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A CUSP-LIKE FREE-SURFACE FLOW
DUE TO A SUBMERGED SOURCE OR SINK
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Abstract

A solution is found for a line source or sink beneath a free surface, at a unique squared
Froude number of 12.622.

1. Introduction

What is the flow induced by an isolated steady source or sink beneath a free
surface? This simple question does not appear to have a simple answer. If the
source is a line source of strength m, in two-dimensional irrotational flow of an
incompressible inviscid fluid of infinite depth, and is situated at submergence h
beneath the undisturbed level of the free surface under gravity g, then there is
only one dimensionless parameter, the (squared) Froude number

F2 = m2/(gh3), (1.1)

and we might expect to find a solution for every value of F2.
In fact, the problem cannot be solved without further specification of the

nature of the free-surface disturbance immediately above the source. Some
previous investigators ([2], [3]) have assumed a stagnation point, and have sought
results for small values of F2. Further studies of this type of flow have been made
recently by the present authors, and will be reported elsewhere. A feature of these
stagnation-point solutions is the presence of short waves, which steepen as F 2

increases, and these solutions seem to be confined to F2 < 4.
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In the present note, we investigate a quite different type of flow, in which there
is no stagnation point anywhere in the flow domain. Instead, the flow ' bifurcates'
at a definite point somewhere between the source and the undisturbed free-surface
level. The free surface at this point is cusp-like, the tip of the cusp pointing
toward the source. Similar behaviour has been assumed in studies of stratified
fluids of finite depth, surveyed by Imberger [1] and by Yih [4].

The problem is first given a mathematical formulation in which the task is
reduced to that of finding a set of real coefficients bj of an infinite series. These
coefficients are required to be such that the free-surface pressure be equal to
atmospheric. If the series is truncated to a finite number of terms, and the
free-surface condition enforced at a finite number of points, a set of non-linear
algebraic equations can be written down, that in principle enable determination
of bj for any input Froude number.

However, no such solutions appear to be obtainable for a general input Froude
number. Instead, we find that the cusp-like solution can be obtained only if (in
effect) the Froude number is also included as one of the unknowns of the
problem. A numerical procedure with such a feature converged rapidly to the
solution shown in Figure 1, whose Froude number is F2 = 12.622, and whose
cusp lies at 74.938% of the depth of the source.
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Figure 1. Free-surface shape for flow at F2 = 12.622. The source is at y = -1.84257, and the
free-surface cusp is at y = -1.38079, on the scale of this figure.
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2. Mathematical formulation

445

If/(z) — <t>(x, y) + i^(x, y) is a complex velocity potential, and a new com-
plex variable / is defined by

e'=4t(t+\y2, (2.1)

we represent the physical variable z = x + iy as a series in powers of t, of the
form

(2.2)
7 = 1

for some real coefficients b} to be determined. The suitability of such a series
follows [3] from conformal-mapping considerations. Figure 2 shows the flow
region in the z, /, and f-planes.

Figure 2. Flow regions in z, f and r-planes.
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The series (2.2) has been designed to satisfy automatically all requirements
except for the free-surface condition. Thus, as / -* 0, z -> -ib0 and |/|-» oo, with

/ - l o g ( z + ift0), z-+-ib0. (2.3)

That is, the origin t = 0 corresponds to a source of strength 2TT located at the
point z = -ibQ, and is labelled as the point S in Figure 2.

Similarly, as t -> - 1 , | z | and |/| both become infinite, with

/->21ogz, z -> oo. (2.4)

Thus the total flux 2m produced by the source at z = -ib0 is distributed at infinity
over a half plane. The flow therefore appears at infinity as if it had been
generated by a source of strength 4TT.

The right half x > 0 of the flow region maps into the ?-plane as the lower half
Im / < 0 of the interior of the unit circle \t\< 1, and the free surface (BF in
Figure 2) is the semi-circle / = e~'e, 0 < 0 < m. As can be shown from (2.1), xp
vanishes on t = e~'e. We require that, on this free-surface, the pressure be equal
to atmospheric, and this means that

y + \f'(z)\2 = 0. (2.5)

Note that the above formulation is a non-dimensional one, in which we have
used m2/3(8ir2g)"I/3 as the unit of length, and (wg/7r)1/3 as the unit of velocity,
where m is the actual (dimensional) source strength, and g the acceleration of
gravity. Since the source is located at z = -ib0 in these dimensionless co-ordinates,
if it is located at z = -ih in dimensional co-ordinates, we must have

F2 = Sir2bo3. (2.6)

Now if the free-surface condition (2.5) is transformed into the t variable, we
have

and, upon substitution of the series (2.2) into (2.7), we find

P(O;bj) = O, O<0<77, (2.8)

where

P{9; bj) = Y(6) + 4sm2$[A2(0) + B2{d)\\ (2.9)

and

= 2 bj[-i cos jO - { tan \6 • sin j8], (2.10)
j=Q
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The problem has thus reduced to that of choosing a set of real coefficients bj,
such that a certain function P, physically identifiable with the free-surface
pressure difference, vanishes for all 6 in the range 0 < 0 < IT. This problem is not
unlike that of finding Fourier coefficients, but of course is rendered much more
difficult by the non-linear dependence of P on bj.

Certain constraints on the coefficients bj follow immediately from the end
values 6 = 0, IT. Thus, in order that P — 0 at 0 = IT, i.e. that the free surface
condition be satisfied at physical infinity, we must have

!(-l)'(2y-l)*, = 0. (2.12)
7=0

At the other end 6 — 0 of the range, which corresponds to the symmetry plane
x = 0, the requirement that P = 0 can be satisfied if either

2 bj = 0, (2.13)
7 = 0

or

2(2y-l)6, = 0. (2.14)
j=0

Thus, as 0 -» 0 or t -» 1, (2.1) implies that

/ - -\{t - \f + \{t - I)3 + O(t - I)4 (2.15)

while

z -. z, + (/ - l)z[ + {{t - \fz'{ + i(t - \fz[" + O(t - I)4 (2.16)

for some (imaginary) Taylor coefficients z,, z\, etc. Now (2.7) can be satisfied at
/ = 1 only if either z, or z[ is zero. In the former case, where (2.13) holds,

/ - - i z 2 / ( * ; ) 2 + O(z3) (2.17)

as z -> 0, so that the origin in the z-plane is a stagnation point. In the latter case,
where (2.14) holds,

/ - - \ { z - zx)/z'{ + K ( z - z , ) 3 / 2 + O(z - z t f (2.18)

(for some real constant K), which consists of a (vertical) uniform stream together
with a "3/2-power" velocity potential, representing bifurcating streamlines at
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3. Numerical solution

[61

If we force (2.8) to hold at some discrete set of values 6 — 6k, k = 1,2,... ,M,
with 0, > 0 and dM < -n, and in addition require both (2.12) and (2.14) to hold,
there results a set of M + 2 non-linear algebraic equations involving the N + 1
coefficients bj,j = 0,1,2,... ,N. Various numerical methods can be used to solve
this set of equations, but first we must decide just how many of the coefficients
are to be considered as unknown.

If the Froude number F is prescribed, then (2.6) determines the leading
coefficient b0. In principle, it is then possible to treat bx, b2,... ,bN as a set of N
unknowns. However, all attempts to solve this system with input b0 failed. There
was some indication that with 1.8 < b0 < 1.9, success was near, and it was then
suspected that a solution might exist only for some special Froude number,
corresponding to a b0 value in this range. Therefore, the numerical procedures
were modified to allow b0 to be an unknown rather than an input quantity, and
the result was immediate and complete success, with rapid convergence to a
solution at b0 = 1.84257, i.e. F2 = 12.622.

The actual method used is a Newton iteration, in which, if b} is an approxima-
tion to the desired solution, then a better approximation is b} + dbj, where Sbj is
obtained by solving

ISbj ; b,). (3-1)

If we choose M = N — 1, (3.1) can be solved subject to the linear constraints
(2.12), (2.14) by any standard linear-equation package. It is not difficult to obtain
an explicit formula for the matrix element dP/dbj by differentiation of (2.8)—(2.11).
Uniformly spaced 6k were found to be satisfactory.

The iteration process can be started with guessed values such as b0 = 1.8,
b| = 0.5, b2 — 0.6, b3 = -0.1, and all other coefficients zero. In practice it was
found convenient to start with a low value (say 5) for N, and, once the iteration
converged at that N, to use the resulting coefficients as a starting guess for
iterations at a higher value of iV. Convergence is very rapid at any fixed N, no
more than 5 iterations being ever needed to reduce the maximum value of
P{0k; bj) below 10"5.

TABLE 1

N

5
10
15
20
25

b0
1.86935
1.84223
1.84260
1.84256
1.84257
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TABLE 2

449

j
0
1
2
3
4
5
6
7
8
9
10

bJ
1.84257
0.41325
0.55982

-0.06731
0.01766

-0.00613
0.00248

-0.00111
0.00053

-0.00027
0.00014

Table 1 shows values of b0 from a run in which N was successively increased in
steps of 5. The final value b0 = 1.84257 at N = 25 is accurate to at least 5 figures.
Table 2 shows the coefficients bj, j = 0,1,2,..., 10. The free surface is shown in
Figure 1. All computations were carried out on a TRS-80 microcomputer.

4. Conclusion

We have provided here both negative (failure to achieve solutions at general
input b0 values) and positive (success to high accuracy with b0 as an unknown)
numerical evidence that a cusp-hke flow exists only for a unique Froude number,
close to F2 = 12.622.

Several questions are raised by this conclusion. If this cusped solution exists
only at F2 - 12.622..., what happens at F2 = 12 or F2 = 13? The present
conclusion relates only to existence of a steady flow, and an obvious but hardly
satisfying answer to the above question is that, if the source-like flow is started
from rest, a steady state cannot be achieved if F2 ¥= 12.622 But then, what
happens instead of a steady state?

The present results may be compared with some empirical estimates of Craya,
e.g. as discussed in [4], pages 192-196. Craya used an exact solution for a
submerged 120° sea-mount, assuming that results for infinite water depth can be
obtained simply by rescaling this exact solution. The resulting approximation to
F2 is about 9.3, rather than the present exact value of 12.622.
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