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Continuum modelling of size segregation and
flow in dense, bidisperse granular media:
accounting for segregation driven by both
pressure gradients and shear-strain-rate
gradients
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Dense mixtures of particles of varying size tend to segregate based on size during
flow. Granular size segregation impacts many industrial and geophysical processes, but
the development of coupled, continuum models capable of predicting the evolution
of segregation dynamics and flow fields in dense granular media across different
geometries remains a challenge. One reason is because size segregation stems from
two driving forces: pressure gradients and shear-strain-rate gradients. Another reason is
the challenge of integrating segregation models with rheological constitutive equations
for dense granular flow. In this paper we develop a continuum model that accounts
for pressure-gradient-driven and shear-strain-rate-gradient-driven segregation, coupled to
rheological modelling of a dense granular medium across the quasi-static and dense
inertial flow regimes. To calibrate and test the continuum model, we perform discrete
element method (DEM) simulations of dense flow of bidisperse granular systems in two
flow geometries in which both segregation driving forces are present: inclined plane flow
and planar shear flow with gravity. Steady-state DEM data from inclined plane flow is
used to determine the dimensionless material parameters in the pressure-gradient-driven
segregation model for both spheres and disks. Then, predictions of the continuum model
are tested against DEM data across different cases of inclined plane flow and planar shear
flow with gravity, while varying parameters such as the size of the flow geometry, the
flow speed and the initial conditions. We find that it is crucial to account for both driving
forces to capture segregation dynamics across both flow geometries with a single set of
parameters.
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1. Introduction

When a granular medium is non-monodisperse, i.e. consisting of a mixture of particles
of disparate size, grains tend to demix based on size during flow – a process referred to
as size segregation. Predicting the dynamics of size segregation during flow is crucial
in the design of various industrial processes where mixing is key and in understanding
natural hazards, such as avalanches and landslides. The complex, spatially inhomogeneous
distributions in particle size that can arise during the segregation process (e.g. Savage &
Lun 1988; Gray & Hutter 1997; Hill & Fan 2008; Golick & Daniels 2009; Wiederseiner
et al. 2011; Schlick et al. 2015; van der Vaart et al. 2015) pose a substantial challenge for
modelling efforts, and significant effort over the last few decades has gone into developing
continuum models for the evolution of particle-size distribution in a number of flow
geometries (e.g. see the recent reviews of Gray 2018; Umbanhowar, Lueptow & Ottino
2019).

Here, we highlight two specific challenges for dense, granular media that motivate the
present work. First, as per current understanding, there are two important driving forces
for size segregation in dense granular flows: (1) pressure gradients, typically arising due
to gravity; and (2) shear-strain-rate gradients. In the presence of pressure gradients, the
mechanisms of kinetic sieving and squeeze expulsion (Savage & Lun 1988; Gray 2018)
result in a net flux of small particles to high-pressure regions and large particles to
low-pressure regions, such as near a free surface. Pressure-gradient-driven segregation
is widely recognized as a dominant driving force and is the focus of most size-segregation
models in the literature (e.g. Gray & Thornton 2005; Gray & Chugunov 2006; Gray &
Ancey 2011; Marks, Rognon & Einav 2012; Fan et al. 2014; Gajjar & Gray 2014; Schlick
et al. 2015; Jones et al. 2018; Liu, Gonzalez & Wassgren 2019; Barker et al. 2021; Duan
et al. 2021; Trewhela, Ancey & Gray 2021). Apart from pressure gradients, gradients in
shear-strain rate can also drive size segregation in dense flows, in which large particles
segregate towards more rapidly shearing regions (Hill & Fan 2008; Fan & Hill 2010,
2011a), and comparatively fewer continuum modelling works have been dedicated to
capturing this driving force (Fan & Hill 2011b; Hill & Tan 2014; Liu, Singh & Henann
2023). While it is reasonable to expect segregation phenomenology in shallow free-surface
flows to be predominantly driven by pressure gradients, the comparative contributions of
the two driving forces is not always clear (Staron & Phillips 2015), necessitating a model
that accounts for both. The recent work of Jing et al. (2021) developed a scaling law for the
segregation force on a single intruder in a flowing dense granular medium that accounts
for both mechanisms and tested the scaling law across different cases of pressure gradients
and flow kinematics, but it remains to develop and test a continuum model that involves
both mechanisms at finite particle concentrations across flow conditions.

The second challenge is coupling segregation modelling with rheology. The vast
majority of the aforementioned segregation models do not involve rheological constitutive
equations capable of predicting flow fields across different geometries. Instead, a certain
flow field is assumed or measured from experiments or discrete element method (DEM)
simulations and then prescribed as input to the segregation model. This is because
modelling the rheological behaviour of dense granular materials across flow geometries
is a substantial challenge itself. The inertial, or μ(I), rheology (MiDi 2004; da Cruz et al.
2005; Jop, Forterre & Pouliquen 2005; Srivastava et al. 2021), where μ is the stress ratio
and I is the inertial number, is a common approach and uses dimensional arguments to
relate the stress state to the state of strain rate at a point through a local constitutive
equation. The μ(I) rheology works well in homogeneous shearing and certain other dense
inertial flows, such as flow down an incline. However, the μ(I) rheology cannot capture
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Modelling size segregation and flow in dense granular media

a broad set of inhomogeneous flows spanning the quasi-static and dense inertial flow
regimes, and a number of non-local continuum modelling approaches have been developed
to capture the features of dense, inhomogeneous flows (Kamrin 2019).

Only a few works have sought to couple segregation modelling with rheological
constitutive equations for a dense, bidisperse granular medium. For example, Liu et al.
(2019) combined a rate-independent, Mohr–Coulomb-based, elasto-plasticity model with
the pressure-gradient-driven segregation model of Fan et al. (2014) and applied the
coupled model to dense, bidisperse flows in rotating drums and hoppers. More recently,
Barker et al. (2021) combined a regularized version of the μ(I) rheology (Barker &
Gray 2017) with the pressure-gradient-driven segregation model of Trewhela et al. (2021)
and applied the coupled model to dense, bidisperse flows down an inclined plane and
in a rotating drum. Finally, in our recent work (Liu et al. 2023), we generalized the
non-local granular fluidity (NGF) model for dense granular flow (Kamrin & Koval
2012; Henann & Kamrin 2013) from monodisperse to bidisperse granular systems
and proposed a segregation model for the shear-strain-rate-gradient-driven flux. We
showed that this coupled model could simultaneously capture segregation dynamics
and flow fields in two different flow geometries in the absence of pressure gradients –
vertical chute flow and annular shear flow. However, none of these models account for
both pressure-gradient-driven and shear-strain-rate-gradient-driven segregation within a
framework coupled to the rheological modelling of a dense granular medium.

The purpose of this paper is to develop a model that integrates pressure-gradient-driven
and shear-strain-rate-gradient-driven segregation, granular diffusion and non-local
rheological behaviour spanning the quasi-static and dense inertial flow regimes (I � 10−1)
into one framework capable of predicting segregation dynamics and flow fields. The
starting point is our recent work (Liu et al. 2023), which accounts for all but
the pressure-gradient-driven flux. To this end, we supplement this model with a
phenomenological constitutive equation for the pressure-gradient-driven flux, based on
the works of Gajjar & Gray (2014) and Trewhela et al. (2021). To calibrate and test the
coupled, continuum model, we perform DEM simulations using the open-source software
LAMMPS (Plimpton 1995). We return to the widely studied, inclined plane flow geometry
to calibrate the model for dense, bidisperse systems of both frictional spheres and disks,
focusing on a fixed grain-size ratio. Then, we perform validation tests, in which we
compare continuum model predictions of the steady-state flow fields and the transient
evolution of the segregation dynamics against DEM simulation results in both inclined
plane flow and an additional flow geometry not used in model calibration – planar shear
flow with gravity. Both of these flow geometries involve shear-strain-rate gradients and
pressure gradients, so it is important to account for both driving forces of segregation to
capture the segregation dynamics in both geometries with a single set of parameters.

The remainder of this paper is organized as follows. First, we discuss the continuum
framework for modelling coupled size segregation and flow in § 2. Specifically, we discuss
the segregation model in § 2.5 wherein we append the constitutive equation for the
pressure-gradient-driven flux (Gajjar & Gray 2014; Trewhela et al. 2021) to the model
of Liu et al. (2023). To determine the dimensionless material parameters that appear in the
pressure-gradient-driven size-segregation model for both spheres and disks, we consider
flows of bidisperse mixtures down an inclined plane in § 3 and fit the model to steady-state
DEM simulation results. Then, we perform validation tests of the continuum model against
DEM simulation results for the transient evolution of the segregation dynamics, first for
inclined plane flow in § 4.1 and second for an additional flow configuration not used in
model calibration – planar shear flow with gravity – in § 4.2 without parameter adjustment.

988 A43-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

47
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.477


H. Singh, D. Liu and D.L. Henann

In § 5 we examine the relative contributions of the two driving forces of segregation in both
flow geometries and, finally, we close with some concluding remarks in § 6.

2. Continuum framework

In this section we discuss the continuum framework used to model dense, bidisperse
granular mixtures. As in our prior work (Liu et al. 2023), we utilize a mixture-theory-based
approach (e.g. Gray 2018; Umbanhowar et al. 2019). While the continuum model
developed in this work is a coupled model for size segregation and flow, we primarily focus
on the size-segregation aspect of the model in this section. The rheological constitutive
equations that we utilize for bidisperse systems have been discussed in detail in our prior
work (Liu et al. 2023) and, for brevity, are only recapped in Appendix A. Regarding
notation, we use component notation, in which the components of vectors, v, and tensors,
σ , relative to a set of Cartesian basis vectors {ei|i = 1, 2, 3} are denoted by vi and σij,
respectively. The Einstein summation convention is employed, and the Kronecker delta,
δij, is utilized to denote the components of the identity tensor.

2.1. Bidisperse systems
We consider bidisperse granular systems made up of grains of two different sizes:
large grains with average diameter dl and small grains with average diameter ds. As in
Liu et al. (2023), our focus is size-based segregation, and to eliminate density-based
segregation, all grains are taken to be made of the same material with mass density
ρs. Both three-dimensional systems of bidisperse spheres and two-dimensional systems
of bidisperse disks are considered in this work but, for brevity, in what follows, we
describe the continuum framework for three-dimensional systems of spheres. In the
mixture theory approach utilized here, several quantities are introduced for each species:
the large grains and the small grains. Large-grain quantities are denoted with a superscript
l and small-grain quantities with a superscript s. The solid fractions, i.e. the volumes
occupied by each species per unit total volume, are denoted as φl and φs for large and
small grains, respectively, and the total solid fraction is φ = φl + φs. The concentrations
of each species are defined as cl = φl/φ and cs = φs/φs, so that cl + cs = 1. The average
grain size is defined as d̄ = cldl + csds.

2.2. Kinematics of flow
The velocity fields for each species are denoted as vl

i and vs
i , and the mixture velocity

field is defined as vi = clvl
i + csvs

i . The strain-rate tensor for the mixture is defined as the
symmetric part of the gradient of the mixture velocity: Dij = (1/2)(∂vi/∂xj + ∂vj/∂xi).
In this work, we focus on dense flows spanning the quasi-static and dense inertial flow
regimes (I � 10−1). Across our DEM simulations, we observe that the total solid fraction
remains approximately uniform both spatially and temporally, and any volume change at
flow initiation occurs over a much shorter time scale than the process of segregation.
Therefore, we make the common idealization that dense flow of the mixture proceeds
at constant volume (e.g. Gray & Thornton 2005; Gray & Chugunov 2006; Gray &
Ancey 2011; Gajjar & Gray 2014; Barker et al. 2021; Liu et al. 2023). (We note that
this idealization is not appropriate for flows in the dilute, or collisional, flow regime
(I � 10−1), in which the total solid fraction can evolve both spatially and temporally.)
Under the constant-volume idealization, the mixture velocity field is divergence free,
∂vi/∂xi = 0; the strain-rate tensor is deviatoric, Dkk = 0; and the total solid fraction
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φ remains constant. Based on our DEM simulations, throughout this study, we take
φ = 0.6 for spheres and φ = 0.8 for disks. The equivalent shear-strain rate is defined as
γ̇ = (2DijDij)

1/2.

2.3. Balance of mass
Using the mixture velocity field and the species-specific velocity fields, the relative volume
fluxes for large and small grains are defined as wl

i = cl(vl
i − vi) and ws

i = cs(vs
i − vi),

respectively, so that wl
i + ws

i = 0i. Conservation of mass applied to the large grains
requires that

Dcl

Dt
+ ∂wl

i
∂xi

= 0, (2.1)

where D(•)/Dt is the material time derivative. In what follows, we utilize cl as the
field variable that describes the dynamics of size segregation. A constitutive equation
is then required for the relative volume flux wl

i. In our previous work (Liu et al.
2023), we proposed a constitutive equation for wl

i that accounts for diffusion and
shear-strain-rate-gradient-driven segregation. In § 2.5 we review this model and extend
it to account for pressure-gradient-driven segregation.

2.4. Stress and the equations of motion
The stress-related fields for the mixture are defined as follows: the symmetric Cauchy
stress tensor σij = σji, the pressure P = −(1/3)σkk, the stress deviator σ ′

ij = σij + Pδij, the
equivalent shear stress τ = (σ ′

ijσ
′
ij/2)1/2 and the stress ratio μ = τ/P. The equations of

motion are

φρs
Dvi

Dt
= ∂σij

∂xj
+ bi, (2.2)

where φ is the constant total solid fraction and bi is the non-inertial body force per unit
volume (typically gravitational). Rheological constitutive equations are then required for
the Cauchy stress σij. In our previous work (Liu et al. 2023), we generalized the NGF
model for dense granular flow from monodisperse to bidisperse systems. In this work, we
continue to utilize the generalized NGF model to describe the rheological behaviour of
dense, bidisperse granular flows, which, for brevity, is summarized in Appendix A.

2.5. Segregation model
In this section we discuss the constitutive equation for the relative volume flux wl

i. In
dense granular flows a bidisperse mixture tends to segregate due to both shear-strain-rate
gradients and pressure gradients. Moreover, diffusion acts counter to segregation and tends
to mix the two species. Accordingly, we take the relative volume flux to be comprised of
three contributions as follows:

wl
i = wdiff

i + wS
i + wP

i . (2.3)

Here wdiff
i is the diffusion flux, wS

i is the shear-strain-rate-gradient-driven segregation flux
and wP

i is the pressure-gradient-driven segregation flux.
The first two contributions have been examined in detail in our prior work (Liu et al.

2023) and are briefly recapped here. First, we take the diffusion flux to be driven
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by concentration gradients as wdiff
i = −D(∂cl/∂xi), where D is the binary diffusion

coefficient. In a dense, bidisperse granular mixture, the binary diffusion coefficient follows
a well-established scaling (e.g. Barker et al. 2021; Duan et al. 2021; Trewhela et al. 2021;
Liu et al. 2023) with the average grain size d̄ and the shear-strain rate γ̇ as D = Cdiff d̄2γ̇ ,
where Cdiff is a dimensionless material parameter. Therefore, the diffusion flux is

wdiff
i = −Cdiff d̄2γ̇

∂cl

∂xi
. (2.4)

Second, in Liu et al. (2023) we isolated shear-strain-rate-gradient-driven segregation
in two flow configurations with uniform pressure and proposed the following
phenomenological constitutive equation for the flux wS

i :

wS
i = CS

segd̄2cl(1 − cl)
∂γ̇

∂xi
. (2.5)

Here CS
seg is another dimensionless material parameter. In (2.5) the pre-factor depends on

the average grain size through d̄2 for dimensional consistency and involves a symmetric
dependence on cl through cl(1 − cl), which ensures that segregation ceases when the
bidisperse mixture becomes either all large (cl = 1) or all small (cl = 0) grains. While
a symmetric dependence of the pre-factor on cl was sufficient to capture the DEM data
of Liu et al. (2023) in the absence of pressure gradients, it contrasts with the asymmetric
dependence that has been invoked to model pressure-gradient-driven size segregation in
the literature (e.g. Gajjar & Gray 2014; Tunuguntla, Weinhart & Thornton 2017; Jones
et al. 2018; Barker et al. 2021; Trewhela et al. 2021) and in the next paragraph of the
present work.

Next, we consider the segregation flux associated with pressure gradients, wP
i . We

hypothesize that the segregation flux wP
i is driven by gradients in the pressure P and adopt

the following phenomenological form for the constitutive equation for wP
i :

wP
i = −CP

seg
d̄2γ̇

P
cl(1 − cl)(1 − α + αcl)

∂P
∂xi

. (2.6)

Here CP
seg and α are dimensionless parameters dependent upon mixture properties

(e.g. the grain-size ratio). The dependence of the pre-factor on γ̇ cl(1 − cl) ensures that
(2.6) satisfies several minimal requirements – namely, that the pressure-gradient-driven
segregation flux is zero when there is no flow (γ̇ = 0) or when the mixture becomes either
all large (cl = 1) or all small (cl = 0) grains. Next, the dependence of the pre-factor on
d̄2/P ensures dimensional consistency. Finally, in contrast to (2.5), the dependence of
(2.6) on the factor (1 − α + αcl) introduces an asymmetric dependence on cl into the flux
constitutive equation.

Several comments on the flux constitutive equation (2.6) are warranted.

(i) The dependence of (2.6) on cl through the asymmetric flux function f (cl) =
cl(1 − cl)(1 − α + αcl) follows directly from the work of Gajjar & Gray (2014),
where α ∈ [0, 1] is a parameter that controls the amount of asymmetry (denoted as γ

in Gajjar & Gray 2014). As discussed in Gajjar & Gray (2014), the flux function f (cl)
has the following properties: (1) for α = 0, the symmetric flux function is recovered;
(2) for α ∈ (0, 1], the function’s maximum is skewed from cl = 0.5 towards cl = 1;
(3) for α ∈ (0, 0.5], it is convex; and (4) for α ∈ (0.5, 1], it is non-convex with a
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single inflection point. Previously, a value of α = 0.46 was obtained in Gajjar &
Gray (2014) by fitting to the experiments of Wiederseiner et al. (2011), and a value
of α = 0.89 was determined by fitting to experiments in van der Vaart et al. (2015).
In what follows, we estimate α along with CP

seg for both simulated, frictional spheres
and disks by fitting to DEM simulations.

(ii) We note that the scaling of the pressure-gradient-driven segregation flux (2.6) with
d̄2γ̇ /P is quite similar to the scalings for the segregation velocity reported in
Trewhela et al. (2021) and Jing et al. (2022) based on experiments and discrete
simulations, respectively, of the dynamics of a single intruder in a flowing dense
granular medium, and the scaling of Trewhela et al. (2021) was utilized in the
continuum simulations of Barker et al. (2021). As pointed out in these works,
combining a segregation flux that is inversely proportional to the pressure with a
pressure-independent diffusion flux enables a model to capture the attenuation of
segregation with increasing pressure, which was observed in the discrete simulations
of Fry et al. (2018, 2019) in flows involving weak strain-rate gradients. However, one
difference is that Trewhela et al. (2021) introduces a second term in the denominator
to prevent a singularity when the pressure is equal to zero, such as at a free surface.
This additional term in the denominator depends on the product of the magnitude of
the pressure gradient and the average grain size d̄ and is multiplied by an additional
(small) dimensionless constant. Here, we follow a similar approach but directly add
a small constant to the pressure field when dealing with free-surface flows in § 4.1.

(iii) Finally, it has been well established that the pressure-gradient-driven segregation
flux should depend on the grain-size ratio dl/ds (e.g. Schlick et al. 2015; Tunuguntla
et al. 2017; Jones et al. 2018; Barker et al. 2021; Duan et al. 2021; Trewhela et al.
2021). However, the aims of this paper are to combine pressure-gradient-driven and
shear-strain-rate-gradient-driven segregation fluxes within a coupled model for size
segregation and flow and then to use this model to examine the interplay between
the mechanisms. Therefore, we consider a single grain-size ratio of dl/ds = 1.5
throughout, and considering the dependence of (2.6) on dl/ds is beyond the scope
of this paper. We expect that the substantial progress in the literature to characterize
the role of the grain-size ratio (e.g. Trewhela et al. 2021) may be incorporated into
(2.6).

Combining (2.4), (2.5) and (2.6) with the balance of mass equation (2.1), we obtain the
following differential relation governing the dynamics of cl:

Dcl

Dt
+ ∂

∂xi

(
−Cdiff d̄2γ̇

∂cl

∂xi
+ CS

segd̄2cl(1 − cl)
∂γ̇

∂xi

−CP
seg

d̄2γ̇

P
cl(1 − cl)(1 − α + αcl)

∂P
∂xi

)
= 0. (2.7)

The material parameters associated with the segregation model are the set
{Cdiff , CS

seg, CP
seg, α}. As discussed in Liu et al. (2023), the parameter Cdiff may be

determined from measurements of the mean square displacement during homogeneous
simple shearing, and the parameter CS

seg may be determined by examining size segregation
in flows, in which the pressure field is spatially uniform. Based on the DEM simulations of
Liu et al. (2023), these parameters are {Cdiff = 0.045, CS

seg = 0.08} for frictional spheres
and {Cdiff = 0.20, CS

seg = 0.23} for frictional disks over a range of modest grain-size
ratios including dl/ds = 1.5. The remaining material parameters {CP

seg, α}, which are
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associated with the pressure-gradient-driven segregation flux, will be determined for
frictional spheres and disks in the following section.

3. Pressure-gradient-driven segregation flux

In this section we evaluate the constitutive equation for the pressure-gradient-driven
segregation flux (2.6) and estimate the material parameters associated with this
segregation flux {CP

seg, α}. To this end, we consider flows of both three-dimensional
systems of dense, frictional spheres and two-dimensional systems of dense, frictional
disks down an inclined plane, using DEM simulations. Details of the simulated
granular systems, including the grain interaction properties that are maintained constant
throughout, are given in Appendix B.1. We note that the inclined plane flow configuration
has been widely utilized in the literature (e.g. Savage & Lun 1988; Gray & Thornton 2005;
Gray & Chugunov 2006; Wiederseiner et al. 2011; Marks et al. 2012; Gajjar & Gray 2014;
Staron & Phillips 2015; Barker et al. 2021) to study size segregation in dense granular
materials.

Consider a semi-infinite layer of thickness H of a dense, bidisperse granular mixture
flowing down an inclined plane with surface inclination angle θ under the action of
gravity G. For the case of bidisperse spheres, the DEM set-up is shown in figure 1(a)
for H = 50d̄0, where d̄0 is the system-wide average grain size. The large particles are
dark grey and the small particles are light grey. We employ periodic boundary conditions
along both the direction of flow (i.e. the x direction) and the lateral direction (i.e. the
y direction), eliminating any lateral wall/boundary effects. In all DEM simulations of
spheres, we take the length of the simulation domain along the x direction to be L = 20d̄0

and the length along the y direction to be W = 10d̄0, and we have verified that both of
these length scales are sufficiently large, so that they do not affect the resulting flow and
segregation fields. The rough bottom surface is comprised of touching, glued grains in
our DEM simulations, which are denoted as black in figure 1(a). This is done to achieve
a no-slip boundary condition along the bottom surface. In the resulting flow fields, the
only non-zero component of the velocity field is vx, which only varies along the vertical
coordinate z. A typical steady velocity field is qualitatively sketched in figure 1(a), which
is consistent with the familiar ‘Bagnold profile’.

Regarding the stress field, due to the force balances along the x and z directions,
we have |σxz(z)| = |σzx(z)| = φρsGz sin θ and σzz(z) = −φρsGz cos θ , respectively. For
two-dimensional systems of disks, we observe in DEM simulations that the normal stresses
are approximately equal, i.e. σxx(z) ≈ σzz(z), so that τ(z) = |σxz(z)| = φρsGz sin θ ,
P(z) = −σzz(z) = φρsGz cos θ and μ(z) = τ(z)/P(z) = tan θ . For three-dimensional
systems of spheres, we observe normal stress differences in DEM simulations (e.g.
Srivastava et al. 2021), in which, in particular, the magnitude of the out-of-plane normal
stress σyy(z) is slightly lower than the magnitude of σzz(z) at each z position. For spheres,
the stress ratio μ is still spatially uniform but slightly higher than tan θ , and the pressure
field P(z) still varies linearly in z but with a slope that is slightly lower than φρsG cos θ .

There are four important dimensionless parameters that specify a case of inclined plane
flow: (1) H/d̄0, the dimensionless layer thickness; (2) θ , the inclination angle, which sets
the stress field for a given case and controls the total flow rate down the incline; (3) cl

0(z),
the initial large-grain concentration, which can be a spatially varying field; and (4) dl/ds,
the bidisperse grain-size ratio. Thus, the parameter set {H/d̄0, θ, cl

0, dl/ds} specifies the
geometry, loads and initial conditions for a given case of inclined plane flow. We choose
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Figure 1. (a) Initial well-mixed configuration for three-dimensional DEM simulation of bidisperse inclined
plane flow with ∼15 000 flowing grains. The thickness of the flowing layer is H = 50d̄0. Black grains represent
the rough fixed base. Dark grey grains indicate large flowing grains and light grey grains indicate small
flowing grains. (b) Segregated configuration after flowing for a simulation time of t̃ = t/

√
d̄0/G = 15 000.

(c) Spatiotemporal evolution of the large-grain concentration field. Spatial profiles of (d) the concentration
field cl and (e) the normalized velocity field vx/

√
Gd̄0 at three time instants (t̃ = 1000, 5000 and 15 000) as

indicated by the vertical lines in (c).

a representative base case for spheres corresponding to the parameter set {H/d̄0 = 50,

θ = 26◦, cl
0 = 0.50, dl/ds = 1.5}, and the initially well-mixed DEM configuration for

this case is shown in figure 1(a). We then run the DEM simulation from this initial
configuration and observe the consequent segregation process. Due to the gravitationally
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induced pressure gradient, we expect the large grains (dark grey) to be driven towards the
top of the layer where the pressure is the lowest. The segregated state after a simulation
time of t̃ = t/

√
d̄0/G = 15 000 is shown in figure 1(b), demonstrating that the large grains

indeed segregate towards the top of the layer, leaving a layer of small grains (light grey)
beneath. In order to obtain a more quantitative picture of the segregation dynamics, we
coarse grain the concentration field cl and plot contours of the spatiotemporal evolution of
the cl field in figure 1(c). (The methods used for spatial coarse graining are described in
Appendix B.2.) The growing width of the dark region indicates the temporal evolution
of the large grains segregating to the top of the layer. Furthermore, snapshots of the
concentration field cl and the non-dimensionalized velocity field vx/

√
Gd̄0 at different

times – t̃ = 1000, 5000, 15 000 as indicated by the vertical lines in figure 1(c) – are shown
in figures 1(d) and 1(e), respectively. It is evident from these plots that the velocity field
reaches a steady state early in the simulation time window, while the concentration field
continues to evolve and only reaches a steady state towards the end of the simulation
time window, i.e. t̃ � 15 000. Lastly, the shape of the steady flow field vx(z) in figure 1(e)
is consistent with the scaling vx(z) ∝ H3/2 − z3/2, associated with the ‘Bagnold profile’
(e.g. Gray & Thornton 2005).

In the inclined plane flow configuration, both pressure gradients and shear-strain-rate
gradients are present. The shape of the steady flow field vx(z) in figure 1(e) indicates that
the shear-strain rate is greatest at the bottom of the layer, decreasing with the distance
from the bottom of the layer and approaching zero at the top of the layer. Therefore,
the shear-strain-rate gradient drives the large grains towards the high-strain-rate region
at the bottom of the layer, while the pressure gradient drives the large grains towards the
low-pressure region at the top of the layer. As a result, the shear-strain-rate-gradient-driven
and pressure-gradient-driven fluxes are in competition with one another, and the
pressure-gradient-driven flux clearly wins out and drives the large grains towards the top
of the layer. This characteristic of inclined plane flow makes it a suitable configuration for
estimating the dimensionless material parameters {CP

seg, α}. To achieve this, we first run
the DEM simulation long enough so that all evolving fields reach the steady-state regime
(t̃ � 15 000). In this regime, Dcl/Dt ≈ 0, and according to the balance of mass equation
(2.1) and the no-flux boundary conditions at the top and bottom of the layer, the total flux
is zero, i.e. wl

z = wdiff
z + wS

z + wP
z = 0, at each z position. Therefore, in the steady-state

regime, using (2.4), (2.5) and (2.6), we have

CS
segd̄2cl(1 − cl)

∂γ̇

∂z
− Cdiff d̄2γ̇

∂cl

∂z
= CP

seg
d̄2γ̇

P
cl(1 − cl)(1 − α + αcl)

∂P
∂z

. (3.1)

Since the parameters Cdiff and CS
seg have been previously determined, we use this

steady-state flux balance to estimate the parameters {CP
seg, α}. To do so, we spatially coarse

grain the DEM data from 1000 evenly distributed snapshots in the steady-state regime
to obtain the relevant field quantities in (3.1) – namely, cl (and, hence, d̄), ∂cl/∂z, vx,
γ̇ = ∂vx/∂z, ∂γ̇ /∂z = ∂2vx/∂z2, P and ∂P/∂z. The fields are then arithmetically averaged
in time so that the resultant fields only depend on the spatial coordinate z. Equation
(3.1) suggests determining the parameter CP

seg from the slope of the CS
segd̄2cl(1 − cl)

(∂γ̇ /∂z) − Cdiff d̄2γ̇ (∂cl/∂z) vs (d̄2γ̇ /P)cl(1 − cl)(1 − α + αcl)(∂P/∂z) relation for a
given choice of α ∈ [0, 1]. Since α is an adjustable parameter along with CP

seg, additional
data are helpful to more precisely estimate the values of the parameters {CP

seg, α}, and
we consider three additional variants of the base case – namely, (1) a lower inclination
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Figure 2. Collapse of CS
segd̄2cl(1 − cl)(∂γ̇ /∂z) − Cdiff d̄2γ̇ (∂cl/∂z) vs (d̄2γ̇ /P)cl(1 − cl)(1 − α + αcl)

(∂P/∂z) for several cases of inclined plane flow of (a) bidisperse spheres and (b) bidispserse disks with a
size ratio of dl/ds = 1.5. Symbols represent coarse-grained, steady-state DEM field data, and the solid lines
are the best linear fits using (a) CP

seg = 0.34 for spheres and (b) CP
seg = 0.51 for disks.

angle case {H/d̄0 = 50, θ = 24◦, cl
0 = 0.50, dl/ds = 1.5}; (2) a more large grains case

{H/d̄0 = 50, θ = 26◦, cl
0 = 0.75, dl/ds = 1.5}; and (3) a thicker layer case {H/d̄0 = 60,

θ = 26◦, cl
0 = 0.50, dl/ds = 1.5}. We coarse grain the steady-state DEM field data for

all four cases and iterate over values of α, seeking the strongest linear collapse in
CS

segd̄2cl(1 − cl)(∂γ̇ /∂z) − Cdiff d̄2γ̇ (∂cl/∂z) vs (d̄2γ̇ /P)cl(1 − cl)(1 − α + αcl)(∂P/∂z).
The DEM data for the best-fit case of α = 0.4 is shown in figure 2(a), where each data
point represents a unique z position. The data collapses quite well across the different
cases and a linear dependence is evident. For α = 0.4, the coefficient of determination
(i.e. the R-squared value) is 0.92. Finally, the dimensionless material parameter CP

seg may
be obtained from the slope of the linear relation in figure 2(a) (indicated by the solid
line), which we determine to be CP

seg = 0.34 for frictional spheres with a size ratio of
dl/ds = 1.5.

We also apply this process to dense, bidisperse mixtures of frictional disks to determine
the parameters {CP

seg, α}. We consider a base case for disks corresponding to the parameter
set {H/d̄0 = 60, θ = 20◦, cl

0 = 0.50, dl/ds = 1.5} as well as three variants – (1) a lower
inclination angle case {H/d̄0 = 60, θ = 18◦, cl

0 = 0.50, dl/ds = 1.5}; (2) a more large
grains case {H/d̄0 = 60, θ = 20◦, cl

0 = 0.75, dl/ds = 1.5}; and (3) a thinner layer case
{H/d̄0 = 40, θ = 20◦, cl

0 = 0.50, dl/ds = 1.5}. In the DEM simulations for disks, the
length of the simulation domain along the x direction is taken to be L = 60d̄0 in all
cases, and each case involves ∼5000 flowing grains. Each DEM simulation is run to steady
state; the steady-state DEM data are coarse grained; and the flux balance (3.1) is applied.
The DEM data for all four cases is plotted in figure 2(b) for α = 0.4 and the data again
collapses quite well. A linear relation is observed (with an R-squared value of 0.82), and
the parameter CP

seg for frictional disks with a size ratio of dl/ds = 1.5 is determined from
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the slope of the linear relation to be CP
seg = 0.51. We note that we have utilized the same

value of α = 0.4 for both spheres and disks. Of course, the parameter α may be fitted
separately to steady-state DEM data for spheres and disks, respectively, but we observed
that the separately fitted values of α turn out to be quite similar, so for simplicity, the value
of α = 0.4 represents the collective best fit that yields the strongest linear collapses of the
steady-state DEM data for both spheres and disks simultaneously.

4. Validation of the continuum model in the transient regime

In § 2.5 we extended the coupled model for segregation and flow in the absence
of pressure gradients proposed in our prior work (Liu et al. 2023) to account for
pressure-gradient-driven segregation, and in § 3 we estimated the dimensionless material
parameters {CP

seg, α} associated with the pressure-gradient-driven segregation flux using
steady-state DEM data in inclined plane flow. In this section we test the continuum model
by comparing predictions of the transient evolution of the large-grain concentration fields
and the steady-state flow fields against DEM simulation results for spheres. To this end,
we consider both inclined plane flow as described in § 3 and an additional flow geometry –
planar shear flow with gravity. The coupled continuum model consists of the segregation
dynamics equation (2.7) and the NGF model, (A2) and (A3), and throughout, we utilize a
fixed set of parameters for spheres,{

μs = 0.37, μ2 = 0.95, I0 = 0.58, A = 0.43,

Cdiff = 0.045, CS
seg = 0.08, CP

seg = 0.34, α = 0.4
}

, (4.1)

where {μs, μ2, I0, A} are rheological parameters.

4.1. Inclined plane flow
We first consider inclined plane flow to test predictions of the coupled continuum model
against corresponding DEM results. As discussed above, when there are no normal stress
differences, the stress field may be obtained from a static force balance, which implies
that the stress ratio field is uniform and given by μ(z) = tan θ and that the pressure field
is linear in z and given by P(z) = φρsGz cos θ . However, the normal stress differences
that arise in dense flows of spheres induce a slightly higher, uniform value of μ and
a slightly lower slope in the pressure field P(z). Accordingly, to control for this effect
when working with dense flows of spheres, in our continuum simulations, we utilize
the values of the uniform stress ratio and the slope of the pressure field obtained from
the coarse-grained stress fields in the DEM data for each case, rather than the nominal
values of tan θ and φρsG cos θ , respectively. Moreover, to avoid a singularity in the
pressure-gradient-driven segregation flux (2.6) at the free surface where z = 0, we add
a small constant to the pressure field corresponding to the weight of a layer of (1/4)d̄0
thickness, i.e. (1/4)φρsGd̄0 cos θ . This approach is quite similar to that of Trewhela
et al. (2021), who directly incorporate this small constant into the denominator of their
pressure-gradient-driven flux equation. We have verified that the subsequently presented
results are insensitive to the exact choice of this constant, so long as it is sufficiently
small. With the relevant stress-related fields determined in this way, the balance of linear
momentum (2.2) is satisfied and does not further enter the solution procedure.

Continuum model predictions are obtained by numerically solving the remaining
governing equations using finite differences. The remaining unknown fields in inclined
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plane flow are the velocity field vx(z, t) with the associated strain-rate field γ̇ (z, t) =
∂vx/∂z, the granular fluidity field g(z, t) and the concentration field cl(z, t). The governing
equations are (1) the flow rule (A2),

γ̇ = gμ; (4.2)

(2) the non-local rheology (A3),

g = gloc(μ, P) + ξ2(μ)
∂2g
∂z2 , (4.3)

where gloc(μ, P) and ξ(μ) are stress-dependent functions given through (A4) and (A5)1,
respectively; and finally (3) the segregation dynamics equation (2.7),

∂cl

∂t
+ ∂

∂z

(
−Cdiff d̄2γ̇

∂cl

∂z
+ CS

segd̄2cl(1 − cl)
∂γ̇

∂z

−CP
seg

d̄2γ̇

P
cl(1 − cl)(1 − α + αcl)

∂P
∂z

)
= 0, (4.4)

where d̄ = cldl + (1 − cl)ds.
For the fluidity boundary conditions, we impose a homogeneous Neumann boundary

condition at the free surface, i.e. ∂g/∂z = 0 at z = 0, due to the similarity of a
flat free surface to a symmetry plane. The bottom surface is comprised of touching,
glued grains in our DEM simulations, and the selection of a fluidity boundary
condition for this type of boundary is discussed in our prior work (Liu et al.
2023). Following this work, we impose a Dirichlet fluidity boundary condition at
the bottom surface wherein the fluidity is a function of the stress state through the
local fluidity function, i.e. g = gloc(μ(z = H), P(z = H)) at z = H. For the segregation
dynamics equation (4.4), we apply no flux boundary conditions at both the free surface
and the bottom surface, i.e. wl

z = −Cdiff d̄2γ̇ (∂cl/∂z) + CS
segd̄2cl(1 − cl)(∂γ̇ /∂z) −

CP
seg(d̄

2γ̇ /P)cl

(1 − cl)(1 − α + αcl)(∂P/∂z) = 0 at z = 0 and H. Finally, an initial condition for the
segregation dynamics equation (4.4) – i.e. cl

0(z) = cl(z, t = 0) – is necessary. To account
for spatial fluctuations in cl

0(z), we coarse grain the concentration field in the DEM
configuration at t = 0 for each case and use this field as the initial condition in the
corresponding continuum simulation.

Then, we obtain numerical predictions of the continuum model for a given case of
inclined plane flow using finite differences as follows. At a given point in time, the
concentration field cl(z) is known, and thus, the average grain size may be calculated
as d̄(z) = cl(z)dl + (1 − cl(z))ds. Since the pressure distribution P(z) and stress ratio
distribution μ(z) are known, the local fluidity gloc(μ, P) and the cooperativity length ξ(μ),
given through (A4) and (A5)1, respectively, can also be calculated at the spatial grid points.
The non-local rheology equation (4.3) can then be solved by discretizing the Laplacian
term ∂2g/∂z2 using central differences in space. Once the fluidity field has been calculated
at all grid points, the strain-rate field can be calculated using (4.2), and the velocity field
vx(z) can be obtained by integrating the strain-rate field. Next, the segregation dynamics
equation (4.4) is used to update the concentration field by (1) using the Euler method
for temporal discretization, (2) treating both of the segregation fluxes explicitly, and
(3) treating the diffusion term implicitly. We have verified that both the spatial and
temporal resolutions employed are sufficiently refined, so as to ensure the numerical
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Figure 3. Comparisons of continuum model predictions with corresponding DEM simulation results for the
transient evolution of the segregation dynamics for two cases of inclined plane flow of bidisperse spheres:
(a) base case {H/d̄0 = 50, θ = 26◦, cl

0 = 0.50, dl/ds = 1.5} and (b) lower inclination angle case {H/d̄0 = 50,

θ = 24◦, cl
0 = 0.50, dl/ds = 1.5}. For each case, plots (a i,b i) show spatiotemporal contours of the evolution

of cl measured in DEM simulations. Plots (a ii–v,b ii–v) show comparisons of the DEM simulations (solid black
lines) and continuum model predictions (dashed grey lines) of the cl field at four different time instants during
the segregation process: t̃ = 200, 2000, 10 000 and 15 000 in the sequence of (a ii,b ii), (a iii,b iii), (a iv,b iv),
(a v,b v). Plots (a vi,b vi) show comparisons of the steady-state, normalized velocity profiles at t̃ = 15 000 from
DEM simulations and continuum model predictions.

accuracy and stability of our finite-difference scheme. With this, one step of numerical
integration is completed and the unknown fields cl, hence d̄, are obtained at the next
time step. The same procedure is repeated over multiple time steps to calculate the
transient evolution of the concentration and flow fields, cl(z, t) and vx(z, t), over the desired
simulation time window.

We compare model predictions of the transient evolution of the concentration field and
the steady-state flow field against corresponding DEM simulation results for all four cases
of inclined plane flow of dense, bidisperse spheres considered in § 3. The comparisons
are summarized in figures 3 and 4. For each case, the spatiotemporal evolution of the
DEM-measured cl field is shown in the first column of figure 3 or figure 4, and the second
columns show comparisons of snapshots of the cl field measured in DEM simulations
against corresponding continuum model predictions at four different time instants –
t̃ = t/

√
d̄0/G = 200, 2000, 10 000, and 15 000 – as indicated by the vertical lines on the

contour plots in the first columns. The model does a good job predicting the segregation
dynamics across different cases of inclined plane flow and can capture the variations in
the evolution of the cl field as the input parameters are changed. The third columns show
comparisons of the steady-state velocity field predicted by the continuum model with
the corresponding DEM-measured velocity fields. The Bagnold-like profile is captured
well in all cases. We note that in inclined plane flow, the local inertial, or μ(I), rheology
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Figure 4. Comparisons of continuum model predictions with corresponding DEM simulation results for the
transient evolution of the segregation dynamics for two cases of inclined plane flow of bidisperse spheres:
(a) more large grains case {H/d̄0 = 50, θ = 26◦, cl

0 = 0.75, dl/ds = 1.5} and (b) thicker layer case {H/d̄0 =
60, θ = 26◦, cl

0 = 0.50, dl/ds = 1.5}. Results are organized as described in the caption of figure 3.

described in Appendix A.1 would be sufficient to predict the flow fields, and a non-local
rheological approach is not necessary for these flows. However, as shown in our prior work
(Liu et al. 2023) and in the subsequent section on planar shear flow with gravity, non-local
rheological modelling is crucial in many other flow configurations. One benefit of the NGF
model is that it automatically reduces to the local inertial rheology when appropriate, so
for consistency, we have continued to use the NGF model when considering inclined plane
flow. Finally, we have also tested predictions of the coupled continuum model against
corresponding DEM results for dense, bidisperse flows of frictional disks, and the model
does an equally good job simultaneously capturing the segregation dynamics and the
steady-state flow fields for disks as for spheres.

4.2. Planar shear flow with gravity
We have hypothesized that the proposed constitutive equation (2.6) for the
pressure-gradient-driven segregation flux and the dimensionless material parameters
{CP

seg, α} are general across different flow geometries. To test this hypothesis, we consider
a new flow configuration: planar shear flow with gravity acting orthogonal to the
shearing direction, as illustrated in figure 5(a). We did not use DEM data from flows
in this configuration to estimate the parameters {CP

seg, α} and do no further parameter
adjustment in this section, so comparisons of continuum model predictions of the transient
evolution of the large-grain concentration field and the steady-state flow field against DEM
simulation results may be regarded as independent validation tests of the model.

We first describe this flow configuration in detail and discuss its important
characteristics. Consider a semi-infinite layer of a dense, bidisperse granular mixture
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Figure 5. Representative base case for planar shear flow with gravity. (a) Initial well-mixed configuration
for three-dimensional DEM simulation of a bidisperse mixture of spheres with ∼15 000 flowing grains. The
thickness of the flowing layer is H = 50d̄0. Black grains represent the rough top and bottom walls. Dark grey
grains indicate large flowing grains and light grey grains indicate small flowing grains. (b) Segregated state
after flowing for a simulation time of t̃ = t/(�/vw) = 600. (c) Spatiotemporal evolution of the large-grain
concentration field. Spatial profiles of (d) the concentration field cl and (e) the normalized velocity field vx/vw
at three times (t̃ = 10, 100 and 600) as indicated by the vertical lines in (c).

between two rough parallel walls, separated by a distance H along the z direction. For
the case of bidisperse spheres, the DEM set-up is shown in figure 5(a) for H = 50d̄0.
The top and bottom walls, indicated as black grains in figure 5(a), are made of layers
of touching, glued grains. The top wall imposes a compressive normal stress Pw on the
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flowing grains along the z direction and is specified to move with a constant velocity vw
along the x direction. The compressive normal stress applied by the top wall is maintained
at its target value Pw using the feedback scheme described elsewhere in the literature
(e.g. da Cruz et al. 2005; Koval et al. 2009; Kamrin & Koval 2012; Zhang & Kamrin
2017; Liu & Henann 2018). The bottom wall is specified to remain fixed and imposes a
no-slip boundary condition at the bottom. The gravitational body force with acceleration of
gravity G acts along the z direction. Furthermore, we employ periodic boundary conditions
along the flow (x) and lateral (y) directions, eliminating any lateral wall/boundary effects
and leading to a simple one-dimensional flow in which the only non-zero velocity field
component is vx that depends only on the z coordinate. In all DEM simulations of spheres,
we take the length of the simulation domain along the x direction to be L = 20d̄0 and the
length along the y direction to be W = 10d̄0, as shown in figure 5(a).

Regarding the stress field, the force balance along the x direction gives that the shear
stress magnitude is spatially uniform and equal to the shear stress imparted by the moving
wall τw, i.e. |σxz(z)| = |σzx(z)| = τw. We note that instead of directly prescribing τw in our
DEM simulations, the top-wall velocity vw is prescribed, and the shear stress τw arises as
an output. The force balance along the z direction gives that σzz(z) = −(Pw + φρsGz). As
discussed in § 3, we observe that σxx(z) ≈ σzz(z) in DEM simulations of two-dimensional
systems of disks, so that τ(z) = |σxz(z)| = τw, P(z) = −σzz = Pw + φρsGz and
μ(z) = τ(z)/P(z) = μw/(1 + z/�), where μw = τw/Pw is the maximum value of the
stress ratio occurring at the top wall (z = 0) and � = Pw/φρsG is the loading length
scale. The loading length scale is defined as the ratio of the top-wall pressure Pw to
the gravitational body force φρsG, which may be interpreted as the height of a granular
layer that applies a pressure due to its weight equivalent to Pw, and is a distinct length
scale from the dimensions H, L and W. Again, while the coarse-grained stress fields in
DEM simulations of disks are quite close to these analytical fields determined from force
balances, in DEM simulations of spheres we observe normal stress differences, and while
this leads to slight differences in the coarse-grained μ(z) and P(z) fields for spheres, the
z dependence of these fields is consistent with the expressions derived above. Since the
stress ratio is greatest at the top wall (z = 0) and decays with z, we expect there to be
a flowing region just beneath the top wall with the velocity field vx(z) decaying as z
increases, as qualitatively sketched in figure 5(a). Importantly, the loading length scale
� is the only length scale appearing in the analytical expression for the stress ratio field
μ(z) = μw/(1 + z/�). Therefore, � and not the layer thickness H is the relevant length
scale in planar shear flow with gravity and affects the characteristic size of the flowing
region beneath the top wall. We have verified that all dimensions of the simulation domain
{H = 50d̄0, L = 20d̄0, W = 10d̄0} are sufficiently large, so that they do not affect the flow
fields or the segregation dynamics.

The important dimensionless parameters that describe planar shear flow with gravity are
(1) �/d̄0 = Pw/φρsGd̄0, the dimensionless loading length scale;

(2) ṽw = (vw/�)

√
ρsd̄2

0/Pw, the dimensionless top-wall velocity that determines shear

stress τw and the stress ratio μw at the top wall; (3) cl
0(z), the initial large-grain

concentration field; and (4) dl/ds, the bidisperse grain-size ratio. Thus, the parameter
set {�/d̄0, ṽw, cl

0, dl/ds} fully specifies a given case of planar shear flow with gravity.
We consider a representative base case for spheres corresponding to the parameter
set {�/d̄0 = 18, ṽw = 0.02, cl

0 = 0.50, dl/ds = 1.5}. In this flow configuration the strain
rate is greatest just under the top wall, where the pressure is lowest. Therefore, the
shear-strain-rate-gradient-driven flux and the pressure-gradient-driven flux cooperate and
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drive large grains towards the top of the layer. The segregated state after running the
base-case DEM simulation to a time of t̃ = t/(�/vw) = 600 is shown in figure 5(b),
illustrating that the large grains (dark grey) indeed segregate towards the top wall, leaving a
small-grain-rich region (light grey) underneath. Further away from the wall, the evolution
of segregation is very slow due to the low strain rates in that region, and the bidisperse
granular material remains well mixed. For a more quantitative picture, we coarse grain
the concentration field cl in both space and time, and the spatiotemporal evolution of
cl is shown in the contour plot in figure 5(c). Lastly, snapshots of the cl field and the
non-dimensionalized velocity field vx/vw at three different times – t̃ = 10, 100 and 600 –
are shown in figures 5(d) and 5(e), respectively. Again, we observe that the velocity field
quickly reaches a steady state, while the concentration field evolves over the full simulation
time window.

Next, we solve the coupled continuum model for the transient evolution of the
concentration and velocity fields in this geometry, following a process analogous to that
described in § 4.1 for inclined plane flow. To control for the effects of normal stress
differences in dense flows of spheres, the pressure at the top wall P(z = 0) and the
slope of the pressure field are obtained from the coarse-grained pressure field in the
DEM data for each case. These values are slightly different than the nominal values of
Pw and φρsG and give rise to a slightly adjusted value of the loading length scale, and
we utilize these adjusted values in the stress fields, μ(z) and P(z), in our continuum
simulations. The governing equations are the flow rule (4.2), the non-local rheology
(4.3) and the segregation dynamics equation (4.4), wherein μ(z) and P(z) are given as
inputs to the model. For the boundary conditions, we impose Dirichlet fluidity boundary
conditions at both the top and bottom walls, i.e. g = gloc(μ(z = 0), P(z = 0)) at z = 0
and g = gloc(μ(z = H), P(z = H)) at z = H, and no-flux boundary conditions at the
top and bottom walls, i.e. wl

z = 0 at z = 0 and z = H. The initial concentration field
cl

0(z) is extracted from the initial DEM configuration for each case, and we use the
same finite-difference-based numerical approach described above for inclined plane flow.
Finally, since vw is prescribed in the DEM simulations of planar shear flow with gravity,
while μw is specified in the corresponding continuum simulations, we iteratively adjust
the value of μw input into the continuum simulations to match the target value of vw in the
predicted steady-state velocity field.

We compare continuum model predictions against corresponding DEM simulation
results for bidisperse spheres using the parameter set given in (4.1). To broadly exercise
the model, we consider four different cases of planar shear flow with gravity: (1) the
base case {�/d̄0 = 18, ṽw = 0.02, cl

0 = 0.50, dl/ds = 1.5}; (2) a more large grains case
{�/d̄0 = 18, ṽw = 0.02, cl

0 = 0.75, dl/ds = 1.5}; (3) a larger loading length scale and
lower top-wall velocity case {�/d̄0 = 36, ṽw = 0.01cl

0 = 0.50, dl/ds = 1.5}; and (4) a
lower top-wall velocity case {�/d̄0 = 18, ṽw = 0.01 cl

0 = 0.50, dl/ds = 1.5}, and results
for these cases are shown in figures 6(a,b) and 7(a,b), respectively. The first columns
show the spatiotemporal evolution of the concentration field cl measured from the
DEM simulations. In the second columns, we compare snapshots of the concentration
field cl predicted by the continuum model (dashed grey lines) with the corresponding
coarse-grained DEM fields (solid black lines) at four different time instants –
t̃ = t/(�/vw) = 20, 100, 300 and 600 in figure 6 and t̃ = 10, 50, 150 and 300 in figure 7
– as indicated by the vertical lines on the contour plots in the first columns for each
case. Finally, the steady-state normalized velocity fields (corresponding to the last time
instant listed above for each case) obtained from DEM simulations and the corresponding
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Figure 6. Comparisons of continuum model predictions with corresponding DEM simulation results for the
transient evolution of the segregation dynamics for two cases of planar shear flow with gravity of bidisperse
spheres: (a) base case {�/d̄0 = 18, ṽw = 0.02, cl

0 = 0.50, dl/ds = 1.5} and (b) more large grains case {�/d̄0 =
18, ṽw = 0.02, cl

0 = 0.75, dl/ds = 1.5}. For each case, plots (a i,b i) show spatiotemporal contours of the
evolution of cl measured in DEM simulations. Plots (a ii–v,b ii–v) show comparisons of the DEM simulations
(solid black lines) and continuum model predictions (dashed grey lines) of the cl field at four different time
instants during the segregation process: t̃ = t/(�/vw) = 20, 100, 300 and 600 in the sequence of (a ii,b ii),
(a iii,b iii), (a iv,b iv), (a v,b v). Plots (a vi,b vi) show comparisons of the steady-state, normalized velocity
profiles at t̃ = 600 from DEM simulations and continuum model predictions.

continuum model predictions are shown in the last columns of figures 6 and 7. The
continuum model is able to capture the decaying velocity fields in all cases as well as
predict the transient evolution of the segregation process. A similar quality of comparison
was observed in analogous tests for dense, bidisperse disks in several cases of planar shear
flow with gravity.

At this stage, it is instructive to contrast features of planar shear flow with gravity
with inclined plane flow to emphasize why this flow configuration represents a non-trivial
validation test for a coupled model for size segregation and flow. At a high level, planar
shear flow with gravity is boundary driven, while inclined plane flow is gravity driven.
This difference in the manner in which flow is driven manifests in stark differences
in the consequent flow fields. Namely, the Bagnold-like profile of inclined plane flow
involves only modest strain-rate gradients, leading to segregation phenomenology that is
dominated by pressure gradients. Moreover, the rheological behaviour of a dense granular
medium in inclined plane flow is dominated by local grain-inertia effects that are captured
by the local inertial, or μ(I), rheology. This is in contrast to planar shear flow with
gravity, in which the flow fields decay rapidly with the distance from the moving, top
wall. While local grain-inertia effects contribute in the flowing region under the top wall,
non-local, cooperative effects also contribute and become increasingly dominant with the
distance from the top wall, as the flow field transitions into the quasi-static, creeping
region. Therefore, utilizing a non-local rheology, such as the generalized NGF model
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Figure 7. Comparisons of continuum model predictions with corresponding DEM simulation results for
the transient evolution of the segregation dynamics for two cases of planar shear flow with gravity of
bidisperse spheres: (a) larger loading length scale and lower top-wall velocity case {�/d̄0 = 36, ṽw = 0.01,

cl
0 = 0.50, dl/ds = 1.5} and (b) lower top-wall velocity case {�/d̄0 = 18, ṽw = 0.01, cl

0 = 0.50, dl/ds = 1.5}.
Results are organized as described in the caption of figure 6. The time instants shown in (a ii–v,b ii–v)
correspond to t̃ = 10, 50, 150 and 300, and the time instant shown in (a vi,b vi) corresponds to t̃ = 300.

for bidisperse flows, is crucial to accurately capture the velocity fields in planar shear
flow with gravity. It is also notable that the magnitudes of the strain-rate gradients are
comparatively greater in planar shear flow with gravity than in inclined plane flow, and the
comparative contributions of the two mechanisms of segregation, i.e. pressure gradients
and shear-strain-rate gradients, are unclear. We return to this point in § 5. Due to the
distinctly different flow fields and the relative directions of the two segregation fluxes,
i.e. competitive versus cooperative, inclined plane flow and planar shear flow with gravity
represent markedly different flow configurations, so the observation that the coupled
continuum model is capable of capturing segregation dynamics and flow fields in both
configurations with a single set of parameters is encouraging.

5. Discussion

A natural question is whether it is essential to account for both pressure-gradient-driven
segregation and shear-strain-rate-gradient-driven segregation in (2.3) to capture the
dynamics of the large-grain concentration field in both inclined plane flow and planar
shear flow with gravity using a single set of material parameters. To address this question,
we first suppress the flux associated with shear-strain-rate gradients by taking CS

seg = 0
and test whether the pressure-gradient-driven flux is sufficient to capture the segregation
dynamics on its own. We start by re-estimating the parameter CP

seg for the situation when
CS

seg = 0. We return to the steady-state DEM field data for the four cases of inclined plane
flow of spheres described in § 3, and as suggested by (3.1), we plot −Cdiff d̄2γ̇ (∂cl/∂z)
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Figure 8. (a) Collapse of −Cdiff d̄2γ̇ (∂cl/∂z) vs (d̄2γ̇ /P)cl(1 − cl)(1 − α + αcl)(∂P/∂z) for several cases of
inclined plane flow of bidisperse spheres. Symbols represent coarse-grained, steady-state DEM field data,
and the solid line is the best linear fit using CP

seg = 0.22. Comparisons of continuum model predictions with
corresponding DEM simulation results for the cl field at four different time instants during the segregation
process for (b) the base case of inclined plane flow of spheres and (c) the base case of planar shear flow with
gravity of spheres but taking CS

seg = 0 and CP
seg = 0.22 in the continuum model. Solid black lines represent the

DEM simulations and dashed grey lines represent the continuum model predictions.

vs (d̄2γ̇ /P)cl(1 − cl)(1 − α + αcl)(∂P/∂z) for α = 0.4 in figure 8(a), where each data
point represents a unique z position. It is evident that the collapse of the data is not as
strong in figure 8(a) as it is in figure 2(a), where the shear-strain-rate-gradient-driven flux
is included. Nevertheless, a linear trend is observed, and we re-estimate CP

seg = 0.22 from
the slope of the best linear fit shown in figure 8(a). This value is lower than the previously
determined value of 0.34 due to the omission of the shear-strain-rate-gradient-driven flux,
which acts in the opposite direction of the pressure-gradient-driven flux in inclined plane
flow. Next, we test continuum model predictions of the transient evolution of the cl field
for the base case of inclined plane flow of spheres due to the pressure-gradient-driven
flux solely, i.e. using CS

seg = 0 and CP
seg = 0.22. Otherwise, the solution procedure

is the same as described in § 4.1. The results are shown in figure 8(b) for the cl

field at four different time instants during the segregation process, where solid black
lines represent the DEM simulations and dashed grey lines represent the continuum
model predictions. The comparisons look reasonable in spite of not accounting for
the shear-strain-rate-gradient-driven flux and are comparable to the results shown in
figure 3(a) for the same case when both flux contributions are included. This confirms
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Figure 9. Comparisons of continuum model predictions with corresponding DEM simulation results for the
base case of planar shear flow with gravity of spheres but taking CS

seg = 0.08 and CP
seg = 0 in the continuum

model. Solid black lines represent the DEM simulations and dashed grey lines represent the continuum model
predictions.

that the pressure-gradient-driven flux is dominant in inclined plane flow but might lead
one to believe that the shear-strain-rate-gradient-driven flux is always negligible when
pressure gradients are present. Therefore, we return to the base case of planar shear
flow with gravity of spheres and calculate predictions of the continuum model for the
transient evolution of the cl field using CS

seg = 0 and CP
seg = 0.22. The results are shown in

figure 8(c) for four time instants during the segregation process, and for these parameters,
the continuum model underpredicts the extent of segregation when compared with the
results of figure 6(a) when both flux contributions are included. Therefore, in planar
shear flow with gravity, pressure-gradient-driven segregation is a secondary effect with
the segregation process being primarily driven by shear-strain-rate gradients, and it is not
possible to capture the segregation dynamics in both flow configurations when neglecting
the shear-strain-rate-gradient-driven flux.

On the other hand, it is also worth considering the scenario in which the
pressure-gradient-driven flux is neglected, i.e. CP

seg = 0. In this situation, we do not
re-estimate CS

seg since it has been independently determined in isolation in our prior work
(Liu et al. 2023). As discussed in § 3, in inclined plane flow the strain rate is greatest
at the bottom of the layer, so the shear-strain-rate-gradient-driven flux drives the large
grains towards the bottom of the layer. Therefore, neglecting the pressure-gradient-driven
flux would lead to the model predicting that segregation evolves in the opposite direction
from what is observed in DEM simulations. We also consider planar shear flow with
gravity in the absence of the pressure-gradient-driven flux and revisit the base case
for spheres. Results for four time instants during the segregation process are shown in
figure 9, using CS

seg = 0.08 and CP
seg = 0 in the continuum model. The comparisons

appear reasonable, but the predictions of the model still lag behind the corresponding
DEM results. Comparing the continuum model predictions in figure 9 with those in
figure 6(a), it is evident that accounting for both driving mechanisms results in the most
accurate predictions. In conclusion, although the shear-strain-rate-gradient-driven flux is
the primary driver in planar shear flow with gravity, both mechanisms should be included
to accurately capture the segregation dynamics, and more broadly, it is crucial to account
for both mechanisms to capture segregation dynamics across different flow geometries
with a single set of parameters.

6. Concluding remarks

In this paper we studied coupled flow and size segregation in dense, bidisperse granular
systems of frictional spheres and disks in scenarios when both pressure gradients and
shear-strain-rate gradients are present, and we developed a phenomenological continuum

988 A43-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

47
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.477


Modelling size segregation and flow in dense granular media

model that can simultaneously capture the segregation dynamics and velocity fields.
The continuum model integrates a constitutive equation for the pressure-gradient-driven
segregation flux, based on the works of Gajjar & Gray (2014) and Trewhela et al.
(2021), with the coupled model for size segregation and flow in the absence of
pressure gradients developed in our prior work (Liu et al. 2023). The complete,
coupled model for bidisperse granular systems accounts for pressure-gradient-driven
and shear-strain-rate-gradient-driven segregation fluxes, granular diffusion and non-local
rheological behaviour and is intended to be applied to dense flows spanning the quasi-static
and dense inertial flow regimes (I � 10−1). The segregation model involves four
dimensionless material parameters {Cdiff , CS

seg, CP
seg, α} and the parameters associated

with the pressure-gradient-driven flux {CP
seg, α} were determined in this work for both

frictional spheres and disks with a size ratio of dl/ds = 1.5, based on steady-state DEM
data in inclined plane flow. The coupled model has been tested in two flow configurations
involving pressure gradients – namely, inclined plane flow and planar shear with gravity
flow – and the coupled continuum model does an excellent job capturing the transient
evolution of the segregation fields as well as the steady-state velocity fields across several
variants of both flow configurations, using one set of parameters for spheres and another
for disks.

There remain a number of important directions for future work – several of which
are highlighted here. First, in this paper we focused on bidisperse granular systems
with a single grain-size ratio, dl/ds = 1.5, and a uniform grain-material mass density
ρs. Many works in the literature (e.g. Schlick et al. 2015; Tunuguntla et al. 2017;
Trewhela et al. 2021) have shown that the rate of pressure-gradient-driven size segregation
depends on the grain-size ratio. We have corroborated this with several of our own tests,
in which steady-state DEM field data from inclined plane flow of bidisperse granular
systems with grain-size ratios not equal to 1.5 do not collapse with the data of figure 2.
These observations indicate that the constitutive equation for the pressure-gradient-driven
segregation flux (2.6) needs to be generalized to account for dependence on dl/ds, and we
expect that the explicit dependence determined in Trewhela et al. (2021) may be leveraged
to this end. We note that this dependence of the pressure-gradient-driven segregation flux
on the grain-size ratio is in contrast to the shear-strain-rate-gradient-driven segregation
flux, where we did not observe grain-size-ratio dependence over a similar range of modest
grain-size ratios (Liu et al. 2023). Moreover, dense granular mixtures may be polydisperse
(e.g. Gray & Ancey 2011; Marks et al. 2012; Schlick et al. 2016) or consist of grains with
different mass densities in addition to varied sizes (e.g. Tripathi & Khakhar 2013; Xiao
et al. 2016). Therefore, two potential avenues for future research are to extend the present
work to account for polydisperse particle distributions and to incorporate density-based
segregation in addition to size-based segregation.

Second, the flow geometries considered in this paper result in planar, shearing flows, in
which pressure gradients and velocity gradients are aligned, and the predictive capacity
of the coupled continuum model has only been tested in such scenarios. In many flows,
e.g. annular shear flow with gravity, pressure gradients act perpendicular to the plane
of shearing, and it remains to test whether the flux constitutive equations utilized in
this paper continue to be predictive in such scenarios or require modification. To this
end, a robust numerical toolkit needs to be developed to solve the coupled system of
governing equations in more complex flow geometries, where the stress field cannot be
straightforwardly deduced. Both of these points will be addressed in future works.
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Appendix A. Rheological constitutive equations

A.1. Local inertial rheology
First, we summarize the generalization of the local inertial rheology for a dense,
bidisperse system of dry, stiff grains with average grain diameter d̄ (defined in § 2.1)
and grain-material mass density ρs, as introduced in Rognon et al. (2007) and Tripathi
& Khakhar (2011). The local inertial rheology relates the stress ratio μ, the equivalent
shear-strain rate γ̇ and the pressure P (each of which are tensor invariant quantities
defined in either §§ 2.2 or 2.4) through the dimensionless relationship μ = μloc(I), where
I = γ̇

√
d̄2ρs/P is the inertial number. In this work we utilize the following nonlinear

functional form of Jop et al. (2005) for dense systems of bidisperse spheres:

μloc(I) = μs + μ2 − μs

I0/I + 1
. (A1)

Here μs is the stress ratio corresponding to the static yield condition, μ2 corresponds to
the stress ratio in the limit I → ∞ and I0 is a dimensionless parameter that characterizes
the nonlinear, rate-dependent response. The rheological material parameters for dense,
frictional spheres have been determined from DEM simulations to be {μs = 0.37,

μ2 = 0.95, I0 = 0.58} for the monodisperse case (Zhang & Kamrin 2017; Liu et al. 2023),
and as discussed in Liu et al. (2023), the parameters may continue to be used to describe
the rheology of dense, frictional spheres in the bidisperse case.

A.2. Non-local granular fluidity model
While the local inertial rheology can capture homogeneous flows well, it fails to
capture many aspects of flow fields with spatial inhomogeneity. In order to capture
inhomogeneous flows and account for size-dependent effects, several non-local models
have been developed (Kamrin 2019). In this work we utilize the NGF model that has been
developed and broadly tested for dense, monodisperse granular systems (e.g. Kamrin &
Koval 2012; Henann & Kamrin 2013) and recently extended to dense, bidisperse granular
systems (Liu et al. 2023). The model is summarized as follows. A positive, scalar field
quantity – called the granular fluidity g – is introduced, which relates the stress state
to the strain rate by means of two constitutive equations. First, the flow rule relates the
Cauchy stress tensor σij, the strain-rate tensor Dij and the granular fluidity g through
σij = −Pδij + 2(P/g)Dij. Taking the magnitude of the deviatoric part of the flow rule and
rearranging gives the scalar form of the flow rule,

γ̇ = gμ, (A2)

which is the form that we utilize in § 4. Second, the granular fluidity field g is governed by
the non-local rheology

g = gloc(μ, P) + ξ2(μ)
∂2g

∂xi∂xi
, (A3)
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where gloc(μ, P) is the local fluidity function and ξ(μ) is the stress-dependent
cooperativity length. Using the functional form of the local inertial rheology given in
(A1) and the definition of the inertial number for bidisperse systems leads to the following
local fluidity function for the case of dense, bidisperse spheres:

gloc(μ, P) =

⎧⎪⎨
⎪⎩ I0

√
P

d̄2ρs

(μ − μs)

μ(μ2 − μ)
if μ > μs,

0 if μ ≤ μs.

(A4)

Finally, the functional form for the cooperativity length is

ξ(μ) = Ad̄

√
(μ2 − μ)

(μ2 − μs)|μ − μs| , (A5)

where A is a dimensionless parameter called the non-local amplitude. For both
monodisperse and bidisperse systems, the non-local amplitude has been determined from
DEM simulations to be A = 0.43 for dense, frictional spheres (Zhang & Kamrin 2017; Liu
et al. 2023).

Appendix B. Discrete element method simulations and averaging methods

B.1. Simulated granular systems
As described in Liu et al. (2023), we consider three-dimensional granular systems
consisting of dense, bidisperse mixtures of spheres and two-dimensional granular systems
consisting of dense, bidisperse mixtures of disks. For both spheres and disks, the grain-size
ratio dl/ds = 1.5 is held fixed throughout, and a polydispersity of ±10 % is applied to
the respective mean diameters of both species. The model for the grain–grain interaction
force is given through a contact law that accounts for Hookean elasticity, damping and
sliding friction (Silbert et al. 2001). The details of this contact law are not repeated
here, but we highlight the parameters that fully describe the interaction properties:
(1) kn the normal contact stiffness, (2) kt the tangential contact stiffness, (3) the coefficient
of restitution for binary collisions e, and (4) the inter-particle friction coefficient μsurf . The
normal contact stiffness is taken to be sufficiently large compared with the characteristic
confining pressure, so that the grains are nearly rigid, i.e. kn/Pd̄0 > 104 for spheres. We
take kt/kn = 1/2, e = 0.1 and μsurf = 0.4 throughout. Lastly, numerical integration of the
equations of motion for each grain is performed using the open-source software LAMMPS
(Plimpton 1995), and the time step for numerical integration is chosen to be sufficiently
small, compared with the binary collision time, to ensure stable and accurate simulation
results.

B.2. Averaging methods
We utilize a bin-based approach for spatial averaging of a given snapshot of DEM
data at time t, which is described here for the case of spheres in three dimensions.
Consider a rectangular-cuboidal bin of width Δ, centred at a position z and spanning
the simulation domain along the x and y directions. At time t, we assign each grain i
intersected by the bin a weight Vi, which is equal to the volume of grain i inside the
bin. We denote the sets of large and small grains intersected by the bin as F l and F s,
respectively (Tunuguntla, Thornton & Weinhart 2016). The instantaneous solid volume
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fraction field for species ν = l, s is φν(z, t) = (
∑

i∈Fν Vi)/V , where V is the total volume
of the bin, and the concentration field for species ν is cν(z, t) = φν(z, t)/(φl(z, t) +
φs(z, t)). The instantaneous velocity field of the mixture at position z and time t is
v(z, t) = (

∑
i∈FVivi(t))/(

∑
i∈FVi), where vi(t) is the instantaneous velocity of each

grain i and F = F l ∪ F s. The instantaneous stress tensor associated with each grain i
is σ i(t) = (

∑
j /= i rij ⊗ f ij)/(πd3

i /6), where rij is the position vector from the centre of
grain i to the centre of grain j, f ij is the contact force applied on grain i by grain j and
di is the diameter of grain i. The instantaneous stress field of the mixture at position z
and time t is then σ (z, t) = (

∑
i∈F Viσ i(t))/V . Throughout, as in Liu et al. (2023), we

take a bin width of Δ = 4d̄0 and a spatial resolution of about 0.1d̄0. One exception is for
the velocity fields in planar shear flow with gravity, where we use a slice-based approach,
i.e. Δ → 0. This is done to control for any small amount of wall slip and precisely estimate
the velocity of the first layer of flowing grains beneath the top wall in the DEM simulations,
which then corresponds to the velocity vw quoted for each case in § 4.2 and matched in
the corresponding continuum simulations. For the steady state collapses of figure 2, we
truncate DEM data from bins centred within about 6d̄0 of the boundaries to eliminate
any potential boundary effects. When calculating the quantities appearing in the collapses
of figure 2, the instantaneous fields are spatially smoothed and differentiated using a
kernel function. To obtain the relevant steady-state field quantities in (3.1), we consider
a time window within the steady-state regime and generate N = 1000 snapshots of the
instantaneous, smoothed fields and arithmetically average these fields over all snapshots
to obtain fields that only depend on the spatial coordinate.
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