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The doublet of quadrupole lenses has not been historically successful in producing the small probes
needed in microscopy, most likely on account of aberrations produced by small deviations from perfect
quadrupole symmetry in the lens structure [1]. To counteract these aberrations, voltages can be used on
multipole lenses fabricated with the same principal plane as the quadrupole lenses. A simple account is
therefore needed for aperture aberrations of the doublet produced by multipoles inside of its two lenses.

The general formula for the potential in cylindrical coordinates has terms of the form
V(r,t) = Vo (r/R)" cosn (t-t,)

which fit to a lens with 2n poles at radius R with alternating voltages +-V,. In the impulse
approximation a particle experiences a force given by the negative of the gradient of the potential as it
travels through a lens with length L and acquires a transverse velocity. in addition to its assumed
constant longitudinal velocity. It emerges with an angular deviation given by

wy = - S, "' cos [(n-1)t—nt, ]
wy =+ S, r™'sin [(n-1)t—nt,]

where the multipole strength is S, = (n/2)(V./ Va)( L/ R*) and qV, is the particle energy. When
n=3,4 there are hexapole and octopole terms. Setting t,= 90°/n turns the cosine factor into a sine
and produces forces everywhere perpendicular to those from terms with t, = 0. For octopoles an
inclination of 22.5 degrees is required, splitting the angle between poles.

As the particle travels outside the quadrupole lens by a throw distance, such as the intermediate image
distance v in the x section, the angular deviation alters the location of the line image produced by the
quadrupole. Next the altered position of the intermediate image produced by the upstream lens is

magnified by the downstream lens, so that both lenses produce an aberration at the final focus such as

X =V Wex T MaxVix Wix = V Wae T Mxu Wi
To convert this expression into the image-side paraxial angles (a,b) at the focus it is convenient to use
the run-out ratio p = X¢/Xy = - v/(Mx u) > 1 and the run-in ratio q = yo/y. =- v/(Myu) <1 (where
(x;,yi ) indicates the excursion of a ray from an on-axis source in lens i, v is the distance to the stigmatic
object, (My, My) are the magnifications of the doublet, and u is the object distance). When the terms in

successive lenses are converted to rectangular coordinates the net result for hexapoles is

X:A3 a2+2B3ab+C3b3
y = B; a>+2C; ab + D; b’

with coefficients given in Table 1 while for octopoles it is
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x = Aa’ +3Ba’b + 3Cab’ + Db’
y = Ba’ +3Ca’b + 3Dab* + Eb’

with coefficients given in Table 2.

1. Second-order aberration coefficients 2. Third-order aberration coefficients

A; = 4+ (Ds - UxepH)V’ A = - Dsu—Uspep*)Vv*

2B; = + 2(D3c - Use p_zq_l) v’ 3B = -3(D4s — Uy p_3 q ! ) v

Cs = - (D3C - Ui p_lqz) v’ 3C = 3(D4C — Uy p_2 q>2 ) v

B; = + (Di - Usxp?q) v’ D = (Ds—-Usp'q’)Vv

2C; = - 2(Ds - Us p'q)) v B = -(Du—Usp®q')v?

D; = - (D3c - Us. q3) & 3C = 3(D4c — Uy p—z C‘[_2 ) v
3D = 3(D4S — Ul I‘fl q_3 ) v
E = - (D4c — Uy q_4 ) v

Table 2 shows that A, C, E are determined only by the normal octopoles, while B , D are set only by the
skew octopoles. E is the largest coefficient and is in practice determined by the strength U, of the
upstream octopole, because q* is large...

Aberrations produced by such compensating octopoles add to the aberrations already present, which are
a) those inherent in a quadrupole doublet of perfect symmetry [2], and b) those at the crossover object
produced by spherical aberration in the condenser lens. Although 4 octopoles are enough to cancel only
the parasites, a fifth octopole is required between the lenses to cancel these aberrations. Then

A = 0 = - (D4c - U4c p_4 ) V4 - L4C (tx de)4 + Cs Mx4
C=0= (Di-Uwp2q?)v' + Lic(tMa) (t, Mgy)* + (1/3) Cs (M M,)?
E=0= - (D4C — Ul q>4 ) V4 - Ly (ty Mdy)4 + Cs My4

where U4 now contains inherent and parasitic strengths and a compensating strength proportional to
octopole voltage Uc, L, is the strength of the additional normal octopole, t, and t, are throw distances
from it to the intermediate images, and C; is the spherical aberration coefficient of the condenser lens.
In practice it is found that a) U, sets E, b) D4 sets A, and c¢) using Uy and L, in the proper ratio to
keep E unaffected sets C, with almost no effect on A [3]. Similar equations apply for B, D, and to the
n = 3 case, where A; , B;, C;, D; may be set to zero with 4 compensating hexapoles [4].

Expressions of this sort may enable the techniques usually applied for mid-column correctors (rapid
computer-analyzed image processing and highly accurate, stable voltage supplies) to improve the
performance of focused ion beam systems.
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