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PRIME IDEALS IN GCD-DOMAINS 

P H I L I P B. SHELDON 

1. Introduction. A GCD-domain is a commutative integral domain in 
which each pair of elements has a greatest common divisor (g.c.d.). (This is 
the terminology of Kaplansky [9]. Bourbaki uses the term ''anneau pseudo-
bezoutien" [3, p. 86], while Cohn refers to such rings as "HCF-rings" [4].) 
The concept of a GCD-domain provides a useful generalization of that of a 
unique factorization domain (UFD), since several of the standard results for 
a UFD can be proved in this more general setting (for example, integral 
closure, some properties of D[X], etc.). Since the class of GCD-domains 
contains all of the Bezout domains, and in particular, the valuation rings, it 
is clear that some of the properties of a UFD do not hold in general in a 
GCD-domain. Among these are complete integral closure, ascending chain 
condition on principal ideals, and some of the important properties of minimal 
prime ideals. 

The purpose of this paper is to investigate the properties of the prime ideal 
structure of GCD-domains in general. The investigation focuses upon the 
so-called PF-prime ideals (Definition 2.1), which seem to play much the same 
role in a GCD-domain that the principal primes play in a UFD. Moreover, in 
a UFD the PF-primes and the principal primes coincide (Remark 2.5), and 
thus many of the results obtained here concerning PF-primes generalize 
results which are well-known for a UFD. Bezout domains, too, are important 
in these considerations, since they can be characterized among GCD-domains 
by the fact that every proper prime is a PF-prime (Remark 2.5). Other 
sufficient conditions for a GCD-domain to be a Bezout domain are found, 
yielding, in the special case of a UFD, conditions known to be sufficient for a 
UFD to be a principal ideal domain (PID). 

Section 2 is devoted to the definition and some important properties of 
PF-prime ideals. In section 3, the main result is that every proper prime ideal 
of a GCD-domain is a union of PF-prime ideals (Theorem 3.1); most of the 
results in the rest of the section follow, directly or indirectly, from this fact. In 
section 4 we consider the question of lengths of chains of PF-primes of D in 
relation to the Krull dimension of D. Finally, in section 5 we present some 
interpretations of these results in terms of semivaluations and the divisibility 
group. 

Throughout this paper, the word ''domain" will always mean a commutative 
integral domain with identity. A "prime ideal" of D cannot be equal to D 
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itself, and a "proper" prime ideal is a nonzero prime ideal. In most other cases, 
our notation and terminology will be that of Gilmer [6]. 

The author is indebted to the referee for several helpful suggestions concern­
ing this paper, including the present form of the proof of Theorem 3.1. 

2. PF-prime ideals: definition and properties. 

2.1 Definition. Let D be a GCD-domain. The prime ideal P of D is a PF-
prime ideal if whenever a and b are nonzero elements of P , gcd(a, b) is in P 
as well. (For an explanation of the choice of the term "PF-prime", see 
section 5.) 

Among the examples of PF-prime ideals of D are all principal primes of D. 
In fact, it is clear from the definition that a finitely generated prime ideal is a 
PF-prime if and only if it is a principal prime. 

For additional examples and other important properties of PF-primes, 
the following characterization will be very useful: 

2.2 THEOREM. Let D be a GCD-domain and P be a prime ideal of D. Then P 
is a PF-prime if and only if DP is a valuation ring. (For convenience, we shall 
refer to any prime ideal P for which DP is a valuation ring as an essential 
prime ideal.) 

Proof. Assume P is a PF-prime ideal. Pick a nonzero element of the quotient 
field of D, and write it as a/by where a, b 6 D and gcd(a, b) = 1. Then since 
1 (t P, either a or b (? P, and hence either a/b or b/a is in DP. Thus DP is a 
valuation ring. 

Now suppose P is not a PF-prime. Since P ^ (0), we may choose 
a, b G P — {0} such that gcd(a,6) (? P. Letting d denote gcd(a,b) and 
a' and b' denote a/d and b/d respectively, it is clear that a', V £ P and 
gcd(a', b') = 1. Then if the fraction a'lb' were in DP, there would have to be 
an element s in D — P such that sa' 6 b'D. But gcd(a', b') = 1 implies that 
b' must divide s, and hence that 5 is in P, a contradiction. 

If b'la' were in DPi a similar contradiction is reached. Hence DP is not a 
valuation ring. 

2.3 COROLLARY. Every prime ideal contained in a PF-prime ideal is again a 
PF-prime ideal. 

2.4 COROLLARY. The set of prime ideals contained in any PF-prime ideal is 
linearly ordered, and hence the set of all PF-prime ideals forms a tree, that is, a 
partially-ordered set in which no two unrelated elements have a common upper 
bound. 

Proof. Both of these corollaries follow from the fact that if P is a PF-prime 
and P' C P% then DP>, an overring of the valuation ring DPt is itself a valua-
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tion ring. Since the set of overrings of a valuation ring is linearly ordered, it 
follows that the set of prime ideals inside P is linearly ordered. 

2.5 Remark. As mentioned earlier, in any GCD-domain a principal prime 
ideal is always a PF-prime. On the other hand, it is well-known that in a UFD 
the essential prime ideals are precisely the principal primes, and hence in a 
UFD, the set of PF-primes and the set of principal primes coincide. In the case 
of a Bezout domain, every prime ideal is a PF-prime; and, in fact, the Bezout 
domains can be characterized among the GCD-domains by this property. 
This is a consequence of the well-known result that a GCD-domain is a Bezout 
domain if and only if it is a Priifer domain. 

3. Every prime ideal is a union of PF-prime ideals. While the results of 
the preceding section give some of the special properties of the PF-prime ideals 
in a GCD-domain D, they give little indication of the relation of the sub­
structure of the PF-primes to the overall prime ideal structure of D. In fact, 
in case D is neither a Bezout domain nor a UFD, there is no obvious reason 
that any of the proper prime ideals of D will be PF-primes. In this section we 
consider questions such as these. We begin with the statement of the main 
result of this section. 

3.1 THEOREM. In a GCD-domain, every prime ideal is a union of PF-prime 
ideals. 

Proof. We will call an ideal of the GCD-domain D a t-ideal if for all nonzero 
x, y in A, gcd (x, y) is in A. (This terminology is that used by Jaffard [8, pp. 18-
19] and others, applied to the specific case where D is a GCD-domain.) We 
want to show that if 5 is a multiplicative system in D and A is maximal in the 
set of all /-ideals disjoint from S, then A is prime in D, and hence a PF-prime. 
Let B and C be ideals properly containing A, and define 

B = {x Ç D\x = 0 or x is the gcd of a finite subset of B — {0}}. 

(In Jaffard's terminology, B is the /-ideal generated by B.) The fact that B 
is an ideal follows from the fact that d • gcd(&i, . . . , bn) = gcd(dbi, . . . , dbn), 
and the fact that gcd(&i, . . . , bn) + gcd(fr/, . . . , bm

f) is in the ideal generated 
by gcd(&i, . . . , bn, biy . . . , bj). We define C analogously. By the maximality 
of A, B and C meet S. Choosing s, t £ S such that 5 = gcd(6i, . . . , bn) and 
/ = gcd(ci, . . . , cm), with each bt G B — {0} and each Cj £ C — {0}, we see 
that st = gcd({biCj} ). Since st G S and since A is a /-ideal, some btCj is not 
in A, and hence BC $£ A. Thus A is a prime ideal. 

To prove the theorem, we let P be a prime ideal of D, and let d be an element 
of P. Then dD is a /-ideal which does not meet D — P , and since unions of 
chains of /-ideals are again /-ideals, there must be an ideal A containing d 
which is maximal among the /-ideals not meeting D — P. By the argument 
above A is a PF-prime, which we know contains d and is contained in P. 

https://doi.org/10.4153/CJM-1974-010-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-010-8


PRIME IDEALS 101 

Since our choice of P and d was arbitrary, we conclude that every prime is a 
union of PF-primes. 

3.2 COROLLARY. In a GCD-domain, every prime ideal contains a PF-prime, 
every nonunit is in a PF-prime, and every minimal prime ideal is a PF-prime. 

In the case where D is a UFD, we obtain from the preceding theorem and 
corollary the well-known results that every prime ideal is a union of principal 
prime ideals, every nonunit is in a principal prime ideal, and every minimal 
prime ideal is principal. These all follow from the fact mentioned in Remark 
2.5 that a UFD has the property that every PF-prime is principal. Next we 
prove a partial converse to this observation, showing that this property 
characterizes the unique factorization domains among the GCD-domains. 

3.3 THEOREM. A G CD-domain is a UFD if and only if every PF-prime is 
principal. 

Proof. We need only consider the "if" part. If every PF-prime of D is 
principal, then by 3.2, every proper prime ideal contains a principal prime. 
But Kaplansky [9, Theorem 5, p. 4] has shown that this property characterizes 
a UFD, and the proof is complete. 

This theorem yields the following well-known result on a UFD as an easy 
consequence. 

3.4 COROLLARY. Any Noetherian GCD-domain is a UFD. 

Proof. In a Noetherian GCD-domain D, every PF-prime ideal is finitely 
generated, and hence principal. By 3.3, D must be a UFD. 

The following corollary is a special case of a result due to Griffin [7, Proposi­
tion 4 and Theorem 5, p. 715] concerning the class of ^-multiplication rings, 
which includes the GCD-domains as a subclass. 

3.5 COROLLARY (Griffin). Every GCD-domain is an intersection of essential 
valuation overrings. In particular D = C\aDPa, where the set {Pa} may be taken 
to be the set of all PF-prime ideals or the set of all "maximal" PF-prime ideals, 
that is, "maximal" in the set of all PF-primes. (Note that such maximal PF-
primes exist since the union of a chain of PF-primes is again a PF-prime.) 

Proof. It is clear that D C (~\ DPa. Pick a, b in D such that a/b is not in D. 
Then by dividing out the gcd of a and b, we may assume gcd (a, b) = 1. 
Since a/b $ D, b is a nonunit of D. Hence b is in some (maximal) PF-prime 
Pp, and a (£ Pp, since gcd (a, b) is not in Pp. Therefore a/b Q DPQ. Thus 
D 3 n DPay and equality is proved. 

3.6 COROLLARY. A GCD-domain with only a finite number of {maximal) 
PF-prime ideals is a Bezout domain. 
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Proof. By 3.5, such a domain will necessarily be a finite intersection of 
valuation rings and therefore a Bezout domain, by Nagata's theorem on 
independence of valuations. (See [9, Theorem 107, p. 78].) 

It is well-known that in a Bezout domain, the partially-ordered set of prime 
ideals forms a tree. (In fact, wre showed in general (Corollary 2.4) that the 
set of PF-primes in a GCD-domain forms a tree.) Next we prove a converse— 
that is, that this property characterizes the Bezout domains among the 
GCD-domains. 

3.7 THEOREM. Let D be a GCD-domain. Then D is a Bezout domain if and only 
if the prime ideals of D form a tree. 

Proof. We need only consider the "if" part. Let D be a GCD-domain in 
which the primes form a tree. Let M be a maximal ideal of D. By hypothesis, the 
set of primes contained in M is linearly ordered, and hence by 3.1, M must be 
a union of a linearly-ordered set of PF-primes. Hence M is a PF-prime. Since 
every maximal ideal of D is essential, D must be a Prufer domain, and hence 
a Bezout domain. (See Remark 2.5.) 

3.8 COROLLARY. A GCD-domain in which the set of prime ideals is linearly 
ordered is a valuation ring. 

3.9 COROLLARY. A one-dimensional GCD-domain is a Bezout domain. 

Proofs. The proofs follow immediately from the fact that either linear 
ordering on primes or one-dimensionality imply that the primes form a tree. 

Remark. The result in 3.8 is a special case of a result by McAdam 
[10, Theorem 1, p. 239], and has also been proved independently by Vascon-
celos [13, App., Proposition A.]. Corollary 3.9 was proved independently by 
Dawson and Dobbs [5]. In each case the method used was quite different from 
that used here. 

4. Krull dimension and chains of PF-primes. 

4.1 Definition. Let D be a GCD-domain. Then we say the PF-dimension 
of D (denoted PF-dim(Z))) is the number of steps in the longest chain of 
PF-prime ideals of D, or infinity if there is no such longest chain. 

Remark. In an arbitrary domain D, we could give a definition of the essential 
dimension of D by replacing the term "PF-prime ideal" with ''essential prime 
ideal". Then for a GCD-domain the PF-dimension and essential dimension 
are equal, by Theorem 2.2. Some other elementary properties of the PF-
dimension of a GCD-domain and its relation to the Krull-dimension (denoted 
K-dim(D) in this section) are listed in the following proposition, which is an 
immediate consequence of Theorem 3.1 and Remark 2.5. 
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4.2 PROPOSITION. Let D be a GCD-domain that is not a field. Then 

1 ^ PF-dim(£>) S K-dim(£>), 

and in case D is a Bezout domain, PF-dim(.D) = K-dim(Z)). 

Since we have already found several properties that characterize Bezout 
domains among GCD-domains, it seems reasonable to ask if equality of Krull 
dimension and PF-dimension is another such property. We have already seen 
positive results in this direction. Corollary 3.9 can be considered as stating 
that if D is a GCD-domain with PF-dimension one, then D is Bezout if and 
only if PF-dim(D) = K-dim(Z)). Thus we are led to make the following 
conjecture: 

4.3 Conjecture. If D is a GCD-domain and PF-dim(P) = K-dim(D), then D 
is a Bezout domain. 

The remainder of this section will be devoted to considering this conjecture 
for PF-dimensions other than one. For finite dimensions greater than one, 
we are unable to prove or disprove it, but we can show that among several large 
classes of examples of GCD-domains, no counterexamples exist. In the case 
of infinite dimension, the conjecture is false, as the following example 
illustrates: 

4.4 Example. Let D be a GCD-domain that is not a Bezout domain. (A two-
dimensional UFD—for example, the ring of polynomials in two indeter-
minates over a field—will suffice). Let K be its quotient field. Let V be a 
valuation ring of infinite rank that can be written in the form K + M, where M 
is its maximal ideal. Then the subring D + M of F is the example we want. 
In particular it has the following properties: 

4.4.1 D + Misa GCD-domain, 
4.4.2 D + M is not a Bezout domain, 
4.4.3 PF-dim(£> + M) = oo, 
4.4.4 K-dim(£> + M) = oo. 
Property 4.4.1 follows from the fact that D is a GCD-domain with quotient 

field K [2, Theorem 3.13], and 4.4.2 follows from the fact that D is not a 
Bezout domain [2, Theorem 2.1 (I')]. Now let {Pa} be an infinite chain of 
nonzero prime ideals of V. Then each Pa is again a prime ideal of D + M, and 
(D + M)Pa = VPa, which is a valuation overring of D + M. In other words, 
each Pa is a PF-prime, and hence the PF-dimension of D + M (and of course 
the Krull dimension as well) is infinity. Thus the example is complete. 

We return now to the search for a finite-dimensional counterexample. In 
particular we need a GCD-domain which is neither a Bezout domain nor a 
UFD. (In fact it must have PF-dimension ^ 2 . ) One method of constructing 
such domains is the D -f- M construction used in the preceding example. 

https://doi.org/10.4153/CJM-1974-010-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-010-8


104 PHILIP B. SHELDON 

Unfortunately, in the finite-dimensional case no new counterexamples to the 
conjecture can be obtained by this method, as the following theorem shows: 

4.5 T H E O R E M . If a domain of the form D + M is a finite-dimensional counter­
example to Conjecture 4.3, then so is D. 

Proof. Let D + M be a subring of the valuat ion ring K + M which is a 
GCD-domain bu t not a Bezout domain and such t h a t PF-dim(Z) + M) = 
K-dim(Z) + M) < co. Then D is a GCD-domain with quot ient field K 
[2, Theorem 3.13], and D is not a Bezout domain [2, Theorem 2.1 (7')]- More­
over, 

K-dim(Z) + M ) = K-dim(£>) + K - d i m ( F ) 

[2, Theorem 2.1 (f)]. If we can show the same formula holds for PF-dimension, 
then we are done, since we can sub t rac t K - d i m ( F ) (which equals P F - d i m ( r ) ) 
and conclude P F - d i m ( D ) = K-dim(D). T o verify the formula, we consider a 
PF-pr ime P * of D + M. If P * C M, it is a prime ideal (necessarily a P F -
prime) of V. If P * ^ ikf, then P * is of the form P + M where P is a prime 
ideal of D. Moreover P is a PF-pr ime in D since (D + M)P+M = DP + M 
and Dp + ikf can be a valuat ion ring only when DP is a lready a valuat ion 
ring. Hence a chain of primes of D + M is a chain of PF-pr imes if and only if 
it is of the form 

<2i C <22 C . . . C Qm C P i + M C P 2 + M C . . . C Pm + M, 

where each Qt is a PF-pr ime of F , and each Pt is a PF-pr ime of Z). T h u s the 
longest chain possible has ( P F - d i m ( F ) ) + (PF-dim(Z))) terms, and the 
formula is verified. This completes the proof of the theorem. 

Another way to construct a GCD-domain t h a t is neither a Bezout domain 
nor a U F D is to adjoin a polynomial indeterminate to a GCD-domain t h a t is 
not a U F D . This method not only fails to yield any new counterexamples, as 
the D + M method did, bu t even fails to yield any counterexamples a t all. 

4.6 T H E O R E M . Let D be a GCD-domain that is not a field. Then 

PF-dim(£>[X]) = PF-dim(£>). 

Consequently, if D has finite Krull dimension, then 

PF-dim(£>[X]) ^ K-dim(£>[X]). 

Proof. Arnold and Brewer [1, L e m m a 1, p . 483] have shown for an a rb i t ra ry 
domain D and a prime ideal Q of D[X], t h a t if D[X] Q is a valuat ion ring, then 
either Q = (Q H D)D[X], or Q Pi D = (0). Ideals of the first type are jus t 
those of the form P[X], for some essential pr ime ideal P of D. An ideal of the 
second type mus t extend to a proper prime ideal of 2C[J*T); t h a t is, it is the 
center of a p (X) -ad i c valuat ion on K[X]. T h u s for the case of a GCD-domain 
D, the PF-pr imes of D[X] are those of the type P[X] where P is a PF-pr ime 
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of D, together with the centers of the p(X)-adic valuations of K[X] on D[X]. 
Let Q be a prime of the latter type. Since Q C\ D = (0), we can factor the gcd 
of the coefficients out of an element q± of Q and get a polynomial q2 6 Q for 
which the gcd of the coefficients is 1. Then for any PF-prime P of D, the set 
of coefficients of g2 cannot lie inside of P, since if they did, 1 would be in P as 
well. Hence g 2 £ P[X], In other words, there are no containment relations 
between the centers of ^(X)-adic valuations on D[X] and PF-primes of the 
type P[X]. Moreover, the ^(X)-adic valuations are all rank-one discrete, so 
their centers are height one primes. Thus any chain of PF-primes of length 
greater than 1 will be of the form {Pa[X]} and will correspond to a chain {Pa} 
of PF-primes of D. Hence PF-dim(D[X]) — PF-dim(D). The second assertion 
of the theorem follows at once, since for finite Krull dimension, 

K-dim(Z>|X|) ^ K-dim(P) + 1 ^ PF-dim(£>) + 1 > PF-dim£>[X]. 

Remark. For a proof that D[X] is a GCD-domain, see Jaffard [8, Chapter IV, 
§ 2, Proposition 4, p. 100]. 

5. A group- theore t ic in te rpre ta t ion . The divisibility group G(D) of an 
integral domain D with quotient field K is the partially ordered abelian group 
of nonzero principal fractional ideals of D in K, with the ordering defined as 
follows: kiD ^ k2D if and only if kj) C k2D. Thus the zero element of G(D) 
is the fractional ideal D itself, and the positive elements in the group 
are precisely the ordinary principal ideals of D. The natural mapping 
œ : K — {0} —> G(D) taking k to kD is called the semivaluation of K associated 
with D. (For further details about semivaluations and the divisibility group, see 
Gilmer [6, App. 4] or Mott [11].) 

It is straightforward to verify that D is a GCD-domain if and only if the 
ordering on G(D) is a lattice ordering. Thus we can utilize the specialized 
structure of lattice-ordered abelian groups to gain insight into the properties 
of GCD-domains. Of particular interest in considering the prime ideal structure 
of D are the prime filters of G(D) defined below. 

5.1 Definition. Let L be a lattice-ordered abelian group with positive cone L+ . 
A proper subset F of L+ is a prime filter of L+ if it satisfies these three properties: 

5.1.1 if x G F and y ^ x, then y Ç F; 
5.1.2 if x, y G F, then inf{x, y} 6 F; 
5.1.3 if z, w G L+ — F, then z + w G L+ — F. 

In an earlier paper by this author it was shown that if D is a Bezout domain, 
then the semivaluation co induces a one-to-one inclusion-preserving corres­
pondence between the proper prime ideals of D and the prime filters of G(D)+ 

[12, Theorem 2.2]. In a GCD-domain in general the inverse image under co of 
a prime filter in G(D)+ is always a proper prime ideal, but it is not true that 
the image under co of every proper prime ideal of D is a prime filter. To be 
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precise, the image of P is a prime filter if and only if P is a PF-prime ideal, and 
this will hold true if and only if P is the inverse image of a prime filter. Thus, 
in general, œ induces a one-to-one inclusion-preserving correspondence between 
the proper PF-prime ideals of D and the prime niters of G(D)+. The termi­
nology "PF-prime" was chosen to refer to this fact. (Note that the use of the 
terms "inverse image" and "image" in the preceding paragraph presumes the 
inclusion or deletion of the zero element of D wherever it is necessary to make 
sense, since 0^ is not in the domain of co.) 

Several of the ideas in this paper can be translated directly into statements 
about prime filters in the divisibility group. For example, the results that the 
union of a chain of PF-primes is again a PF-prime and that the set of all 
PF-primes forms a tree are equivalent to the facts that unions of prime filters 
are again prime filters and that the set of prime filters in the positive cone L+ 

of any lattice-ordered group forms a tree. The technique used in the proof of 
Theorem 3.1 could be used to show that a filter (that is, a subset of L+ which 
satisfies 5.1.1 and 5.1.2) which is maximal with respect to missing a subsemi-
group of L+ is a prime filter of L+ . 

A related point of view that yields further insight into these subjects comes 
from the Krull-Jafrard-Ohm Theorem, which states that every lattice-ordered 
abelian group is order-isomorphic to the divisibility group of a Bezout domain. 
Thus each GCD-domain D shares its divisibility group G with a Bezout 
domain Df, and the special properties of D' can be used to prove properties 
of D. For example, this approach yields a proof of Theorem 3.1 along the 
following lines: Let P be a prime ideal of D, and let S = D — P. Then there 
is a saturated multiplicative system Sr of D' which corresponds to S, in the 
sense that their images under the respective semivaluations are equal. Since 
Dr is a Bezout domain, S' is the complement of a union of a family {Pa'} of 
PF-prime ideals of D'. But each of the prime ideals Pa' corresponds, in 
the same way as described above, to a PF-prime ideal Pa of D. Since 
S' = Df — U Pa y the special properties of this correspondence guarantee that 
S = D — U Pa, which proves that P is the union of the family {Pa} of 
PF-primes of D. 
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