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The electric fields in the polar cap region of the magnetosphere of 
a pairless orthogonal rotator are being calculated using a modified 
Poissonfs equation which takes explicit account of the effect of the 
displacement current on the potential $. This is the first step in a 
program to determine how return currents are formed in these models and 
the resulting global current flow patterns. The potential is being cal­
culated from 0.1 to 3 R ^ , where R L is the light cylinder radius, using 
known results for $ at 0.1 R-^ with an inner last closed magnetic field 
line corresponding to that of a point dipole. Considerable difficulty 
is being encountered because of the mixed nature of the equation and the 
irregular boundaries. Possible methods of overcoming these difficulties 
are indicated. 

The nonneutral beam model of pulsar magnetospheres has been 
reviewed by Arons (1979) and its latest developments discussed by Arons 
(1981). The analyses of these models to date have been local in detail 
although a general picture of the global current flow is envisioned 
(Arons 1981). In almost all cases these models require a return current 
to maintain a quasisteady state in the corotating frame. To examine how 
these return currents are formed requires a knowledge of the electric 
and magnetic fields in the whole magnetosphere out to several R L . As a 
first step in this direction we are calculating $ and the resulting 
electric fields from 0.1 to 3 R-^ for the case of the pairless orthogonal 
rotator. Although this case does not require a return current in a 
global sense to some degree of approximation (Scharlemann et al. 1978), 
the formation of a return current instead of a sheath with a trapped 
particle population is a very real possibility and all of the forces 
required to form the current are present. Moreover, only half of the 
magnetosphere needs to be considered with $ = 0 everywhere on the 
ecuatorial plane. We assume a steady-state and use the results of 
Scharlemann et al. (1978) as a boundary condition at 0.1 R L . Examina­
tion of the length scales involved from the surface of the star out to 
3 R ^ shows that a completely numerical approach would be quite imprac­
tical . 
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The modified Poisson's equation used with spherical coordinates 
referenced to the rotation axis is 
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where rj is the real charge density, Q is the rotation rate and j$ is the 
magnetic vector. The last term on the right-hand side should lead to 
a significant fraction of the full potential drop of the polar cap near 
the light cylinder (r sinG = c/Q). Additional boundary conditions are 
$ = 0 on the closed magnetosphere and 3<f>/3r = 0 at 3 R L. Equation (1) 
is elliptic to r sin9 = and hyperbolic beyond. This mixed nature 
of the equations and the irregular boundaries pose serious computational 
problems. 

We are investigating overcoming these problems as follows. 
Equation (1) reduces to an ordinary differential equation on the light 
cylinder which is solved for $ on that surface. The elliptic part of 
the problem is then solved by successive overrelaxation (SOR) which 
works well in this irregular region. The hyperbolic part of the prob­
lem is reduced to a series of two-dimensional elliptic problems by 
Fourier analysis in <£> which are being solved by SOR. Resynthesis of 
these results should give the solution, but we are presently having 
oscillation problems using this method. It may be necessary and 
preferable to use the Yale Sparse Matrix Method for the hyperbolic 
part of the problem which does not require optimizing relaxation para­
meters as in SOR. With this problem overcome, the electric fields 
will be calculated from $ by standard differencing techniques. 
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