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Abstract. A brief account of the stability of distorted stars is given. From this appropriate criteria 
emerge, which are subsequently applied to rotational models of the sun in connection with the solar 
oblateness problem. 

1. Stability of Distorted Stars 

If we are not interested in perturbation time scales longer than the thermal diffusion 
time scale, we may neglect the weaker dissipative effects as viscous or material 
diffusion in the linear stability analysis. Then we get a polynomial of the third degree 
for a dimensionless growth rate: 

a3 +Th(j2 + Ala + A0
X-h = 0. (1) 

Here ~h=|/-/geff|
1/2 is the local hydrodynamic time scale with gefr the acceleration of 

gravity modified by the distorting force and r the distance from the centre; xr is the 
local thermal relaxation time scale, which is of the order of TKHL2/R2, where TKH is 
the Kelvin-Helmholtz time scale of the entire star of radius R, and L is the size of the 
disturbance. l/th is used as scaling factor of the growth rate. The coefficients At and 
A 0 are of the order of 1 and X respectively, X being the local fraction of the distortion 
of the star. The third degree in a of Equation (1) is obtained from the second order 
time derivatives in the momentum equation and from the entropy change rate in the 
energy balance for nonadiabatic processes. From Equation (1), the Hurwitz criteria 
provide the following three conditions 

ASsO, (2a) 

AL>A0, (2b) 

A0^0. (2c) 

Inequalities (2) must be satisfied simultaneously in order to insure stability. They are 
the necessary conditions for dynamical, vibrational and secular stability respectively. 
This may be verified intuitively by interchanging material elements along an arbitrary 
path I in the meridional plane (axially symmetric perturbations) in an adiabatic, 
quasiadiabatic or diabatic manner. If the translation energy of the elements is in
creased by one of these processes, the system is unstable with respect to one of these 
three modes of instability. 

In vibrationally stable layers, Equation (2b) prevents overstable convection. Equa
tion (2) then tells us, that in vibrationally stable layers the secular stability condition 
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is always stronger than the dynamic one. The explanation is simply that the stabilizing 
effect of buoyancy forces caused by temperature differences is wiped out if the motions 
are slow enough to permit an appreciable amount of heat exchange. Each of the con
ditions (2) has in general the form 

<*i<l2 + btq + c ; ^ 0 , ( = 1 , 2 , 3 , (3) 

where q = lgjlr is the ratio of the tangential and the radial component of the displacement 
vector of the two elements mentioned above. Equation (3) then splits into two con
ditions 

C;3s0 and 4aici-bf^0, i = 1,2,3, (4) 

because q may vary arbitrarily. The first set of criteria corresponds to radial pertur
bations (q = 0) and the second one to non-radial perturbations (q i= 0). 

We now consider the special case of a rotating star having a spherical distribution 
of angular velocity Q(r) and mean molecular weight n(r). This case is relevant for a 
subsequent application to the sun. The rotation rate shall be slow, i.e. l = Q2rj 
|gfeff|<^l. We obtain the following scheme for the six stability criteria valid in the 
equatorial plane: 

mode vibrational dynamical secular 

radial Vad - Vr > 0 Vad - Vr V, - 2AVj > 0 

+ V„ - 2XVj > 0 

non-radial - l2K2 Ss 0 Vad - Vr V„ - 2AV,- - l2C2 > 0 

+ V„ - 2XVj - X2C2 > 0 
(5) 

where j=Qr2, Vx = d lnx/d In/?, C=\ {r\ti)U2 Vj, J=Qr4, X ^=|ge f f xgrad T\ ;p, T, 
h, Vad denote pressure, temperature, pressure scale height and adiabatic temperature 
gradient respectively. 

According to the scheme (5) the transition from dynamical to secular modes shows 
an increase in strength of the respective stability criteria if Vr ^ Vad. The same statement 
holds for the transition from radial to non-radial modes. This is not surprising as the 
non-radial modes represent more general disturbances than the radial ones. Such 
relations concerning the strength of stability criteria hold also if effects of magnetic 
fields are included. lncidently,for non-radial vibrational modes of rotationally distorted 
stars a general local instability is obtained. This result will not be discussed here. The 
important conclusion from the above synopsis of the stability conditions is that the 
'non-radial secular' criterion provides the strongest restraint for a stellar rotation law. 
It can be written as 

ir2Q'2^gef!(ln^, (6) 

the prime denotes d/dr. 
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For 'normal' composition gradients \s! <0, the r.h.s. of (6) is positive. If in addition 
£2'<0, the steepest stable fi-gradient at a certain radius is given by 

Q' = -2\g^{\n^'\112. (7) 
r 

In a chemically homogeneous layer with no magnetic field, only uniform rotation can 
be stable. 

2. Discussion of Dicke's Model 

According to Dicke and Goldenberg (1964) (hereafter referred to as D.G.) the sun 
shows an oblateness of Ar/r= (5 + 0.7)x 10~5, a value which is larger by a factor of 
5 than what one should expect if the sun were to rotate rigidly with the observed 
surface angular velocity £2S = 2.8 x 10~6 rad/sec. In the present Colloquium Professor 
Dicke has provided evidence against a possible distortion of the solar atmosphere by 
stresses of velocity or magnetic surface fields and he has argued in favour of the D.G. 
model of the angular velocity distribution in the sun (this volume, p. 289). In the 
D.G. model the radiative core of the sun rotates at the high primordial rate of 4 x 10~5 

rad/sec, while the outer convection zone and the atmosphere have been spun down to 
the present surface rotation rate by the solar wind torque. Thus, below the bottom of 
the convection zone at 0.8 solar radius a thin transition layer of 0.05 solar radius 
thickness is postulated in which Q decreases by a factor larger than 10. This model 
encountered two main objections: 

(1) The transition zone cannot be in hydrostatic equilibrium (Howard et ai, 1967), 
(2) the transition zone must be thermally unstable (Goldreich and Schubert, 1967; 

Fricke, 1969a). 
I shall not consider the onset of an Ekman flow, which transports angular momentum 

through the transition zone, to be imperative. As Fricke and Kippenhahn (1967) have 
pointed out, the stellar gas can adjust its temperature distribution to a quasi-hydro
static state as long as the Eddington-Vogt circulations are small compared to the 
velocity of sound; the latter still holds in the D.G. model. I consider the instability 
objection to be the important one. Goldreich and Schubert used only the 'radial 
secular' condition of the restraints (5) to show the instability of the ^-transition. 
Obviously, it is also unstable against secular non-radial motions as Equation (6) 
(with n = const.) shows. Dicke (1967) has proposed the following stabilizing effects: 
(i) magnetic fields, (ii) velocity fields. 

I have investigated secular stability in the presence of toroidal or poloidal magnetic 
fields (Fricke, 1969a). I found toroidal fields and differential rotation to be separately 
unstable with respect to non-radial secular perturbations. On the other hand, a mutual 
stabilization is possible in principle but requires in the case of the D.G. model an 
unlikely physical situation. The weaker condition for radial motions already demands 
a field strength of the order of 10s Gauss with a field gradient of the order of 1 Gauss/ 
km pointing outward. In addition, Schubert and Fricke (to be published) have shown 
that rotating stars with toroidal fields are secularly unstable with respect to non-
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axisymmetric modes. Poloidal fields cannot suppress the instability of differential 
rotation against non-radial disturbances, if the rotation is steady. Bearing these results 
in mind the situation does not appear promising for stability even if a field of a more 
sophisticated structure is present, since the instabilities are of a local nature. 

Dicke argues furthermore that the shear produced by meridional motions may 
prevent the instability motions from growing, in a similar manner as ocean currents 
prevent the growth of salt fingers. In stars the Eddington-Vogt circulations may take 
over this role, although we know very little about this mechanism. These currents 
have velocities of the order of 10 - 4 X cm/sec in the solar core and are probably much 
less than the turbulent motions caused by the instability. Within the D.G. transition 
zone the currents are faster by a factor of 104 because of the Baker-Kippenhahn 
correction and a correction due to the steep £2-gradient. There the velocities become 
of the order of X cm/sec, where A« 10~3. However, the latter estimate for the velocity 
of the currents is not relevant for Dicke's argument. The instability according to 
Equation (6) operated from the beginning of the spin down process, when no £2-tran-
sition has been present. Thus, 1 presume that such a transition layer could not have 
been formed. 

3. Stable Models 

The question arises whether stable rotation laws can be constructed, which can also 
account for the solar oblateness. On the basis of the condition (6) for non-radial 
secular stability I have shown that this is not possible (Fricke, 1969b). The use of the 
criterion for radial motions led Goldreich and Schubert (1968) to the opposite result. 

The maximum possible angular momentum content which can be stably distributed 
in the sun can be deduced by use of Equation (7). In the absence of a //-gradient in the 
sun's interior the solar oblateness would be produced by rigid body rotation with the 
present value of the surface velocity of 2.8 x 10~6 rad/sec. This gives Ar\r = 1.0 x 10"5. 
If we assume a stabilizing //-gradient obtained from evolution theory (Schwarzschild, 
1958) for the present age of the sun, 5 x 109 yr, and use the present surface velocity, 
Equation (7) can be integrated to give a unique ^-distribution, which provides a first 
upper bound to the solar oblateness from stability arguments. The value thus obtained 
is 8.5 x 10"5 and is only slightly higher than the observed value of D.G. Actually, the 
//-gradient has been evolved from zero to the present value by nuclear burning in the 
core. In order to take into account this evolution effect, two earlier ^-distributions 
for the ages 3 x 107 yr and 4 x 108 yr have been integrated using the corresponding 
//-distributions and surface velocities. The latter have been taken from Kraft (1967). 
The minimum curve resulting from the three calculated ^-distributions is given in 
Figure 1. This curve represents an ^-distribution which could have evolved from an 
initially constant rotation (taken as the Keplerian angular velocity at the solar equator) 
by three simultaneous effects: (i) evolution by nuclear burning, (ii) spin-down by the 
solar wind torque and (iii) angular momentum transport as an effect of the instability. 
This distribution produces an oblateness of 1.4x 10~5 only, which is about a factor 
4 smaller than the measured value. If the latter is correct, we must conclude that the 
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large measured oblateness indicates an unstable ^-distribution to be present in the 

solar core. 

This last possibility cannot be excluded completely as long as accurate time scales 

for the secular instabilities are unknown. The time scale for an unstable ^-distribution 

to be maintained must not be smaller than the braking time scale, which is presum

ably of the order of 108 yr. Up to now, no reliable theory is known which could 

support such a high value for the time scale of the instability. 

CO 

0.6-

0A-

0.2-

\ 

I l l 
0 0.2 tti 0.6 OB 10 

Fig. 1. The limiting angular velocity distribution of the present sun obtained from Equation (7) 
with regard to the history of the /i-gradient and the surface velocity. o>2 = Q2R3jGM, where Af and R 
are the solar mass and radius and G is the constant of gravitation; x is the relative radius rlR. 
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Discussion 

Roxburgh: Could you explain why your angular velocity distribution was constant in the central 
regions of the sun? 

Fricke: I simply assumed that the sun reaches the main sequence with the Keplerian velocity and is 
initially in a state of rigid body rotation. During the subsequent spin down process the angular velocity 
is lowered in the outer parts, whereas the central distribution remains unaffected for a long time. 
Thus, I truncated the increasing distribution inwards at the Keplerian velocity. 

Ruben: Dr. F. Krause, of the Central Institute for Astrophysics in Potsdam, asked me to make the 
following comment: 
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Using a theory of mean fields in a turbulent conducting medium one can prove the existence of an 
alternating field dynamo. To get such an alternating field dynamo, it is necessary that the gradient of 
the angular velocity at the bottom of the hydrogen convection zone be great. At the moment, it is 
difficult to say exactly how much the angular velocity should change. Probably for the sun the change 
will be of the order of the difference weq — »poie. But it cannot be smaller than this. It is to be hoped, 
that in the future the analysis of the butterfly diagram and related phenomena will give some limits 
on the structure of the outer solar layers. The theoretical butterfly diagrams have been published in 
Astronomische Nachrichten 291 (1969), 49. 

Dicke: I should like to make two comments: 
(1) In connection with Dr. Fricke's paper I should like to return to my comment on Monday. A 

linear stability analysis cannot be carried out without first assuming a model for the stellar interior. 
Thus one is faced with the disagreeable task of evaluating the stability of all possible models before a 
general proof of instability is obtained. 

(2) The Goldreich-Schubert-Fricke instability leads to the transport of angular momentum, along 
with the material containing the angular momentum, to the surface of the sun. Kraft's observations 
show that young G-type stars on the main sequence possess a large amount of angular momentum. 
Assuming that this angular momentum is transported to the surface implies a strong depletion of 
beryllium at the surface. Most of the angular momentum of a uniformly rotating solar-type star lies 
below r = 0.5, the radius at which berylium rapidly burns. Apparently depletion of berylium is not 
observed implying that the original angular momentum has not been transported to the surface from 
below r = 0.5 by this instability. 

Fricke: First, I should like to mention that the local stability analysis does not require any specifica
tion of the equilibrium model. Conversely, the linear stability criteria prescribe the local properties of 
thermally stable models. Using these constraints I found (i) none of the proposed models for an 
oblate sun is compatible with the stability requirements, and (ii) stable models which yield a suffi
ciently high oblateness cannot be of a simple structure. Thus, the existence of a solar quadrupole 
moment of the required amount is not presently understood. 

Concerning the second point, my opinion is that the depletion of lithium and the sensible deficiency 
of beryllium in the solar atmosphere (cf. a paper by N. Grevesse in Solar Physics, 1968) are favourable 
to the idea of mixing between core and envelope, although I have not considered the problem quanti
tatively. 
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