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Cathodoluminescence (CL) microscopy utilizes the emission of light from a material upon interaction 

with an electron.  Luminescence in the ranges from ultraviolet to infrared wavelengths and may be 

analysed spatially, spectrally and temporally to form images, spectra and spectrum-images (where each 

pixel in a data set contains a full spectrum).  CL performed in a scanning or scanning transmission electron 

microscope (SEM or STEM) benefits from the fact that, in these instruments, an electron beam can be 

made arbitrarily small compared to the (often) nanometer scale mechanism(s) driving the optical 

behaviours of materials.  Furthermore, direct correlation with morphology, microstructure, composition 

and chemistry using other analytical techniques available in the electron microscope make CL a very 

attractive characterization tool.  Here we will review the astonishing progress made recently using the CL 

technique from quantification of trace impurities, revealing the local density of optical states in metallic 

nanoparticles far below the optical diffraction limit to the study of individual quantum emitters and look 

forward to the exciting research possibilities in the near future. 

 

The phenomena of cathodoluminescence was first reported in 1879 by Crooks who examined the blue-

green light emitted from synthetic calcium sulfide crystals bombarded with a cathode ray [1].  However, 

it wasn’t until the advent of its use in petrographic studies in the 1960s and 1970s that CL found 

widespread application where CL imaging and spectroscopy were used for the reconstruction of processes 

of mineral formation and alteration by the visualization of growth textures.  Since the mid-1980s, 

panchromatic CL imaging (collecting and detecting luminescence without recourse to dispersion or 

filtering) has been widely used to visualize U/Pb segregation and zonation within zircon grains for 

accurate isotope concentration measurements made using ion probe measurements for geochronology [2].  

More recently, quantification of titanium trace element concentrations below 100 ppm in quartz has been 

enabled by color CL and spectrum-imaging approaches for thermobarometry purposes [3].   

 

With the growth in the optoelectronics market, spectrally resolved CL gained great popularity.  The most 

favored and successful approach involves direct optical coupling between a specimen, a monochromator, 

and finally a photo-detector (photomultiplier tube or charge coupled device).  CL has been used 

extensively to analyse point and extended defects in bulk compound semiconductors and nanostructures 

e.g. [4] and [5] and recently to elucidate the local density of optical states in metallic nanoparticles with 

analysis modalities now including angularly resolved CL [6].  The strong interest in developing light 

emitting diodes emitting at deep ultraviolet wavelengths (<250 nm) for water purification applications and 

the expansion in narrow bandgap semiconductors for mid- and long-wavelength infrared detectors (3 – 10 

µm) has seen the development of spectrally resolved CL systems free from chromatic aberration, 

expanding the range of materials that can be analysed successfully using CL [7]. 

 

The explosion in nanotechnology applications in the last 15 years has driven the expansion of the CL 

technique with new applications and analytical modalities being developed as the limitations of optical 

spectroscopy techniques such as electro- and photo-luminescence are restricted in their ability to study 

objects below the far field diffraction limit (i.e. <200 nm).   The advent of SEMs suitable for operation 
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with small probe sizes at low accelerating voltages together with the development of optimized detection 

hardware has pushed spatial resolution of CL measurements in bulk specimens to a few tens of nanometers 

and in the case of thin specimens (analysed in the STEM), into a regime where the sample’s energy transfer 

processes effectively defines the spatial resolution.  However, as most (semiconductor) objects of interest 

are efficient charge-carrier traps (e.g. quantum dots, discs and wells) the diffusion length (and thus the 

spatial resolution) are essentially determined by the size of the object of interest [9] and [10]; an example 

is shown in Figure 1.   

 

Here we present how this very recent and unprecedented access to material’s optical and electronic 

properties at the length scale of critical device features is being used to advance our understanding of 

technologically important materials including bandgap analysis at the nanoscale [10], development of 

LED structures with higher efficiencies due to mitigation of the quantum confined Stark effect [11] and 

development of (solid state) quantum dots [9].   
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Figure 1.   Optoelectronic properties revealed by CL spectrum-imaging with a spatial resolution at the 

feature length of individual InGaN quantum wells in a commercially available LED.  Efficient charge-

carrier capture provides a CL spatial resolution defined by the size of the object of interest.  

Dark field STEM CL spectrum-image 
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