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Abstract

It is shown, given any positive real number X and any point (JC,, x-%, JC3) of R} and any lattice A in
/?3; that there exists a point (z,, z2, z3) of A for which

-rf(A)/8A < (z, + Xl)(z2 + x2)\z3 + x3\ < Arf(A)/8,

which generalizes a theorem due to Remak.

1980 Mathematics subject classification (Amer. Math. Soc.): 10 E 15.

Let A denote a lattice in euclidean 3-space R3, so that A is the free group
generated by three linearly independent points Xx, X2, X3 of R3. The number
IdetCA',, X2, X3)\ is called the determinant d(A) of A, and is independent of the
choice of basis. Let II X denote the product of the coordinates of a point X in
R3. A theorem of Remark [12] asserts that, given any point X G R3, there exists
a point Z G A such that

|II(Z + X)\ < </(A)A

the equality sign being necessary if and only if X = j(z,, . . . , zn) mod A, where
(z,, 0, . . . , 0), (0, z2, 0, . . . , 0), . . . , (0, . . . , 0, zn) is a basis of A.

Simplifications of Remak's proof have been given by Davenport [5] and
Mahler [8], while different proofs have been given by Birch and Swinnerton-
Dyer [1] and Narzullaev [11]. Our objective is to give a proof of the following
extension of Remak's theorem.
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440 A. C. Woods [2)

THEOREM 1. Given any lattice A and any point X = (JC,, x2, x3) in R3, to any
positive real number X there corresponds a point Z = (z,, z2, z3) of A, depending on
A, such that

-d(A)/SX2 < (z, + x,)(z2 + x2)\z3 + x3\ < X2d(A)/8.

The equality sign is necessary if and only if either
(i) A = 1 and X = ±(z,, z2, z3) mod A, where (z,, 0, 0), (0, z2, 0), (0, 0, z3)form

a basis of A; or
(ii) X4 = (m + l)/(/w - 1) or (w - l)/(w + 1) wAere m = 2, 3, . . . and for

some positive numbers tx, t2, t3, A /JOS a basis of the form

(f ,(A + A"1), /2(A - A"1), 0), (*,(A - A"1), *2(A + A"1), 0), (0, 0, t3)

and X = (-ttX, -t2X, \t3) mod A.

The method of proof is the projective one due to Birch and Swinnerton-Dyer
[1]. Define the homogeneous minimum of A as mA(A) = inf|II Z\ extended over
all points Z of A other than the origin, where IIZ denotes the product of the
coordinates of Z. By the projective method, Theorem 1 follows if

(a) it is true when mh(A) = 0, and
(b) it is true when mh(A) is a positive attained minimum.

PROOF OF (a).

LEMMA I. If A is a lattice in R2 and X > 0, then given any point X S R2, there
exists a point Z of A such that

-d(A)/4X2 < IK* + Z) < A2J(A)/4.

The equality sign is necessary if and only if either

(i) A = 1 and X = \(zx, z^ mod A, where (z , , 0), (0, z^form a basis of A; or

(ii) A4 = (m + \)/{m - 1) or (m - l ) / (m + 1) where m = 2, 3, . . . and for
some positive numbers f „ t2, A has a basis of the form (/,(A + A"1), t2(X — X'1)),
(f t(A — A"1), /2(A + A"1)). Further, if A has a basis of this form than necessarily
X = -(f,A, /2A) mod A.

The case A = 1 is due to Minkowski [10], and the first part for general A is due
to Davenport [6]. The enumeration of the best possible cases is due to Blaney
[2]-

LEMMA 2. If A is a lattice in R2 and A > 0, then given any point X = (x,, x^ G
R2, there exists a point Z = (z,, Zj) of A such that

-d(A)/4X2 < (z, + x,)|z2 + X2\ < X2d(A)/4.
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[ 3 ] The asymmetric product of linear forms 441

The equality sign is necessary if and only if A = 1 and X and A are as given in
Lemma 1.

The case A = 1 is again Minkowski's theorem while the extension to general A
is contained in [14].

By a standard transformation we mean a linear map of the type JC, —* txxx,
x2 —> t2x2, • • . , xn -» tnxn where *„ t2, • • • ,tn are positive real numbers such that

LEMMA 3. Let A be a lattice in R^ for which mh(A) = 0. After a permutation of
the coordinates there exists an integer p with 1 < / > < « — 1 and a sequence of
standard transformations Tk such that the sequence of lattices Tk(h) converges in
the sense of Mahler [9], to a lattice A,, with a basis of the form Xt = (xtJ),
i,j = 1, 2, . . . , n, where xtJ = 0 for 1 < / < p andp + 1 < j < n.

This lemma is due to Birch and Swinnerton-Dyer [1].

LEMMA 4. If a,, a2, a3; bu b2, b3; m are positive real numbers such that
axa2a% > m and byb^b^ > m then

2

II (a,b3 + 6,a3) > 2m(a3 + b3),
i = 1

with equality if and only if a, = Z>, for i = 1, 2, 3 and axa2a3 = m.

This is proved in [14].

By a divided cell in B^ we mean a generalized paallelopiped having a vertex in
the interior of each generalized coordinate octant. Such a divided cell is said to
be regular if any line segment joining two vertices of the cell and crossing
exactly one coordinate plane is necessarily an edge of the cell.

LEMMA 5. / / C is a divided cell in R2 of area A(C) then at least one of its
vertices (JC,, X?) satisfies

-A(C)/4\2 < x,x2 < \2A(C)/4

with strict inequality unless the vertices of C are of the form ±{tx\ t-^X),
±(f,A-\ t2\~

l) where tv t2 are positive numbers such that txt2 =\A(C).

The proof of this is due to Cassels [3] based on a method due to Sawyer [13].
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LEMMA 6. If C is a regular divided cell in R3 of volume V(C) then at least one of
its vertices (xx, x2, x3) satisfies

-F(C)/8A2 < xlX2\x3\ < X2F(C)/8,

with strict inequality unless the vertices of C are of the form

± (txX, t2X, t3), ± (tl\-\ /jX"1, -t3),

± (/.A1, -t2\~\ t3) and ± (txX, t2\, -t3),

where /„ t2, t3 are positive numbers such that txt2t3 = F(C)/8.

PROOF. Assume that all the vertices of C lie outside the region consisting of
the points (JC,, x2, x3) such that

-F(C)/8A2 < Xlx2\x3\ < A2F(C)/8.

Let P = (y,,y2,y3) and Q = (z,, z2, -z3) be two vertices of C such that >>,z, >
0, y2z2 > 0, y3 > 0 and z3 > 0. Project C into the coordinate plane x3 = 0,
parallel to the edge PQ of the cell C. This projection yields a divided cell D of
/?2 with area A(D) = F(C)(^3 + z3y\ The vertex (*,>>, 0) of D obtained from
the projection of P is given by

x = (y3 + z3y\yxz3 + y3zt),

If y 1̂ 2 > 0, then by the initial assumption,

yxy2y3 > \ 2 F(C)/8 and zxz2z3 > X2K(C)/8

and therefore also, by Lemma 4

^ > 0>3 + z3)-'\2F(C)/4.

However, if yxy2 < 0, the initial assumption implies that

yiy2y, < - F ( C ) / 8 \ 2 and zxz2z3 < -F(C)/8X2,

and, again by Lemma 4,

xy <-(y3 + z3y
iV(C)/4X2,

contrary to Lemma 5. This proves Lemma 6, except when the equality sign is
needed; in which case, Lemma 4 implies that y{ = z, for 1 = 1, 2, 3; and
b1.V2.y3l = A2F(C)/8. The projection of P is then (z,, z2, 0). Lemma 5 then
implies that (zx, z2) is one of the points ±(/,X,/2A), ±(t{\~

1, t^X'1), where
txt2 = F(C)/8z3, which completes the proof of Lemma 6.

Let A be a lattice in R3 and let X e R3. We say A + X has a divided cell if
eight points of A + X form a regular divided cell of volume
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LEMMA 7. If A + X has a regular divided cell, then Theorem 1 is true for these
values of A and X.

PROOF. Let C denote a regular divided cell of A + X. By Lemma 6, Theorem
1 is true with strict inequality unless the vertices of C are of the form
±(/,A, t2X, t3), ±(-tl\-\t2\-\t3), ±(t1\-\-t2\-\t3) and ±(-f,A, -t^, t3),
where tu t2, t3 are positive numbers such that txt2t3 = rf(A)/8. Then A contains
the two-dimensional sublattice A' generated by

(tl(X + A"1), /2(A - A'1), 0), (/,(A - A"1), t2(X + A"1), 0),

with d(A') = d(A)/2t3. Therefore, by Lemma 1, with X taken as (-/,A, -/jA),
there exists a point Z ' = (z\, z^) of A', such that

-rf(A)/8A2 < (z\ - txX){z'2 - rj\)|/3 | < A2J(A)/8.

As (z[ — ttX, z'2 — t2X, (3) G A + X, Theorem 1 is true with strict inequality,
unless the equality sign holds, in which case Lemma 1 implies that A is one of
the listed exceptional values, and hence A + X is one of the exceptional cases
listed in Theorem 1.

THEOREM 1A. If A is a lattice in R3 with mh(A) = 0, then Theorem is true for
A.

PROOF. By Lemma 3, there exists, after a permutation of coordinates, an
integer/) = 1 or 2, and a sequence of standard transformations Tk, such that the
sequence of lattices Tk(A) converges, in the sense of Mahler [9], to a lattice AQ
with a basis of the form Z, = (JC,-,, xi2, xi3), i = 1, 2, 3, where Xy = 0 for 1 < i <
p and p + 1 < j < 3. Denote by A ^ the /^-dimensional lattice of basis
(*,-„ xi2, . . . , Xy), i = 1, 2, . . . ,p. Further, denote by A^2) the 3 - p-
dimensional lattice of basis (xip+i, . . ., xi3), i = p + 1, . . . , 3.

The point X of Theorem 1 may be replaced by any point congruent to X
modulo A. Also, the truth of Theorem 1 for A and X is equivalent to the truth of
Theorem 1 for 7^(A) and Tk(X) after some permutation of the coordinates
independent of k. As 7^(A) —» AQ as k —> oo, it follows that Tk(X) may be
chosen from a bounded region independent of k. Therefore, replacing the
sequence {7^} by a subsequence, if necessary, we may assume that Tk{X)
converges to a point X = (xx, x2, x3), say.

As Theorem 1 remains unchanged when the xt and x2 coordinates are
interchanged, we may, without loss of generality, assume that the permutation of
coordinates, given by Lemma 3, is one of the three (xu x2, x3) -+ (x,, x2, x3) or
(*,, x3, Xj) or (x}, x2, x,). Asp may be 1 or 2, this results in six cases, which we
consider individually in what follows.
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444 A. C. Woods (61

Case 1. (*„ x2, x3) -» (x,, x2, x3) andp = 1. By Lemma 1, there exists a point
(u2, u3) G A&2), such that

the equality sign being necessary only if A{)2) has a basis of the form (z2, 0),
(0, z3), where (x2, x3) = ^(z2, z3) modulo A^2).

Let m, n be integers for which

(u2, U3) = m(x22, x^) + n(x32, x33),

and put xf = mx21 + nx3l + 3c,.
If M = 0, then, for any M, G A^°,

(«1 + *f)(«2 + *2)l«3 + *3| = 0.
and as («, + mx2l + nx3U u2, u3) G AQ, Theorem 1 holds for A and X. Thus, we
may assume that u ¥= 0.

Suppose, first, that u2 + x2> 0.
As d(A$»)d(AV») = rf(Ao), so

< 8(,,, ^

There exists w, G A ^ , such that

-4AS'>)/2A2 < (u, + xf)
with strict inequality unless \ = 1 and xf =jd(A§^) modulo d(A$}*). Therefore

-4Ao)/8X2 < (II, + x*)(u2 + x2)\u3 + x3\ < X2rf(Ao)/8.

If the inequality is strict, then, for sufficiently large k, Tk(A + X) satisfies
Theorem 1, and therefore also, A + X satisfies Theorem 1, with strict inequality.
Otherwise, \ = 1, and A&2) has a basis of the form (z2, 0), (0, z3), z2 > 0, z3 > 0,
and (3c2,3c3) =\(z2, z3) modulo A^2). We may assume that X is chosen modulo
AQ, SO that (x2, x3) = -\(z2, z3), and then we could take u2 = 0 or z2, u3 = 0 or
z3, with the corresponding xf =\d(A§}*) modulo d(A$}^).

Hence Ao + X has a regular divided cell with vertices \(±d(A$}*), ±z2, ±z3).
By convergence, Tk(A + X) has a regular divided cell for all sufficiently large k,
and so, by Lemma 7, the theorem follows.

Therefore, we may assume that u2 + 3c2 < 0.
There exists w, G A^!) such that

with strict inequality unless X = 1 and jcf ^ ^ ( A ^ modulo A^^. As

8(M2 + X2)|M3 + * 3 | '
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we again obtain

The rest of the argument parallels that given for w2 + x2 > 0.

Case 2. (xu x2, x3) -»(x,, x2, x3) and p = 2. Since A^2) is one-dimensional,
there exists an integer n such that

Put xf = nx3l + x, and xj = nxn + x2. By Lemma 1, there exists a point
(w,, Wj) e Kl) such that

and therefore also

(ttl + xf)(M2 + xt)\nx33 + 3c3|<

As (M, + «JC31, «2 + «x32, «JC33) e A, if the inequality is strict, then Theorem 1A
follows as before. Otherwise, by Lemma 1, A^0 has a basis of the form
(f,(X + A"1), t2(X - X"1)), (f,(X - X"1), f2(X + X"1)), for some positive real num-
bers /,, t2. Moreover, (xf, xj) = (-/,X, -f2X) modulo A ,̂0, and further, nx33 + x3

= 5 </(A^2)). Then \ + X contains the points

(i) ± (r.X-1, -t^~\ MA?>)), ± {hK 'A \d(AP)).
Now (« - l)x33 + x3 = -4</(A&2)), so put x\ = (n - l)x3l + xv x'2 =
(n — l)x32 + x2. Applying Lemma 1, there exists a point (u\, u'^ G A^, such
that

and therefore also,

^ («i + x',)(M2 + x'2)\(n - l)x33 + x3\ ^

If the inequahty is strict, Theorem 1A follows. Otherwise, since we already know
a basis for A^, Lemma 1 implies that

(*'„ x'2) = (-tx\, -t^X) modulo

and therefore also, that \ + X contains the points
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These four points, together with the four points (i), comprise the vertices of a
regular divided cell of AQ + X. By Lemma 7, Theorem 1A follows as before.

Case 3. (*,, x2, x3) -* (JC,, x3, x^ and/) = 1. By Lemma 1, there exists a point
(w2, w3) e A&2) such that

The proof now parallels that of Case 1, dividing into cases according to the sign
of «3 + xy

Case 4. (JC,, x2, x3)-*(x1, x3, x2) and p = 2. As in Case 2, there exists an
integer n such that

Put xf = nx31 + Jc,, x% = nx32 + x2, and suppose first that nx33 + x3 > 0. By
Lemma 2, there exists (u,, Mj) S A ,̂0 such that

4A2

and therefore

The proof is then completed as before. Suppose now that nx33 + x3 < 0. By
Lemma 2, there exists (M,, M2) e A ,̂̂  such that

and therefore also

The proof is then completed as before.

Case 5. (JC,, X2, X3) -» (JC3, x2, x,) and/? = 1. By Lemma 1, there exists («2,
e A^2) such that

There exist integers m, n such that

(u2, u3) = m(x22, x23) + n(x32, x33),
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so put xf = mx2X + nx3l + Xj. Then, there exists (M,) €E A^!) such that

K + x*\ < ±d(M>»),
and the proof is completed as before.

Case 6. (x,, x2, x3) -> (x3, x2, xt) and p = 2. The proof parallels that used in
Case 4.

This completes the proof of Theorem 1A, and therefore of (a).

PROOF OF (b).

LEMMA 8. If 0 < b < 2, \ < s < 4, t0, x and y are real numbers such that
-2/bs < xy < 2s/b, and either \x + y\ < 3/b or \x - y\ < 3/b, then there
exists t = IQ, modulo 1, such that

-\/bs< (x + t)(y + t)\t\ <s/b.

PROOF. First, choose t = t0, modulo 1, so that 0 < t < 1. We may assume that
t ¥= 0, otherwise the lemma is trivially true. We further assume that x and y do
not satisfy the conclusion of the lemma and show that they do not satisfy the
hypothesis. Thus, x and>> do not satisfy either of the inequalities

-l/bst <(x + t)(y + 0 < s/bt and

-l/bs(l - t) <(x + t - l)(y + t - 1) < s/b(l - t).

Case A.

(i) (x + t)(y + /) < -l/bst and

(ii) (x + t - \){y + t - 1) < -\/bs{\ - t).

Multiplying (i) by (1 - /) and (ii) by /, and adding, we obtain

\ \ - t) + t(t - I)2 <xy + t\\ - t) + t(t - I)

Hence xy < -2/bs, contrary to the hypothesis.

CaseB.

(i) (x + t)(y + t) > s/bt and

(x + t - l)(y + t - 1) > s/b(\ - t).

Putting / = 5 + e, so that \e\ < \, (i) and (ii) become

(i') [x + e + ̂ )(y +e+\)(\+e)> s/b and
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Multiplying these two inequalities together, we obtain

(iii) ((* + ef - I ) ( ( , + ef - I ) ( \ - e2) > ,V*2-

Suppose first that x + e + j > 0. This implies, by (i'), that y + e + \ > 0. If,
further, x + e - \ < 0, then by (ii'), y + e — \ < 0, which implies that \x + e\
< { and |.y + e\ < \. It follows from (iii) that

contrary to the inequalities 5 > ̂  and b < 2. Hence, x + e — \ > 0, and there-
fore also by (if), y + e — \ > 0. Inequality (iii) then implies that

If e < 0, since x > \ — e and.y > \ — e, this inequality implies that

xY > 4s2/b2,

contrary to the hypothesis. Therefore e > 0. But then, by (ii'),

xy > 2s/b,

contrary to the hypothesis. This shows that we must have x + e + \ < 0.

It follows that x + e - \ < 0. Replacing x, y and e by -x, -y and -e
respectively, interchanges inequalities (i') and (ii') while replacing the inequality
x + e - \<0by x + e + \> 0. Hence we are lead to a contradiction exactly
as before. This completes Case B.

CaseC.

(i) (x + t)(y + t) < -\/bst and

(ii) (x + t-l)(y + t-l)>s/b(\-t).

Setting f = xy and ij = x + y and subtracting (ii) from (i), we obtain

T; < ~\/bst - sb{\ - / ) + l - 2 /
(iii)

< - (2/by/t(l - t) ) + 1 - 2t.
If 7] > -3/b then this implies that

-3/b < - (2/by/t(\ - t) ) + 1 - 2t.

As b < 2, this implies that t < j and

2
- - 3 < 2 - 4t.

Writing t =\— e, where 0 < e < \, this inequality may be written as

0 > (7 - 10e)(l - 2e) + 96<?3 + 64e4,
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which is impossible, since all terms on the right side are positive. Therefore, to
avoid a contradiction, it is necessary that TJ < -3/b, so that |x + y\ > 3/b.

By (i),

f < -tn - t2-\/bst.

Hence

(x - yf = T?2 - 4? > r,2 + 4ft) + At2 + 4/bst.

If \x - y\ < 3/b, this implies that

(vi) 9/b2 > TJ2 + 4hj + At2 + 4/bst.

But Tj2 + 4/TJ has a minimum at TJ = -It and, by (iii),

TJ < - ( l / b s t ) - (s/b(\ - t ) ) + l - 2 t < - I t .

Therefore, substituting this value for TJ in (vi), we obtain

9 1 / 1
+ t(\ - t)b2

Hence

The first term on the right of (vii) is larger than \/b2 if st < 1, hence st > 1. But
then st > 4/(1 - /), that is 5/(1 - t) > 4. As b < 2, (vii) then implies that

T>T~ l o r b > 3,b b

contrary to hypothesis. It follows that |x — y\ > 3/b.

CaseD.
(i) (x + t)(y + t)> s/bt

(ii) (x + t - l)(y + t - 1) < -\/bs{\ - t).

Changing x,y into -x, -y, and replacing t by 1 — t, turns inequalities (i) and
(ii) into the corresponding inequalities for Case C, without changing |TJ|. Hence,
by symmetry, Case D follows from Case C.

This completes the proof of Lemma 8.

LEMMA 9. If (x{, x2, x3) £ R3 and A is a lattice in R3, then there exists a point
(z,, z2, z3) £ A such that

z, + x, > 0, z2 + x2 > 0 and

(z, + x,)(z2 + x2)|z3 + x3| < -

with equality only if mh(A) = 0.
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This lemma is due to Cole [4].

COROLLARY. If A < \ or A > 2, then Theorem 1 is true.

PROOF. If X > 2, the solution given by Lemma 9 clearly satisfies Theorem 1. If
A <\, Lemma 9 asserts that there exists a point (zt,z2,z3) G A such that
z, + x, > 0, z2 + x2< 0, and

(z, + x,)(-z2 - x2)\z3 + x3\ < ^d(A).

Here we have applied Lemma 9 to the point (*„ -x2, x3) and the lattice
obtained from A by changing the signs of the second coordinates. Hence

-\d(A) < (z, + x,)(z2 + xx){z2 + x2)\z3 + x3\ < 0,

giving a solution satisfying Theorem 1, unless the equality sign holds on the left,
in which case mh(A) = 0. Since this has been taken care of by Theorem 1A, the
corollary follows.

THEOREM IB. If mh(A) > 0 and is an attained minimum then Theorem 1 is true.

PROOF. We assume, by way of contradiction, that Theorem 1 is false for A
with some point X and a value of A2 = s, say. Then strict inequality in Theorem
1 cannot be attained for any point of A. By homogeneity, we may further
assume that d(A) = 8. The corollary to Lemma 9 implies that \ < j < 4. Set
mh(A) = b, and let a be a positive number for which a3 = b. As Theorem 1 is
invariant under standard transformations and mh(A) is attained, we may assume
that the point (± a, ±a, ± a) G A for at least one choice of signs. Further,
changing the sign of a coordinate leaves the inequality of Theorem 1 invariant,
apart from possibly replacing s by s~*. Hence, we may assume that (a, a, a) G A.
By a well-known theorem of Davenport [7], it follows that d(A) > 1b, hence
b < 8/7.

Denote by A2, the two-dimensional lattice obtained by projecting A into the
x, y plane, parallel to the vector {a, a, a). Then the projection of a'1 A is a"'A2.
As mh(a~lA) = 1, applying Lemma 8 with b = s = 1, it follows that a"'A2 has
no point (x,y) =£ (0, 0) such that

-2 < xy < 2,

and either \x + y\ < 3 or |x — y\ < 3. Hence a-1A2 has no such point for which

|*| + \y\ < 2V2 ,

and therefore A2 has no such point for which

|x| + |^| < 2V2a.
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Let (£, TJ) ^ (0, 0), be a point of A2 such that A2 has no point (x, y) ¥^ (0, 0)
for which

|x| + \y\ < |£| + |i,|.

By Minkowski's fundamental theorem,

|£| + \n\ < 4a-1/2, since d(A2) = 8a"1.

Because of the symmetry in Lemma 8, there is no loss of generality in assuming
that TJ > £ > 0. _

In the notation of Theorem 1, if A" denotes the projection of X into the x, y
plane parallel to the vector {a, a, a), then A2 + X is the image of A + X under
this projection. Applying Lemma 8 with b = a3 and s = A2, we claim that
A2 + X has no point in the region K in the plane given as the set of points {x, y)
such that

2 2*
< xy < —,

as a
and either |x + >>| < 3/a2 or \x — y\ < 3/a2. To see this, assume by way of
contradiction that A2 + X contains such a point (x,y). Then x/a,y/a satisfy
the hypothesis of Lemma 8. Therefore, given any real number t^, there exists
t = t0 (mod 1) such that

Hence, there exists t' = at0 (mod a) such that

-X'2 <(x+ t'){y + t')\t'\ < X2.

As (x, y) G A2 + X and (a, a, a) S A, there exists a real number c such that
(x + ac, y + ac, ac) e A 4- X. Taking to = c in the preceding argument, we
find that (x + t',y + /', i ' ) G A + A', and Theorem 1 is true for A, X and A2

with strict inequality, contrary to the hypothesis. This establishes the claim.
We obtain the desired contradiction proving Theorem 1 by showing that

A2 + X does contain a point of K.
Assume first that A2 + X contains no point (x, y) such tat 0 < x < £ and

0 < y < TJ. The projection of A2 + X into the x-axis, parallel to (£, TJ), is a grid
of determinant 8(aTj)"'. Let (y, 0) be a point of this projection that is closest to 0.
Then

M
In what follows, there is no loss of generality in assuming y > 0. As TJ > £ and
|£| + |TJ| > 2V2 a, it follows that TJ > V2 a, and so

y < 2V2 a'2.
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For some real t with 0 < t < 1, we have, say,

( W i ) = (Y, 0) + f(£ t,) = P , 6 A 2 + f and

{x2, -y2) = (Y, 0) + (/ - l)(fc i») = P2 e A2 + x,

where x,, x2,7i,>2
 a r e non-negative real numbers.

We assert that neither Px nor P2 lies in the region given by

{(x,y)\ \x+y\> 3a-2} n {(x,y)\ \x - y\ > 3a"2}.

To prove this assertion, assume first that \xx — yx\ > 3a~2. As

x, - .y, = y + /(£ - T») < Y < 2V2 a'2 < 3a"2,

so

(i) 71 ~ *i > 3a"2.

Now x2 + y2 > 0 and x2 — >>2 < Y < 3a"2. Hence, if x2 — y2 < -3a"2 and
x2+ y2> 3a~2 then y2 > 3a~2, that is (1 - t)rj > 3a~2. But (i) implies that
tt\ > 3a~2. Hence ij > 6a"2. As | + i) < 4a"1/2, it follows that ij < 4a'1/2.
Whence a3 > 9/4, which is a contradiction. Therefore, either \x2 + >»2| < 3a"2

or \x2 - y2\ < 3a'2. If P2 = ( J C J , ^
 e ^» w e have a contradiction, hence *2.y2

> 2/as >\a~x, since s < 4; that is

(ii) (Y + (' ^

Inequalities (i) and (ii) imply that

/(T, - I) - 3a-2 > Y > ( 1 - t)i + (2a(l -

Hence

rt, - (2a(l - /)T,)-' > 3a"2.

The left hand side of this inequality is negative at t = 0, and tends to -00 as /
tends to 1 from below. Hence it must have a maximum in 0 < t < 1, for the
inequality to hold. This maximum is then achieved at f = 1 — l/7jV2a and /
may be replaced in the inequality by this value to give

T, > 3 a - 2 + V 2 a - ' / 2 .

But as TJ < 4a"1/2, this contradicts a3 < 8/7. Therefore we must have \xt — yt\
< 3a~2.

Now assume that P2 satisfies \x2 + y2\ > 3a~2. As

*2 ~ yi = 7 + ( ' - Ott + ij) < 3a"2,
it follows that

(i') x2 ~ y2 < -3a~2.
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Since Pl = (JC,,^,) does not lie in K and |JC, — yx\ < 3a~2, it follows that
xly1 > 2s/a, that is

Is 1 1
(ii') (y + tg)tri >— > 2ai' s i n c e s > 4 •> 2 a ' s i n c e s > 4

Inequalities (i') and (ii') imply that

(ZatnY1 - t t < y < ( l - /)({ + i,) - 3a"2,

and therefore also
l < 4a~l/2 - 3a~2.

For 0 < /, the left hand side has a minimum at t = l /rjV2a, so V2 a~l/2 <
4a~i/2 - 3a"2, again contrary to a3 < 8/7. Therefore P2 lies in \x + y\ < 3a~2.
This proves our assertion concerning Px and P2.

As Px and /*2 do not lie in K, it follows that xxyy > 2a~xs and x2y2 > 2{as)~l.
Hence

xty2 + x2yx =

However, from the choice of y, it follows that

d(A2) > 8a"1,

which is a contradiction.
We have therefore shown that A2 + X contains a point (xo,y^) such that

0 < x0 < & and 0 < >>0 < 17.

As (*o> ̂ a) ~ (£>1?) cannot lie in K, either

x0- £ + y0- ti < -3a~2,

in which case x0 + y0 < 4a~i/2 — 3a'2; or

-r,)>2a-ls>ja-\

in which case, by the arithmetic-geometric mean inequality,

so that x0 + y0 < (4 - V2 )a"1/2. As V2 a"1/2 < 3a"2, it follows that in either
case,

*o+> 'o<(4 -V2)a - 1 / 2 <3a - 2 .

Therefore, as (x0, y0) is not in K, it follows that

xoyo > 2a'xs.
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Similarly, it follows that

Z-xo + r,-yo<(4-V2 )a"1/2, and

(£ - xo)(v - y0) >
 2a'Xs-

Therefore, again by the arithmetic-geometric mean inequality,

~^ a n d t - xo + v - yo> 2y-^ .

Adding these two inequalities, we obtain £ + TJ > Awls/a. As £ + ij < 4a~1/2,
this implies that s < \.

Now redefine the point (x,,^,) as that point of A2 + X for which xl > 0,
>», > 0 and JCJ + yx = a is as small as possible. Similarly, redefine the point
(x2, y2) as that point of A2 + X for which x2 < 0, y2 < 0 and x2 + y2 = -/? is as
large as possible. By what has already been shown,

a, 0 < (4 - V2 )a-'/2 < 3a"2,

hence x ^ , > 2a~xs and x2.y2 > 2a~ls. Let ?̂ denote the rectangle of points
(x,y) given by

-/? < x + y < a and |x - y\ < 4a~l/2.

As s < 5, so /? is contained in the set of points (x, y) given by

xy > -2{sa)~l and min(|x + y\, \x — y\) < 3a"2.

Therefore, R contains no point of A2 + X in its interior. It is easy to see that
each vertex of R has coordinates of opposite sign. Hence, R contains the points
(xi>y\)> {X2>y^ o n i*s boundary. Now, all points of A2 + X lie on lines parallel
to the segment (xx,yx) — (x^y^ and spaced so that any two adjacent points on
one such line are the endpoints of a segment congruent to (x,,^,) — {x2,yz)- It
follows that there exist numbers p, a > 4a~l/2, such that the rectangle R' of
points (x, y) given by

-/? < x + y < a and -p < x — y < a,

contains points (x3, y3) and (x4, j>4) of A2 + X such that

x3 - y3 = -p and x4 - y4 = a;

and such that R' contains no point of A2 + X in its interior. Therefore
x3y3 < -2(as)"' and x4>>4 < -2(as)~l. If neither point is a vertex of R', then the
two triangles with vertices (x,,y,), O2,>>2), (x3,y3) and (x,,^,), ( x ^ ^ , (x4,.y4)
contain no point of A2 + X apart from their vertices. It follows that the four
points form the vertices of a divided cell of A2 + X, which therefore has area
8a"1, contradicting Lemma 5. Hence, at least one of (x3,^3), (x4,_y4) is a vertex
of R'. This implies that the lines x + y = -/? and x + y = a are two adjacent
lines of lattice points of A2 + X. Neither of these lines can intersect a coordinate
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axis in a point of A2 + X because such a point (JC, / ) satisfies \x + y\ < 3a'2

and therefore \xy\ > nan(2a~ls, 2a~ls~l). It follows that there exist four_points
(x/.X), / = 1, 2, 3, 4 forming the vertices of a divided cell of A2 + X, and
satisfying

jc/y; > 2a"1* for / = 1, 2;

xjy'i < -2(as)~l for / = 3, 4;

again contradicting Lemma 5. This proves the theorem.
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