Lectures on abstract algebra, vol. I, p. 74, exercise 6.
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to Mn(F) is in fact isomorphic to it. In § 4, we prove that any algebra
-SP-isomorphic to Mn(F), n 2: 2, is isomorphic to Mn(F). In § 5, we show that,
if an algebra A is j£?-isomorphic to the algebra Mn(A) where n ^ 3 and A
is a division algebra over F, then A is semi-isomorphic to Mn(A). In § 6,
we show that, apart from certain special cases, if <f> is an if-isomorphism of
a finite-dimensional semi-simple algebra A onto an algebra B, then B is also
semi-simple and the images under <f> of the simple direct summands of A of
dimension greater than one are simple direct summands of B.

By "algebra" we mean "associative algebra over the field F", and
"A ~ B" means that A and B are isomorphic as algebras over F. We write
mappings exponentially; thus the image of A under the map <f> will be denoted
by A*. If a1,..., an are elements of an algebra A, we denote by <a 1 ( . . . an>
the subspace of A spanned by ax, . . -,an. If A is a finite-dimensional
algebra, we denote the radical of A by R(A). For any algebra A, we put

I (A) = length of the longest chain in £?{A),
d(A) = dimension of A.

Clearly d(A) ^ 1{A). If A is a nilpotent algebra, then the factors A*/A*1

of the series of ideals

A > A9 > . . . > An > 4-+1 = 0

are all null. Every subspace of AijAi+l is a subalgebra, and so

l(AiIAt+1) =
Since

and

d(A) =

it follows that l(A) = d(A) for any (not necessarily finite-dimensional)
nilpotent algebra A.

2. Condition for finite dimension

If the algebra A is finite-dimensional, then l(A) is finite. Conversely,
we have

THEOREM 1. Let A be an associative algebra and suppose that I (A) is
finite. Then d(A) is finite.

PROOF. Since I (A) is finite, the sum of all nilpotent left ideals of A is
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the sum of a finite set of nilpotent left ideals. It follows as in the usual theory
of rings with minimum condition, that the radical R(A), defined as the
sum of all nilpotent left ideals of A, is a nilpotent two-sided ideal and that
A/R(A) has radical 0. Since R = R(A) is nilpotent, d(R) = l(R) which
is finite. Thus we need only consider the case R(A) = 0.

From R(A) = 0, it follows as in Artin, Nesbitt and Thrall [2], p. 29,
Corollary 4.3B, that A has an identity element 1. The field F can be iden-
tified with the subalgebra Fl, and it follows that A regarded as a ring sa-
tisfies both chain conditions for left ideals, every ring left ideal being a
subalgebra of A. Therefore A is a finite direct sum of simple algebras. Each
of these simple algebras is a total matrix algebra Mn(D) over a division
algebra D, and l(D) is finite. It remains to prove d(D) finite.

Suppose K is a commutative subalgebra of D. Then K is an extension
field of F. Let t be any element of K and let P = F[t] be the algebra of poly-
nomials in t. If t is transcendental over F, then l(P) is infinite. Therefore K
is algebraic over F. Since l(K) is finite, K is finitely generated over F. There-
fore K is finite-dimensional over F.

Let Z be the centre of D and let K be a maximal subfield of D. Then
K is its own centraliser in D, the dimension of K over Z is finite and therefore
the dimension of D over K is finite.3 Therefore the dimension of D over F
is finite.

3. Algebras A with l(A) small

LEMMA 1. Suppose 1{A) = 1. Thend(A) = 1.

PROOF. If A is nilpotent, then d(A) = l(A) = 1. If A is not nilpotent,
then A contains an idempotent e. But <e> is a subalgebra and therefore
A = <*>.

Every minimal subalgebra of an algebra A is either spanned by an
idempotent or is null. Since a division algebra has no nilpotent elements
and its identity is its only idempotent, a division algebra has a unique mini-
mal subalgebra.

LEMMA 2. / / the finite-dimensional algebra A has a unique minimal
subalgebra, then A is either nilpotent or a division algebra.

PROOF. If A is not nilpotent, then it contains an idempotent e which
spans the unique minimal subalgebra of A. In this case, R(A) = 0 since
otherwise R(A) would contain the minimal subalgebra. Thus A is a direct
sum of simple algebras. But each summand contains a minimal subalgebra
and therefore A is simple.

• See Jacobson [5], p. 165, Corollary to the "fundamental theorem of finite Galois theory."
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Therefore A ~ Mn{D) for some n and some division algebra D. If
n > 1, then Mn(D) has more than one minimal subalgebra. Therefore A is
a division algebra.

LEMMA 3. 1{M2(F)) = 4.

PROOF. Let eu be the matrix with 1 in the *'/ position and all other
entries 0. Then

0 < <«u> < <eu, e22y < <« u , e12, e22> < Ma(F)

is a chain of length 4. Therefore l(M2(F)) ^ 4. But

Therefore 1{M2(F)) = 4.

LEMMA 4. Suppose A is a semi-simple algebra and l(A) ;£J 3. Then A
is a direct sum of division algebras.

PROOF. A is a direct sum of simple algebras. Since l(M2(F)) = 4, each
summand must be a division algebra.

LEMMA 5. Suppose I (A) = 2 and that A has at least two minimal sub-
algebras. Then d(A) = 2.

PROOF. If A is nilpotent, then d(A) = l(A) = 2. If A is not nilpotent,
then 1{R(A)) = 0 or l(R(A)) = 1. If l(R) = 1, then also 1{AJR) = 1 and
by Lemma 1, d(R) = d{AjR) = 1. If l(R) = 0, then R = 0, A is semi-
simple and by Lemma 4, A is a direct sum of division algebras. Since A has
at least two minimal subalgebras, A is not a division algebra. It follows that
A is the direct sum of two division algebras A ~ Dx® D2. Since l(A) = 2,
HDJ = l(D2) = 1, which implies by lemma 1, that d(Dx) = d(D2) = 1;
and so d(A) = 2.

LEMMA 6. Let k be the cardinal of F. Suppose I (A) = 2. Then A is iso-
morphic to one of the algebras listed in the following table:

_ _ , . . , . Number of minimal
Type Defining relations , . ,

6 subalgebras
I
II

III (a)
III(b)
IV

V

VI (a)
VI (b)

Extension field K of F with F as a maximal subfield
<a, a«>, a» = 0.
<e, r>, e' = e, r* = 0, er = re = 0
<e, r>, e1 = e, r* = 0, er = re = r
F e F
<at, a,>, a^o, = 0 for all », /.
<e, r>, e* = e, r1 = 0, er = r, re = 0
The opposed algebra of VI(a).

1
1
2

2

3

A+l
A+l
*+l
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PROOF. By Lemmas 2 and 5, either A is a division algebra or d(A) = 2.
If d(A) = 2, then d(R) = 0,1 or 2.

(i) Suppose A is a division algebra with identity 1. Then F l is the
only minimal subalgebra of A. There exists t e A, t $ Fl. Since l(A) = 2,
A = F[t], the algebra of all polynomials in t, and is therefore commutative.
Thus A is an extension field of F.

(ii) Suppose A is semi-simple, but not a division algebra. Then it
follows from Lemma 4 that A ~ F © F. If ex, ez are the identities of the
two direct summands of A, it is easily seen that <«!>, <£2>, ^1+^2) a r e a ^
the minimal subalgebras of A.

(iii) Suppose d(R) = 1. Then R = <r> for some r and r% = 0. Since /I
is not nilpotent, A contains an idempotent e and A — (e, r ) . Since <r> is
an ideal, er = Xr and re = jar for some X, p, e F. But

e(er) = Aer = X2r
= (ee) r = er = Xr.

Therefore A = 0,1 and similarly (i = 0,1. We thus have the four types
III(a), III(b), VI(a), VI(b). It remains to verify that these have the num-
bers of minimal subalgebras given in the table.

A has the k-\-1 one-dimensional subspaces <e+ dry, (fl e F) and <r>.
The subspace <e+ Or} is a subalgebra if (e+ 6r)2 e <e+ Or}. But

(e+Qr)2 = e+d(er+re)

Thus <e+ Or} is a subalgebra if and only if

= 6

that is, if 0 = 0 or if X+/J, = 1.
If A is of type III (whether III (a) or III(b)), then X+n ^ 1 and the

only minimal subalgebras of A are <e>, <r>. If A is of type VI, then X+fi = 1,
<e+ 0r> is subalgebras for all fl e F and 4̂ has £ + 1 minimal subalgebras.

(iv) Suppose A is nilpotent. Either A is null in which case every sub-
space of A is a subalgebra, or A2 = (by for some J ^ 0 , and A = (a, by,
A3 < A2 and therefore A3 = 0. Thus ab = ba = b2 = 0. Since 4 is not null,
a2 j ^ 0 and therefore -42 = <«2>, 4̂ is of type II and clearly has only one
minimal subalgebra. This completes the proof of the lemma.

4. Lemmas on matrix algebras

Let M = Mn(A) be the algebra of all nxn matrices over the finite-
dimensional division algebra A. We denote by rjif the matrix with 1 in the
ij position and all other entries 0.
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The subalgebra (riu, J/22) i s a n algebra of type IV and has exactly
three minimal subalgebras. An J&f-isomorphism <f> of M onto another algebra
takes (t)n, r)22y to an algebra <r)llt ^22)^ with exactly three minimal subal-
gebras. We observe from the table in Lemma 6, that an algebra A with
I (A) = 2 and exactly three minimal subalgebras is determined to within
isomorphism by these properties except when F = GF(2), the field of two
elements.

LEMMA 7. Suppose F = GF(2) and M = M2(F). Then

is a maximal subalgebra of M and has only one minimal subalgebra.

PROOF. Put 1 = J?U+J?22«
 a — ' h i+^M+^i - Then a2-\-a+l = 0 and

the minimum polynomial of a over the field F\ is x2-\-x-\-l, which is
irreducible. Therefore F[a] is a field of dimension 2 over F. Therefore
K— <(J7u"l"'?22''?ii"t~'?i2+J/2i) n a s o n ly o n e minimal subalgebra. If N is any
subalgebra of M containing K, then N can be regarded as a left vector space
over K. It follows that the dimension of K over F divides the dimension
of N over F. Thus d(N) = 2 and N = K or d(N) = 4 and AT = M. Thus
X is a maximal subalgebra of M.

We now suppose that <f> : JSf(Af) ->• ^(A) is an «Sf-isomorphism of Af
onto an algebra A. We put £ „ = <»;,•,•>*• Then rf(2sw) = 1. We take eu such
that Eti = <«w>.

LEMMA 8. £<tf Af = M a ^ ) , that is n = 2, A = F. P«if / = <*?n+»?22>'>-
r/«M / is in the centre of A, I2 = I and E\2 = E\x = 0.

PROOF. Since / u E12 has exactly two minimal subalgebras, / u E12

is commutative. Since / is in the centre of / u E12 and of / u E21, I is in
the centre of / u E12 u E21 = A. Since/ u E12 is of type III, we have either
I2 = I, E\z = 0 or I2 = 0, E\2 = E12. We show that the latter is not pos-
sible.

Since En u E22 has exactly three minimal subalgebras, En u E22

is of type IV and P = I if F ^ GF(2). Suppose F = GF{2) and I2 = 0.
By Lemma 7, K = <?711+?722, ^ n + ^ + ^ i ) is a maximal subalgebra
of Af with <»7ii+»722> a s its only minimal subalgebra. Therefore I is
the only minimal subalgebra of K*. Since I2 = 0, X* is nilpotent.
1 = R(Iu E12) = R(I\j E21) since / u £12 and / u E21 are of type III. There-
fore / is an ideal of A = E12 u E21. Therefore 1{AJR{A)) ^ 3. By Lemma 4.
AjR(A) is a direct sum of division algebras and so has no nilpotent elements.
All nilpotent elements of A are thus in R{A). Therefore K* ^ R(A). But
A is not nilpotent since / u E12 is not nilpotent. Therefore R{A) = K*
sinceK* is maximal in A. But this implies d(A/R(A)) = 1, d(R(A)) = l{K<t>)
= 2 and therefore ^(4) = 3 contrary to 1{A) = /(Af) = 4. Therefore I2 = I.
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LEMMA 9. Under the assumptions of Lemma 8, E\r = En.

PROOF. En u / has exactly three minimal subalgebras. By Lemma 8,
it is commutative and non-nilpotent. By Lemma 6, En u I must be of
type IV even if F = GF(2). Therefore E\x = En. Similarly E\2 = EM.

LEMMA 10. Suppose M = M2(F). Then A ~ M and, for suitable choice
of the eti, the ei} have either the same multiplication as the t)it or the opposed
multiplication.

PROOF. By Lemmas 8 and 9, we have

El2 = R(EU u E12) = R(E22 u El2)

and therefore E12 ^ R(En u E12 u £22)- Since Eu u £22 is semi-simple,
(En u E12 u E22)/R(E11 u E12 u £22) has a subalgebra isomorphic to
Eu u £22, and it follows that R(EX1 u E12 u E22) = E12.

Suppose R = R(A) ^ 0. Then R n (En u E12 u £22) ^ £i2- I f

R n (En u E12 u £22) — 0> then R u ( £ u u E12 u £22) = -̂  a n ( i
^4/i? ^ £ u U E12 VJ £22 which is impossible as Eu u En u E& has non-
zero radical. Therefore R n (En u E12 u £22) = ^12 • Similarly R ^ E21 and
therefore A = E12 u £2i ^ ^- ^ u t ^ is n o* nilpotent. Therefore R = 0.
Since any simple algebra which is not a division algebra contains a subal-
gebra isomorphic to M2(F), either A is a direct sum of division algebras or
A =± M2(F). Since A contains nilpotent elements, A is not a direct sum of
division algebras.

We now prove that the eit may be chosen as asserted. Since A ^ M2(F),
A has an identity element 1 and <1> is the centre of A. By Lemma 8, / is in
the centre of A and therefore / = <1>.

Since E\x = En, we may take e n idempotent. Similarly we may take
ei2 idempotent. But eu, 1, l—eu are idempotents in Eu u E22 which has
only three idempotents. Therefore 1—en = e22 and ene22 = «22

en = 0.
However e12 is chosen, we have either ene12 = e12, e12en = 0 or

euen ~ 0, e12en = e12. We consider the first case, the same argument
applying to the second with the order of all products reversed. Since
(«n+«22)ei2 = ci2» w e have e22e12 = 0, e12e22 — e12. If e21eu = 0, then we
must also have e22e21 = 0. This implies

e12e21 = (<?i8c22)«2i = e12(e22e21) = 0

contrary to A = E12 u E21. Therefore

For any a = a0u4-Pe12-\-yetl-\-de22 e A, x, p,y, d e F,
we have e11aell = ae n . But
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Therefore enezl = Xen. Similarly ene12 = /J«22. But

and therefore X = fi. Since .4 = £12 u E21, A^O. We replace e12 by
cja = e12/A. Then ei2e21 = e u . Thus we may choose the eif so that A = 1
and the eif have the same multiplication as the r)ti.

LEMMA 11. Let A be a finite-dimensional division algebra, M = Mn(A),
n 2: 2 and let N be a nilpotent subalgebra of M. Then N* is nilpotent and
d(N*) = d(N).

PROOF. If d(N) = 1, then for some subalgebra U of M containing
N, there exists an isomorphism a : U -> M2{F) of U onto M2(F) such that
Na = <r)12). This follows from consideration of the similarity invariants of a
matrix r\ e N. By Lemma 8, N* is nilpotent.

For general N, every one-dimensional subalgebra of JV is nilpotent.
Hence every minimal subalgebra of AT* is nilpotent and therefore AT* is
nilpotent. We then have

d(N*) = l(N*) = l(N) = d(N).

LEMMA 12. Let M = Mn(F), n S; 2. Then A c± M and, for suitable
choice of the ei}, the eu have either the same multiplication as the r\it or the op-
posed multiplication.

PROOF. Since (r)it, >/,7, r)j{, »yi}> for * ̂  j is isomorphic to M2(F), by
Lemma 9, E2

i{ = E{{ for all i. If we choose for eu the unique idempotent in
Eu, then by Lemma 10 applied to <JJH, r\iit r\Si, rjfiy, we have etieti = 0
for * ̂  j . However etj is chosen (i ̂  j), we have either ei{eit = etj = e,7%,
eiieu = 0 = 0^e4i or eiieij = 0 = e^e^, ei}eu = eit = e^e^.

By Lemma 11, <cti, efcl> is nilpotent if i, j , k, I are distinct. Since it has
k-\-l minimal subalgebras, it is null and therefore e(iekl = 0. Similarly
eifeik = 0 and etlekj = 0 if i, j , k are distinct. Since enejk — eik either for
r = / or for r = k, by taking the appropriate value for r, we obtain in
either case

eiiejk = = eiierre5k = 0

if i, j , k are distinct, since then euen = 0. Similarly efkeu = 0.
By Lemma 11, if », /, k are distinct, then £ w u Eilc is a three-dimen-

sional nilpotent subalgebra. Therefore etjejle and eikeif are not both 0. If

«««« = ««. t h e n

and so etiejk ^ 0, whence (««««)«;»: ¥=• 0 and therefore ew^fc = elk. By
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repeated application of this argument, we have that, if euelt = elt, then
eaeu = eu f°r a ^ *> /• We suppose euen = elt, and prove that the eti may
be chosen so that they have the same multiplication as the T/W. The same
argument applies with the order of all products reversed if eue12 = 0, giving
ei} with the opposed multiplication.

Since d(Etj u Ejk) = 3 and d(Eij u Eik) = 2, efj, eik, eik is a basis of
Eu u Ejk and therefore

for some a, /?, y e F. But
eHeik — \eiieu)\eikekk) = eii\eUeik)ekk

It remains to prove that the eit can be so chosen that e{feik = e^ for all i, j , k.
We choose e12, e^,..., eln arbitrarily. By Lemma 10, we can choose

ea such that eu ea = eu. The ea are uniquely determined by this condition and
satisfy eileu^=eii.. For i,j distinct and not equal to 1, we can choose eit

such that eueiS = eu. This determines eit uniquely. We then have
elk = eUeik = {elieis)eik = eu(eiieik)

and therefore ei}eik = eik for all *', /, k.

LEMMA 13. Let q be an idetnpotent of M = Mn(A), n ^ 2. Then <»;>*
is not nilpotent, <J7>* = <e> for some idetnpotent e.

PROOF. Let r be the rank of tj. Then for some inner automorphism
a of M, (J?U+»7J2+ • • • +»?«•)" ^ V- Let iV be the subalgebra Mn(F) of M.
By Lemma 12 applied to N", <?/>* is not nilpotent. Since d((t]}^) = I
and <77><* is not nilpotent, there exists a unique idempotent e such that

5. Simple algebras

THEOREM 2. Z.^ S = MB(J) where n 2> 2 a«i J *s a /iwte dimensional
division algebra. Let <f>: £f(S) -> SC(A) be an £?-isomorphism of S onto
A. Then A ~ Mn(D) for some division algebra D which is SP-isomorphic to
A and d{D) = d{A).

PROOF. For any subalgebra U of S, we have be Lemmas 11, 13, that
£/<* is nilpotent if and only if U is nilpotent. Thus the maximal nilpotent
subalgebras of A are the images under <f> of the maximal nilpotent subalgebras
of 5. By Barnes [3], R(A) is the intersection of the maximal nilpotent subal-
gebras of A. Since R(S) = 0, R(A) = 0 and A is semi-simple.

Let N be the subalgebra Mn (F) of S and let f be the identity of S. We may
identify A with the subalgebra A£ of S. Then S = N <u A, N n A =
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Let B be any simple direct summand of A. Then B contains an idem-
potent e. Let U = <«>*"*. If U is nilpotent, then by lemma 11, U* = <e>
is nilpotent, contrary to e being idempotent. Therefore U is non-nilpotent
and so contains an idempotent ??. Clearly U = <?;> and <e> = <»;>*. But
rjeN" for some inner automorphism a of S. Since Na* a Mn(F) and
B nN**^ <e> ^ 0, we have B ^ N** and therefore <£>* ^ B. Since <!>«*
is the only minimal subalgebra of A** and is not nilpotent, A** is a division
algebra. Since B n A«* ^ <£>«* ^ 0 and B is an ideal, £ ^ J«#. Thus
£ ^ N*+ u J«* = (2V u A)a* = S«* = A. Therefore A is simple.

Since A simple, A ~ Mm(D) for some division algebra D and some m.
If £7' ~ Mr(F) is a subalgebra of Mm(D), then r ^ m. Since 2V* ~ Mn(F)
is a subalgebra of A, we have n £i m. By the same argument applied to the
jSf-isomorphism ^- 1 , we have n^m. We therefore have A c± Mn(Z)). But
Ax = Arjn = »?IISJ?U is the unique maximal division subalgebra of S con-
taining T)u. It follows that A\ is the unique maximal division subalgebra
of A containing en and therefore Af = e11^4e11 = Deu. Thus D ~ Af and it
follows that D is :£?-isomorphic to A.

Consider the maximal nilpotent subalgebra U of S consisting of all
upper triangular matrices 2«i^«J?<i- This is the unique maximal nilpotent
subalgebra of S containing the r)it with i < j . It follows that U* is the sub-
algebra of A consisting of all elements of the form ^?i<jdijeij where du e D.
Since U and t/« are nilpotent, d(U) = d{U*). But d(U) = \n[n-\)d{A)
and d{U*) = \n{n-\)d{D). Therefore d{D) = d(A).

COROLLARY. Let S be a finite- dimensional simple algebra over the finite
field F. Suppose S is not a field. Let <f>: ££(S) ->• Jif(A) be an HP-isomorphism
of S onto A. Then A a S.

PROOF. A finite-dimensional division algebra over a finite field is an
extension field and is determined up to isomorphism by its dimension.

THEOREM 3. Let S —- Mn (A) for some finite-dimensional division algebra A.
Suppose n ^ 3. Let <f> : SC(S) ->• S£{A) be an ££-isomorphism of S onto A.
Then S is semi-isomorphic to A.

PROOF, (i) The subalgebra Ax = Ar\xl of 5 is a division algebra isomorphic
to A. The subalgebra V = At]12-\-Ar)13 is null and every subspace of V is a
subalgebra oiS.V can be considered as a left vector space over Ax. We show
that the J1-subspaces of V are the subalgebras P f^V with the property
P = V n {Ax u P).

Suppose P is a zJrsubspace of V. Then A±\j P — Ax@ P (vector
space direct sum). Let dr)n-\-p e V, SeA, peP. Then &rjneV which
implies 6 = 0. Thus ( ^ u P J n F g P a n d hence ( J 1 u P ) n F = P.

Conversely, suppose V n (A1 u P) = P. Since V is an ideal in Ax u V,
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P = V n (A1 u P) is an ideal in A1 u P. Therefore AtP ^ P and P is a
zlx-subspace of V.

(ii) By theorem 2, A ~ Mn(Z>) for some division algebra D. Consider
the subalgebra S'= Mn{F) of Mn(A). Put A' = S'+. Then <£ induces
an ^-isomorphism of S' onto A', and by lemma 12, .4' has a basis
eti{i, j = 1, 2, . . ., »), where <«,7> = <>?,7>*, with either the same multipli-
cation as the rjij or the opposed multiplication. By dimension considera-
tions as in the proof of theorem 2, it follows that the eit are a basis of A as
a left vector space over D.

We now suppose that the eit have the same multiplication as the r\ti

and prove that there exists a semi-linear map a : A -*• D such that
(66')" = 6<T6'<T for all 6,6' e A. In the case in which the eit have the opposed
multiplication, the same argument with the order of all products in A
reversed proves the existence of a semi-linear map a : A -*• D such that
(66')* = d'^d* for all 6, 6' eA. In either case, we then have S semi-iso-
morphic to A.

Put Dx = Den. Then it follows as in the proof of Theorem 2, that
At = Dx. Put W = ZVi2+-Di«M- W e P r o v e t h a t w = v*- F o r any s u b "
algebra U of S, it follows from Lemmas 11, 13 and Barnes [3], that
R(U*) = (R(U))*. But V = R{AX u 7 ) , W = R(D1 u W) and

(A, u 7)* = (A, u <v?12> u

= Dx u £12 u £13

Therefore r* = W.
W is a left vector space over Dl and by (i), the Z)1-subspaces of W are the

subalgebras Q such that Q — W n (ZJj u ^ ) . Thus P* is a Z^-subspace of
PF if and only if P is a J1-subspace of V. Thus we have an isomorphism <f>
of the lattice of F-subspaces of V onto the lattice of F-subspaces of W which
takes zlj-subspaces of V to Z)x-subspaces of W.

If A = F, the result holds trivially. Suppose A ^ F. Then
d(F) = 2rf(J) > 3. By the "fundamental theorem of projective geometry",
there exists a semi-linear map a:V ->W which induces <f> (restricted to V).

The elements e12, e13 of E12, E13 are chosen arbitrarily in the proof of
Lemma 12. We may therefore take e12 = rf[2 and e13 = rfl3. For any 6 e Alt

(<57712)
<r e Dxe12 since a maps J1-subspaces of V to D1-subspaces of W. There-

fore there exists a unique d e D1 such that de12 = (6rj12)'
r. Put 6" = d. This

defines a semi-linear map 6 -> ^^ of /lx onto Dj.
Since cr is semi-linear, (»?i2+'?i3)<7' = ^12+^is = gi2+ei3- F° r anY ^ e ^i>
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))" e Dx{eu-\-elz) and therefore 6* = d".

therefore (dd')' =

6. Semi-simple algebras

[12]

for some d* eDt. But
Therefore, for any d, 6' e Alt

But

LEMMA 14. i rf F = GF(2) a»i let A = P @ Q where P is a proper
extension field of F of finite dimension and Q ~ F. Let <f> : SC(A) -> &(B)
be an JSP'-isomorphism of A onto B. Then B = P* © S where S cz F and P*
is an extension field of F

PROOF, (i) We need only consider the case l(P) = 2, for if l(P) > 2,
we take K ^ P such that l(K) = 2. If the result holds for K © Q and ^
is the identity of P, then <JI^ is not nilpotent, P* has a unique minimal
subalgebra <»?!>* and so is a field. By hypothesis, (K © Q)* = K* © S
where S ~ F. Take ex the identity of P* and e2 the identity of 5. Then
exez = e2e1 = 0. For all x e P*. xc2 = (xei)ei = 0, c2a; = e%{exx) = 0.
Therefore P* is an ideal in B and B = P<t>® S.

(ii) Let ??!, rj2 be the identities of P, Q. Put £ = (jjlt rj2y. Then
^ I ) ' ^ 2 ) = Q> (.ViJrV2y a r e a ^ the minimal subalgebras of A and SC(A) is

(iii) Suppose B is nilpotent. Then d(B) = 3. If 6 e B and i3 # 0,
then (b, b2, 6s) = B and <62, ft3) is the only maximal subalgebra of B.
Therefore b3 = 0 for all beB.Ub2 # 0, then <6, 62> is a subalgebra :S?-iso-
morphic to P, and therefore b e P*.

We have P* = <w, M2>, Q* = <w> for some u, v. Since E<" is nilpotent and
has three minimal subalgebras, E* is null. Therefore the three minimal sub-
algebras of B are <«2>, <w>, <«2+w>.

Consider the element u-\-v. Since w+r ^ P*, we have (u-\-v)2 = 0.
Therefore <M+a> is another minimal subalgebra of B. Therefore B is not
nilpotent.
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(iv) Suppose P* is nilpotent. Then P* = (u, «2> for some u, and
Q<t> = <g> for some idempotent e. Since l(B) = 3, every nilpotent element
of B is in R = R(B). Therefore P* <Z R. But B is not nilpotent. Therefore
R = P* and <J?1>

<4 = R2 is an ideal in B. Since B/i?2 has only two minimal
subalgebras, it is commutative and eu—ue e <«*>. Therefore ueu—u2e = 0,
eu2—ueu = 0 and eu* = u2e. This implies that E* has only two minimal
subalgebras. Therefore P* is not nilpotent, and so must be an extension
field of F.

(v) Suppose R = R(B) J= 0. Then d(R) = 1, R = <r> for some r,
and either R = Q* or R = <%+J?2>*. Let « be the identity of P*. Then
£> is of type VI and without loss of generality, we may suppose er = r,
re = 0. Then d{P*r) = d(P*) since P* is a field and er = r=£0. But reR
which is an ideal, and therefore d(P't') = 1 contrary to l(P) = 2. Therefore
R(B) = 0.

(vi) Since R(B) = 0, 2? is a direct sum of fields. Since P<* is a proper
extension of F, one of the direct summands of B is a proper extension. But
P* is the only subalgebra of B with lattice of length 2 and only one minimal
subalgebra. Therefore P* is a direct summand of B. Clearly the other direct
summand is isomorphic to F.

It is clear from the lattice diagram that a lattice automorphism of
A may map Q to <»?I+J?2)- Thus Q* need not be a direct summand of B.

LEMMA 15. Let F = GF(2) and let A be a finite-dimensional semi-
simple algebra over F, not a field or direct sum of one-dimensional algebras.
Let (f> : ££{A) -> £?(B) be an £P-isomorphism of A onto B, and let r\ be an
idempotent in A. Then <>/)'* is not nilpotent.

PROOF. Let Sx, . . ., 5m be the simple direct summands of A. We may
suppose d(S1) 2: 2.

Suppose rj e Sx. If 5j ~ Mn(K), w ^ 2 for some extension field K of
F, then the result holds by Lemma 13. If Sx is a field, then by hypothesis,
A ^ Sv Let T]2 be the identity of S2. By Lemma 14 applied to Sx u <»?2),
<?7>0 is not nilpotent.

Suppose r\ $ 5X . Sx contains a field K which is a proper extension of
F since, if St is not itself a field, then it has a subalgebra isomorphic to
M2(F) which has a subalgebra isomorphic to GF{4). We take some such
subfield K of Sl. Then K u <»7> ~ K ® F and by Lemma 14, ^ y is not
nilpotent.

LEMMA 16. Let A be a finite-dimensional semi-simple algebra over the
field F, and let <f>: L(A) -»• <£'(B) be an £?-isomorphism of A onto an algebra
B. Suppose A is not a division algebra. If F = GF(2), suppose further that
A is not a direct sum of one-dimensional algebras. Let U be a subalgebra of A.
Then U* is nilpotent if and only if U is nilpotent.
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PROOF, (i) Let N = <»> be a one-dimensional nilpotent subalgebra of
A. We proveN* nilpotent. Let Slt. . ., Sr be the simple direct summands of
A which are not division algebras. (If there are no such summands, then
A has no nilpotent subalgebras and we have nothing to prove.) Then
N ^ Sx © • • • © Sr. If N ^ St for some i, theniV* is nilpotent by Lemma 11.
We use induction over r. Suppose the result holds for subalgebras of
Si © . . . © ST_1. Then n = u+v, u e St © • • • © S , ^ , v e Sr, and we may
suppose « 7̂  0, v 7>t 0. Then <«>*, <»>* are nilpotent and therefore <«, w>*
is nilpotent. But iV> ^ <«, «>* and so is nilpotent.

(ii) Let rj be an idempotent in A. We prove that <»?>* is not nilpotent.
In the case F = GF(2), this holds by Lemma 15. Suppose F ^ GF(2).
There exists an idempotent »?'#»? which commutes with -q since the identity
of A is not the only idempotent in A. For this rj', (rj, rj'} is of type IV and
by Lemma 6, (jj, rfy* is of type IV and <??>* is not nilpotent.

(iii) We have now proved the result for one-dimensional subalgebras
of A. But a subalgebra is nilpotent if and only if all its one-dimensional
subalgebras are nilpotent. Hence the result holds for all subalgebras of A.

LEMMA 17. Suppose Slt S2 are Jf-isomorphic finite-dimensional simple
algebras and A = Sx © S2. Let r\ be the identity of A. Then there exists a
subalgebra S of A J/f-isomorphic to Sx and containing r\ if and only if SxC^. S2.

PROOF, (i) Suppose a : Sx -*• S2 is an isomorphism. Put

Then Sa ~ S^ If ??, is the identity of Sit then J?" = J?2 and r\ = jyx+»?2 e Sa,
(ii) Suppose S is J§?-isomorphic to Sx and TJGS. If Sx ~ Mn(A), n ^ 2,

then S is simple by Theorem 2. If Sx is a division algebra, then A has no
nilpotent elements. Since S has only one minimal subalgebra, S is a division
algebra. Thus in either case, S is simple. Each element s e S is uniquely ex-
pressible in the form s = Sj+Sa, s(e Sf. The map <x.t : S -> S,- given by
sa< = s{ is a homomorphism. Since S is simple and tf* = r)f ^ 0, a, is a mono-
morphism. Since l(S) = 1{S() and l(St) is finite, a< is onto and therefore
S1 ~ S a S2.

THEOREM 4. £e^ i te a finite-dimensional semi-simple algebra over the
field F, and let <f> : if'(-4) ->• S£(B) be an £P-isomorhism of A onto an algebra
B. Let Sx, . . . , ST be the simple direct summands of A. Suppose A is not a
division algebra and, in the case F = GF(2), that not all the S,- are one-dimen-
sional. Then B is semi-simple. For each 5, of dimension greater than one, Sf
is a simple direct summand of B. If S4 ~ Si ( then Sf ~ Sf.

PROOF. By Lemma 16, <f> maps the maximal nilpotent subalgebras
of A to the maximal nilpotent subalgebras of B. By Barnes [3], it follows
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that (R(A))+ = R(B) and therefore R(B) = 0.
Suppose 5 is a simple subalgebra of A. If S is not a division algebra,

then 5* is simple by Theorem 2. If 5 is a division algebra, then by Lemmas
2,16, S* is a division algebra. In either case, 5* is simple.

Let e be any idempotent of B. There exists an idempotent TJ e A such
that <(»7>* = <e>. Let S< be a simple direct summand of A of dimension grea-
ter than one. Then <S4, »?> has only one maximal simple subalgebra of di-
mension greater than one. Therefore <S,, r\}* is semi-simple algebra with only
one maximal simple subalgebra of dimension greater than one, and therefore
this subalgebra Sf is a direct summand of <SO rj)*. Therefore eSf ^ Sf,
Sfe 5S Sf. Let Tx, . . ., T, be the simple direct summands of B, let ek be
the identity of Tk and e the identity of Sf. Since eef eSf nTt, either eet = 0
or Sf f^Tt. Since e1+ . . . + « , is the identity of B, for some j.ee, ^ 0 and
Sf ^Ts. But similarly Tf'1 ^ Sk for some k. Therefore Sf = Tf and Sf is a
direct summand of B.

Suppose St~ Sjt i ^ j . If d(St) = 1, then trivially Sf ~ Sf. Suppose
d(St) ^ 2. Then Sf, Sf are direct summands of (S, ® S,)*. There exists
S ~ St contained in S< © S, and containing the identity r\ of St © S,. Let
J7,,»?, be the identities of S,-, Sy and ei,ei those of Sf, Sf. Since <??<>* = <«,->,
<^̂ >^ = <(et} and <»7,-, J;^) has only three minimal subalgebras, <»/>* = <c>
where e is the identity of Sf-\-Sf. Thus S* is a simple subalgebra of Sf+Sf
jSf-isomorphic to Sf and containing e. By Lemma 17, Sf a Sf.

We remark that the method of proof of Theorem 3 can be extended to
show that, if S, ci Sd ~ il/n(J), « 25 2, A a finite dimensional division al-
gebra, then S, © Sy is semi-isomorphic to (S, © S,)*. We need only consider
the case n = 2. If )?r, e St. have the usual meaning and r/'rt are the correspond-
ing elements of Sf, we consider ATJ12-\-AT)'12 as a left vector space over
A(Vn+Vn) a n £i t n e result follows as before. If one of the direct summands
S, ~ Mn(F), n ^ 2, then we have S,. ~ Sf. Thus we have

COROLLARY. Let A be a finite-dimensional semi-simple algebra over an
algebraically closed field F. Suppose A has dimension greater than one. Let
<f> : £P{A) -+ y{B) be an ^"-isomorphism of A onto an algebra B over F. Then
A ~B.
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