THE $B P$-COACTION FOR PROJECTIVE SPACES

DONALD M. DAVIS

1. Introduction. The Brown-Peterson spectrum $B P$ has been used recently to establish some new information about the stable homotopy groups of spheres $[\mathbf{9} ; \mathbf{1 1}]$. The best results have been achieved by using the associated homology theory $B P_{*}()$, the Hopf algebra $B P_{*}(B P)$, and the AdamsNovikov spectral sequence

$$
\operatorname{Ext}_{B P_{*} B P}\left(B P_{*}, B P_{*}(X)\right) \Rightarrow \pi_{*}^{s}(X)_{(p)} .
$$

A knowledge of the stable homotopy groups of stunted real projective spaces $P_{n}=R P^{\infty} / R P^{n-1}$ is useful in studying the problem of immersing manifolds in Euclidean space [7]. One might hope that computing these groups via the $B P$-Adams-Novikov spectral sequence would provide insight which the classical Adams spectral sequence has missed (e.g. some elements have lower filtration).

As a first step in this program, we compute $B P_{*}\left(P_{n}\right)$ and the coaction $B P_{*}\left(P_{n}\right) \rightarrow B P_{*}(B P) \otimes_{B P_{*}} B P_{*}\left(P_{n}\right)$. In order to state our main result, we recall $[\mathbf{3} ; \mathbf{8}]$ that $B P_{*}=B P_{*}(p t)=\pi_{*}(B P)=\mathbf{Z}_{(2)}\left[v_{1}, v_{2}, \ldots\right]$ and $B P_{*}(B P) \simeq$ $B P_{*}\left[t_{1}, t_{2}, \ldots\right]$, where v_{i} and t_{i} both have degree $2\left(2^{i}-1\right)$. We use only the Brown-Peterson spectrum associated to the prime $2[\mathbf{3} ; \mathbf{6}]$.
1.1 Theorem. i) For $i \geqq n$ there are elements $\gamma_{i} \in B P_{2_{i+1}}\left(P_{2_{n+1}}\right)$ such that there is an isomorphism of $\mathbf{Z}_{(2)}\left[v_{2}, v_{3}, \ldots\right]$-modules

$$
B P_{*}\left(P_{2 n+1}\right) \approx \mathbf{Z}_{(2)}\left[v_{2}, v_{3}, \ldots\right]\left(\gamma_{n}, \gamma_{n+1}, \ldots\right) /\left(2^{i+1-n} \gamma_{i}\right)
$$

ii) The coaction

$$
\Psi: B P_{*}\left(P_{2 n+1}\right) \rightarrow B P_{*}(B P) \otimes_{B P_{*}} B P_{*}\left(P_{2 n+1}\right)
$$

is given by

$$
\Psi\left(\gamma_{i}\right)=\sum_{j=1}^{i}\left(S^{j}\right)_{(i-j)} \otimes \gamma_{j},
$$

where
a) if T is a graded expression (such as S^{j}), $T_{(k)}$ denotes the component of T of degree $2 k$,
b) S^{j} is the j th power of $S=1+S_{1}+S_{2}+\ldots$, where

$$
S_{k}=\frac{1}{k+1}\left(\left(\sum_{\nu=0}^{\infty} N_{\nu}\right)^{-k-1}\right)_{(k)},
$$

Received July 26, 1976 and in revised form, April 12, 1977. This work was supported in part by a National Science Foundation research grant.
c) $N_{\nu} \in B P_{2 v}(B P)$ is defined inductively by

$$
\sum_{a, b} m_{a} t_{b}^{2 a} x^{2 a+b}=\sum_{f \geqq 0} m_{f}\left(\sum_{\nu \geqq 0} N_{\nu} x^{\nu+1}\right)^{2 f}
$$

where x is an indeterminate, and
d) $m_{n} \in \pi_{2\left(2^{n}-1\right)}(B P) \otimes Q$ is related to $v_{n} b y$

$$
v_{n}=2 m_{n}-\sum_{i=1}^{n-1} v_{n-i}^{{ }^{2} i} m_{i}
$$

Thus the first few nonzero groups of $B P_{*}\left(P_{2_{n+1}}\right)$ are $B P_{2_{n+1}}\left(P_{2_{n+1}}\right)=\mathbf{Z}_{2}$, $B P_{2_{n+3}}\left(P_{2_{n+1}}\right)=\mathbf{Z}_{4}, B P_{2_{n+5}}\left(P_{2_{n+1}}\right)=\mathbf{Z}_{8}$, and $B P_{2_{n+7}}\left(P_{2_{n+1}}\right)=\mathbf{Z}_{16} \oplus \mathbf{Z}_{2}$, with $v_{2} \gamma_{n}$ generating the latter \mathbf{Z}_{2}-summand. The formula for the coaction is extremely complicated. The first few terms are

$$
\begin{aligned}
\Psi\left(\gamma_{i}\right)= & 1 \otimes \gamma_{i}-(i-1) t_{1} \otimes \gamma_{i-1}+\left(\left(2(i-2)+\binom{i-2}{2}\right) t_{1}^{2}\right. \\
& \left.+(i-2) v_{1} t_{1}\right) \otimes \gamma_{i-2}-\left(\binom{i-3}{3} t_{1}^{3}\right. \\
& \left.+(i-3)\left((2 i-3) t_{1}^{3}+(i+1) v_{1} t_{1}^{2}+v_{1}^{2} t_{1}+t_{2}\right)\right) \otimes \gamma_{i-3}+\ldots
\end{aligned}
$$

In Section 3 we use this coaction (in P_{n-4}^{n}) to prove that if S^{n} has 4 independent vector fields, then $n \equiv 7(8)$. This is of course a very elementary result which was known long before Adams' solution of the vector field problem [2]. However it illustrates with a minimum of computation the application of coalgebraic methods (and particularly $B P_{*}$) to geometric questions. The author has proved by similar methods the known result that if S^{n} has 10 independent vector fields, then $n \equiv 31(32)$, but the calculations involved are extraordinarily tedious.

Theorem 1.1 is not quite complete in that it does not give the action of $v_{1} \in B P_{*}$ on our generators of $B P_{*}\left(P_{2_{n+1}}\right)$. (In order to use the coaction formula we must know the structure of $B P_{*}\left(P_{2_{n+1}}\right)$ as a $B P_{*}$-module.) Some partial information, sufficient for our application to vector fields, is given in Theorem 2.5. We conjecture that

$$
v_{1} \gamma_{i}=-2 \gamma_{i+1}-\sum_{j=2}^{[\log 2(i-n+2)]} v_{j} \gamma_{i+2-2} \gamma_{i+2-2^{j}}
$$

Theorem 1.1 (i) is a straightforward Adams spectral sequence computation, while Theorem 1.1 (ii) follows from Adams' formula [3] for the $M U$-coaction in $C P^{\infty}$ using the Spanier-Whitehead dual of the canonical map $R P^{\infty} \rightarrow C P^{\infty}$. Thus the methods are not new, and indeed the result may be known to a few specialists. The thrust of the paper is to stimulate applications of $B P$ in new directions. The author wishes to thank Haynes Miller and Steve Wilson for introducing him to $B P$ and answering a few questions. After this paper had
been written, the author was told that $B P_{*}\left(P_{1}\right)$ was computed in Ming's thesis [10].
2. Proof of Theorem 1.1. In this section we prove the analogues of Theorem 1.1 for $P_{2 n+1}^{2 m}=R P^{2 m} / R P^{2 n}$ and $P_{2 n+1}^{2 m+1}$. Theorem 1.1 is obtained by letting $m=\infty$ in $P_{2 n+1}^{2 m}$.

Brown and Peterson [6] showed that

$$
H^{*}\left(B P ; \mathbf{Z}_{2}\right) \approx \mathscr{A} /\left(\mathrm{Sq}^{1}\right)=\mathscr{A} / I=\mathscr{A} / / E
$$

Here $\left(\mathrm{Sq}^{1}\right)$ denotes the 2 -sided ideal generated by Sq^{1}, I denotes the left ideal generated by Milnor basis elements $\mathscr{P}_{1}{ }^{0}, \mathscr{P}_{2}{ }^{0}, \ldots$, and E the primitively generated exterior subHopf algebra of \mathscr{A} generated by $\mathscr{P}_{1}{ }^{0}, \mathscr{P}_{2}{ }^{0}, \ldots$ Thus by the change-of-rings theorem, for any space $X, \operatorname{Ext}_{\mathscr{A}}(X \wedge B P) \approx \operatorname{Ext}_{E}(X)$. Here and throughout the paper we abbreviate $\operatorname{Ext}_{A}\left(H^{*}\left(X ; Z_{2}\right), Z_{2}\right)$ to $\operatorname{Ext}_{A}(X)$, where $A=E$ or \mathscr{A}. In particular

$$
\operatorname{Ext}_{\mathscr{A}}(B P) \approx \operatorname{Ext}_{E}\left(Z_{2}, Z_{2}\right) \approx Z_{2}\left[x_{0}, x_{1}, x_{2}, \ldots\right],
$$

2.1 Proposition. In $H^{*}\left(R P^{\infty} ; Z_{2}\right) \approx Z_{2}[\alpha], \mathscr{P}_{i}{ }^{0}\left(\alpha^{j}\right)=j \alpha^{j+2^{i}-1}$.

Proof. Write $\mathscr{P}_{i}{ }^{0}=\sum_{I} a_{I} \mathrm{Sq}^{I}$, where Sq^{I} are admissible (Adem) monomials of degree $2^{i}-1$ and $a_{I} \in Z_{2}$. Applying ξ_{i} shows $a_{\left(2^{i-1}, 2^{i-2}, \ldots, 2,1\right)}=1$. But $\mathrm{Sq}^{2{ }^{i-1}} \ldots \mathrm{Sq}^{2} \mathrm{Sq}^{1}$ is the only admissible monomial of degree $2^{i}-1$ which can be nonzero on a 1-dimensional class. Therefore, $\mathscr{P}_{i}{ }^{0} \alpha=\alpha^{2^{i}}$.

Assume the Proposition proved for $j-1$. Since $\mathscr{P}_{i}{ }^{0}$ is primitive

$$
\begin{aligned}
\mathscr{P}_{i}{ }^{0}\left(\alpha^{j}\right) & =\mathscr{P}_{i}{ }^{0}\left(\alpha^{j-1}\right) \cup \alpha+\alpha^{j-1} \cup \mathscr{P}_{i}{ }^{0}(\alpha) \\
& =(j-1) \alpha^{j+2^{i-1}}+\alpha^{j+2^{i}-1}=j \alpha^{j+2^{i}-1} .
\end{aligned}
$$

2.2 Lemma. Suppose B is a subalgebra of A such that A is a free B-module on generators of degree 0 and d. Suppose M is a bounded-below A-module such that $\operatorname{Ext}_{B}^{s, t}\left(M, \mathbf{Z}_{2}\right)=0$ whenever $t-s$ is odd. Then there is an isomorphism of $\mathbf{Z}_{2}[x]$-modules

$$
\operatorname{Ext}_{A}^{*, *}\left(M, \mathbf{Z}_{2}\right) \approx \mathbf{Z}_{2}[x] \otimes \operatorname{Ext}_{B}^{*, *}\left(M, \mathbf{Z}_{2}\right), \quad \text { where } x \in \operatorname{Ext}_{A}^{1, d}\left(\mathbf{Z}_{2}, \mathbf{Z}_{2}\right)
$$

Proof. We use the exact sequence of $[4,3.2]$:

$$
\begin{aligned}
& \rightarrow \operatorname{Ext}_{A}^{s-1, t-d}\left(M, \mathbf{Z}_{2}\right) \xrightarrow{x} \operatorname{Ext}_{A}^{s, t}\left(M, \mathbf{Z}_{2}\right) \rightarrow \operatorname{Ext}_{B}^{s, t}\left(M, \mathbf{Z}_{2}\right) \\
& \rightarrow \operatorname{Ext}_{A}^{s, t-d}\left(M, \mathbf{Z}_{2}\right) .
\end{aligned}
$$

We first note that $\operatorname{Ext}_{A}^{s, t}\left(M, \mathbf{Z}_{2}\right)=0$ when $t-s$ is odd, for the first such nonzero element would have to induce an element in $\operatorname{Ext}_{B}{ }^{s, t}\left(M, \mathbf{Z}_{2}\right)$, where none exists. Thus the exact sequence above is in fact short exact. This implies that $\operatorname{Ext}_{A}{ }^{s, t}\left(M, \mathbf{Z}_{2}\right)$ contains a subset S which maps isomorphically onto
$\operatorname{Ext}_{B}^{s, t}\left(M, \mathbf{Z}_{2}\right)$, and

$$
S \oplus x S \oplus x^{2} S \oplus \ldots \subset \operatorname{Ext}_{A}^{s, t}\left(M, \mathbf{Z}_{2}\right)
$$

To show the inclusion is actually equality, consider the smallest degree element not in the sum and use the exact sequence to find one of smaller degree.
2.3 Corollary. $\operatorname{Ext}_{E}{ }^{*}{ }^{* *}\left(P_{2 n+1}^{2 m}\right)$ is a free $\mathbf{Z}_{2}\left[x_{1}, x_{2}, \ldots\right]$-module on generators $g_{n}, g_{n+1}, \ldots, g_{m-1}$, where $g_{i} \in \operatorname{Ext}_{E}{ }^{0,2 i+1}\left(P_{2 n+1}^{2 m}\right)$.

Proof. E may be constructed by adding one generator $\mathscr{P}_{i}{ }^{0}$ at a time, and Lemma 2.2 may be applied. The induction is begun by noting that if \mathscr{A}_{0} is the subalgebra of \mathscr{A} generated by $\mathscr{P}_{1}{ }^{0}$, then

$$
\operatorname{Ext}_{\otimes_{0}}^{s, t}\left(P_{2 n+1}^{2 m}\right)= \begin{cases}\mathbf{Z}_{2} & s=0, t=2 i+1, n \leqq i<m \\ 0 & \text { otherwise }\end{cases}
$$

2.4 Theorem. As a module over $\operatorname{Ext}_{E}{ }^{*, *}\left(\mathbf{Z}_{2}, \mathbf{Z}_{2}\right), \operatorname{Ext}_{E}{ }^{*, *}\left(P_{2 n+1}^{2 m}\right)$ is generated by the elements g_{i} of 2.3 with the only relations being consequences of

Proof. That R_{i} is a relation follows readily from the cobar resolution [1]. To see this, let $H_{*}=H_{*}\left(P_{2 n+1}^{2 m}\right)$ and let E_{*} denote the dual of $E . E_{*}$ is a primitively generated exterior algebra on classes ξ_{i} of degree $2^{i}-1$. Let $\bar{E}_{*}=E_{*} / E_{0}$. $\operatorname{Ext}_{E}{ }^{1, *}\left(P_{2 n+1}^{2 m}\right)$ is ker $d_{2} / \operatorname{im} d_{1}$ in

$$
H_{*} \xrightarrow{d_{1}} \bar{E}_{*} \otimes H_{*} \xrightarrow{d_{2}} \bar{E}_{*} \otimes \bar{E}_{*} \otimes H_{*}
$$

where

$$
\begin{aligned}
d_{1}\left(\hat{\alpha}_{2 i-1}\right)=0, \quad d_{1}\left(\hat{\alpha}_{2 i}\right)=\sum_{\nu=1}^{[\log 2(2 i-2 n)]} \xi_{\nu} \otimes \hat{\alpha}_{2 i-2^{\nu}+1} \\
\quad \text { and } d_{2}\left(\xi_{i} \otimes \hat{\alpha}_{j}\right)=\xi_{i} \otimes d_{1} \hat{\alpha}_{j}
\end{aligned}
$$

Then $x_{\nu-1} g_{i-2^{\nu-1}+1}$ corresponds to $\xi_{\nu} \otimes \hat{\alpha}_{2-2^{\nu}+3}$, so that the relation R_{i} is due to $d_{1}\left(\hat{\alpha}_{2 i+2}\right)$.

That these are the only relations follows by induction from the exact sequence

$$
\begin{aligned}
& \longrightarrow \operatorname{Ext}_{E i}{ }^{s-1, t-2^{i+1}}\left(P_{2 n+1}^{2 m}\right) \xrightarrow{x_{i-1}} \operatorname{Ext}_{E i}{ }^{s, t}\left(P_{2 n+1}^{2 m}\right) \\
& \longrightarrow \operatorname{Ext}_{E i-1}^{s, t}\left(P_{2 n+1}^{2 m}\right) \longrightarrow
\end{aligned}
$$

where E_{t} is the exterior algebra generated by $\mathscr{P}_{1}{ }^{0}, \ldots, \mathscr{P}_{t}{ }^{0}$.
Since $\operatorname{Ext}_{s A}^{s, t}\left(\mathrm{P}_{2 n+1}^{2 m} \wedge B P\right)=0$ for $t-s$ odd, there can be no nonzero differentials in the Adams spectral sequence converging to $\pi_{*}{ }^{s}\left(P_{2 n+1}^{2 m} \wedge B P\right) \simeq$ $B P_{*}\left(P_{2 n+1}^{2 m}\right)$. For example, the Adams spectral sequence chart, (see e.g. [7])
for $\pi_{q}\left(P_{2_{n+1}}{ }^{2 n+12} \wedge B P\right)$ begins

Here vertical lines indicate multiplication by x_{0} in Ext () which corresponds (up to elements of higher filtration) to multiplication by 2 in $\pi_{*}()$.
2.5 Theorem. Suppose $\left\{\gamma_{i} \in B P_{2 i+1}\left(P_{2 n+1}^{2 m}\right): n \leqq i<m\right\}$ is any collection of filtration zero generators. Then as a graded abelian group $B P_{*}\left(P_{2 n+1}^{2 m}\right)$ has generators $v_{2}{ }^{i_{2}} \ldots v_{T}{ }^{i_{r}} \gamma_{i}$ and $v_{1}{ }^{i_{1}} v_{2}{ }^{i_{2}} \ldots v_{T}{ }^{i} \gamma_{m-1}$ of degree $2 i+1+\sum_{v=1}^{r}$ $2 i_{\nu}\left(2^{\nu}-1\right)$ and filtration $\sum_{\nu=1}^{r} i_{\nu}$ truncated by $2^{i+1-n_{V_{1}} i_{1}} \ldots v_{r}{ }^{i^{r}} \gamma_{1}=0$, for all $n \leqq i<m, i_{\nu} \geqq 0, r \geqq 0$. Moreover, for $n \leqq i<m, \sum_{\nu=0}^{\left[\log _{2}(i-n+1)\right]} v_{v} \gamma_{i-2^{\nu}+1}$ has filtration $\geqq 2$.

Remark. We shall soon give a specific set of generators γ_{i}. The last part of the theorem gives a partial description of the action of v_{1} on the γ_{1}. Theorem 1.1 (i) follows from this theorem by letting m become infinite.

Proof. The generators $v_{i} \in \pi_{2\left(2^{i}-1\right)}(B P)$ must have filtration 1 and must be represented in $\operatorname{Ext}_{E}\left(\mathbf{Z}_{2}, \mathbf{Z}_{2}\right)$ by x_{i}. Similarly γ_{i} must be represented in $\operatorname{Ext}\left(P_{2 n+1}^{2 m} \wedge B P\right)$ by g_{i}. The relation $x_{0}{ }^{i+1-n} g_{i}=0$ in $\operatorname{Ext}_{E}\left(P_{2 n+1}^{2 m}\right)$ is established by induction on i using the relation R_{i}. Since there are no elements of filtration greater than that of $x_{0}{ }^{i+1-n} g_{i}$, this implies $2^{i+1-n} \gamma_{i}=0$. The final statement of the theorem follows from the Ext relation R_{1}.

$$
\begin{gathered}
\text { 2.6 Proposition. } B P_{*}\left(P_{22+1}^{2 m+1}\right) \approx B P_{*}\left(P_{2 n+1}^{2 m}\right) \oplus B P_{*}\left(S^{2 m+1}\right) \\
B P_{*}\left(P_{2 n}^{2 m}\right) \approx B P_{*}\left(P_{2 n+1}^{2 m}\right) \oplus B P_{*}\left(S^{2 n}\right) .
\end{gathered}
$$

Proof. This follows easily from the exact $B P$-homology sequences of the relevant cofibrations.

In fact, the splitting of homotopy groups comes from a splitting of spaces.
2.7 Proposition. $P_{2 m+1}^{2 m+1} \wedge B P \simeq P_{2 n+1}^{2 m} \wedge B P \vee S^{2 m+1} \wedge B P$

$$
P_{2 n}^{2 m} \wedge B P \simeq P_{2 n+1}^{2 m} \wedge B P \vee S^{2_{1}} \wedge B P
$$

Proof. To prove the first we let

$$
S^{2 m+1} \xrightarrow{f} P_{2 n+1}^{2 m+1} \wedge B P
$$

be a map such that the homotopy class of

$$
S^{2 m+1} \xrightarrow{f} P_{2 n+1}^{2 m+1} \wedge B P \xrightarrow{k} S^{2 m+1} \wedge B P
$$

is a generator. Then

$$
\begin{aligned}
S^{2 m+1} \wedge B P \xrightarrow{f \wedge B P} P_{2 n+1}^{2 m+1} \wedge B P \wedge B P \xrightarrow{P \wedge \mu} P_{2 n+1}^{2 m+1} \wedge B P \\
\xrightarrow{k} S^{2 m+1} \wedge B
\end{aligned}
$$

induces an isomorphism of \mathbf{Z}_{2}-cohomology groups and hence of homotopy groups. Thus so does

$$
P_{2 n+1}^{2 m} \wedge B P \vee S^{2 m+1} \wedge B P \xrightarrow{(i \wedge B P) \vee((P \wedge \mu)(f \wedge B P))} P_{2 n+1}^{2 m+1} \wedge B P
$$

Thus it is a homotopy equivalence by J. H. C. Whitehead's theorem.
For the second, we note that by G. W. Whitehead's duality theorem [13]

$$
\left[P_{2 n+1}^{2 m}, S^{2 n+1} \wedge B P\right] \approx \pi_{2}^{L}-2 n-2\left(P_{2}^{2 L-2 n-2}{ }_{-2 m-1}^{2} \wedge B P\right)=0
$$

Thus the cofibration sequence

$$
P_{2 n}^{2 m} \wedge B P \xrightarrow{i} P_{2 n+1}^{2 m} \wedge B P \rightarrow S^{2 n+1} \wedge B P
$$

implies that there is a map

$$
P_{2 n+1}^{2 m} \xrightarrow{f} P_{2 n}^{2 m} \wedge B P
$$

such that if $=1 \wedge \iota$. As before,

$$
P_{2 n+1}^{2 m} \wedge B P \vee S^{2 n} \wedge B P \xrightarrow{(1 \wedge \mu)(f \wedge B P) \vee(i \wedge B P)} P_{2 n}^{2 m} \wedge B P
$$

is a homotopy equivalence. This completes the proof.
Adams [3, Lemma 2.14] has defined generators $\beta_{i} \in B P_{2_{i}}\left(C P^{\infty}\right)$. We use these to define $\gamma_{i} \in B P_{2 i+1}(R P)$. There are canonical maps

$$
R P_{m}{ }^{n} \xrightarrow{h_{m}^{n}} C P_{\mathrm{I}(m+1) / 2]}^{[n / 2]}
$$

which are compatible with respect to inclusions and collapsings. The SpanierWhitehead $\left(2^{L}-1\right)$-dual $[\mathbf{1 2} ; 5]$ is a map

$$
\Sigma C P_{2}^{2} \frac{L-1-1-1-[(m+1) / 2]}{D\left(h_{m}{ }^{n}\right)} R P_{2}^{2_{L}^{L-1-m}}{ }_{-1-n}^{L-1 / 2]}
$$

which induces an epimorphism in \mathbf{Z}_{2}-cohomology. Reindexing, we have maps

$$
g_{2 n-1}^{2 m+\epsilon}: \Sigma C P_{n-1}^{m} \rightarrow R P_{2 n-1}^{2 m+\epsilon}, \quad \epsilon=0 \text { or } 1
$$

compatible with respect to inclusions and collapsings, and inducing epimorphisms in \mathbf{Z}_{2}-cohomology. Consideration of the induced homomorphism in $\operatorname{Ext}_{E}()$ shows that

$$
B P_{*}\left(\Sigma C P_{n-1}^{m}\right) \xrightarrow{g_{2 n-1 *}^{2 m+\epsilon}} B P_{*}\left(P_{2 n-1}^{2 m+\epsilon}\right)
$$

is surjective.
2.8 Definition. $\gamma_{i}=g_{2 n-1}^{2 m+\epsilon}\left(s \beta_{i}\right) \in B P_{2 i+1}\left(P_{2 n-1}^{2 m+\epsilon}\right)$.

Theorems 2.5 and 2.6 describe the structure of $B P_{*}\left(P_{2 n-1}^{2 m+\epsilon}\right)$ as a $B P_{*^{-}}$ module with respect to these generators. The coaction formula of Theorem 1.1 (ii), valid either in finite- or infinite-dimensional real projective space, follows now from the analogous formula for the β_{i}.

Proof of Theorem 1.1 (ii). The following diagram is commutative

and $\pi^{\prime}\left(\beta_{i}{ }^{M U}\right)=\beta_{i}$. Thus

$$
\gamma\left(\beta_{i}\right)=\left(\pi \otimes \pi^{\prime}\right) \Psi_{1} \beta_{i}{ }^{M U}=\sum_{j=1}^{i} \pi\left(\sum_{k \geqq 0} b_{k}\right)_{(i-j)}^{j} \otimes \beta_{j}
$$

by $[\mathbf{3} ; 11.4]$. Thus S_{k} of Theorem 1.1 (ii) is Adams' πb_{k}. Adams does not give an expression for the πb_{k}; however, he does give an expression for πM_{k}, where

$$
b_{k}=\frac{1}{k+1}\left(\sum_{i=0}^{\infty} M_{i}\right)_{(k)}^{-k-1}[3,7.5]
$$

Letting $N_{k}=\pi M_{k}$, our 1.1(ii)(c) is Adams' 16.3. The relation 1.1 (ii)(d) between v_{i} and m_{i} was proved in [8].
3. Application to vector fields on spheres. It is well-known [2] that if S^{n} has k independent vector fields, there is a map

$$
S^{n} \xrightarrow{f} P_{n-k}^{n}
$$

such that following it by the collapsing map yields (up to homotopy) $1_{S_{n}}$. Consideration of the induced map in $H_{*}(; Z)$ or $B P_{*}()$ shows n must be odd, say $n=2 m+1$. Let X denote a generator of $B P_{n}\left(S^{n}\right)$. Then $\Psi(X)=1 \otimes X$, for there are no elements in $B P_{*}\left(S^{n}\right)$ of smaller degree. Thus $\Psi\left(f_{*} X\right)=1 \otimes$ $f_{*} X$ and $f_{*} X=\gamma_{m}+$ terms involving lower γ_{i}. This enables us to obtain restrictions on n, although the computations become extremely tedious for $k \geqq 10$.

We illustrate by showing if S^{n} has 4 vector fields, then $n \equiv 7(8)$, by showing if there exists a degree 1 map $S^{2 m+1} \rightarrow P_{2 m-3}^{2 m+1}$, then $m \equiv 3(4)$. Of course, this is easily established using the Steenrod operations Sq^{2} and Sq^{4}, but this proof illustrates our method with a minimum of computation. $B P_{*}\left(P_{2 m-3}^{2 m+1}\right)$ begins

(i.e. its first generators are $\gamma_{m-2}, \gamma_{m-1}, v_{1} \gamma_{m-1}$, and γ_{m}, of order $2,4,4$, and ∞). We show that if

$$
\begin{equation*}
\Psi\left(\gamma_{m}+N v_{1} \gamma_{m-1}\right)=1 \otimes\left(\gamma_{m}+N v_{1} \gamma_{m-1}\right) \tag{3.1}
\end{equation*}
$$

then $m \equiv 3(4)$.
The left-hand-side of (3.1) is evaluated by 1.1 (ii). In evaluating the right-hand-side, we note that there is a homomorphism $\eta_{R}: B P_{*} \rightarrow B P_{*}(B P)$ such that in $B P_{*}(B P) \otimes_{B P_{*}} B P_{*}(X), t \otimes v \cdot \gamma=\eta_{R}(v) \cdot t \otimes \gamma$ (see [3, Proof of $16.1(\mathrm{v})]) \cdot \eta_{R}$ is defined by

$$
\eta_{R}\left(m_{k}\right)=\sum_{i=0}^{k} m_{i} t_{k-i}^{2 i} \quad[\mathbf{3}, 16.1(i)] .
$$

The behavior of η_{R} on the v_{i} is then determined using 1.1 (ii) (d). In particular

$$
\eta_{R}\left(v_{1}\right)=v_{1}+2 t_{1}, \quad \eta_{R}\left(v_{2}\right)=v_{2}+2 t_{2}-5 v_{1} t_{1}{ }^{2}-3 v_{1}{ }^{2} t_{1}-4 t_{1}{ }^{3} .
$$

Ignoring cancelling terms, (3.1) becomes

$$
\begin{aligned}
& -(m-1) t_{1} \otimes \gamma_{m-1}+\left(\binom{m-2}{2} t_{1}{ }^{2}+m v_{1} t_{1}\right) \otimes \gamma_{m-2} \\
& \\
& \quad+N v_{1}\left(-(m-2) t_{1} \otimes \gamma_{m-2}\right)=N 2 t_{1} \otimes \gamma_{m-1}
\end{aligned}
$$

By Theorem 2.5 $2 \gamma_{m-1}=-v_{1} \gamma_{m-2}$, for there are no terms of higher filtration. Thus the right-hand-side becomes

$$
-N t_{1} \otimes v_{1} \gamma_{m-2}=-N\left(v_{1}+2 t_{1}\right) t_{1} \otimes \gamma_{m-2}=-N v_{1} t_{1} \otimes \gamma_{m-2}
$$

and the equation becomes

$$
-(m-1) t_{1} \otimes \gamma_{m-1}+\left(\binom{m-2}{2} t_{1}^{2}+(m-N(m-3)) v_{1} t_{1}\right) \otimes \gamma_{m-2}=0
$$

The only possible way to eliminate the first term is to have $m=2 l+1$, so that the first term becomes

$$
-l t_{1} \otimes 2 \gamma_{m-1}=l t_{1} \otimes v_{1} \gamma_{m-2}=l v_{1} t_{1} \otimes \gamma_{m-2}
$$

and the equation becomes

$$
\left(\binom{2 l-1}{2} t_{1}^{2}+(3 l+1-N(2 l-2)) v_{1} t_{1}\right) \otimes \gamma_{m-2}=0
$$

This implies that both coefficients must be even, i.e. l is odd, and hence $m \equiv 3(4)$.

References

1. J. F. Adams, The nonexistence of elements of Hopf invariant one, Ann. of Math. 72 (1960), 20-104.
2. -_ Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
3. -_ Stable homotopy and generalized homology (Univ. of Chicago Press, Chicago, 1974).
4. D. W. Anderson and D. M. Davis, A vanishing theorem in homological algebra, Comm. Math. Helv. 48 (1973), 318-327.
5. M. F. Atiyah, Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.
6. E. H. Brown, Jr., and F. P. Peterson, A spectrum whose Z_{p}-cohomology is the algebra of reduced pth powers, Topology 5 (1966), 149-154.
7. D. M. Davis and M. E. Mahowald, The immersion conjecture is false, to appear.
8. M. Hazewinkel, A universal formal group law and complex cobordism, Bull. Amer. Math. Soc. 81 (1975), 930-933.
9. H. Miller, D. Ravenel, and W. S. Wilson, Novikov's Ext ${ }^{2}$ and the nontriviality of the gamma family, Bull. Amer. Math. Soc. 81 (1975), 1072-1075.
10. R. Ming, Thesis, Univ. of Chicago, 1975.
11. D. Ravenel, The nonexistence of odd primary Arf invariant elements in stable homotopy, to appear.
12. E. H. Spanier and J. H. C. Whitehead, Duality in homotopy theory, Mathematika 2 (1955), 56-80.
13. G. W. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227-283.

Lehigh University,
Bethlehem, Pennsylvania

