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PROPERTIES OF QUOTIENT RINGS 

S. PAGE 

I n t r o d u c t i o n . In [1 ; 2 ; 7] Gabriel , Goldman, and Silver have introduced 
the notion of a localization of a ring which generalizes the usual notion of a 
localization of a commuta t ive ring a t a prime. These rings may not be local in 
the sense of having a unique maximal ideal. If we are to obtain information 
about a ring R from one of its localizations, QT{R) say, it seems reasonable 
t h a t QT{R) be a t ractable ring. This , of course, is wha t Goldie, Jans , and 
Vinsonhaler [4; 3 ; 8] did in the special case for Q{R) the classical ring of 
quot ients . In this note we extend the above results to arb i t rary quot ient rings 
and add to the list prime rings, uniserial and generalized uniserial rings and 
give a description of the prime and Jacobson radicals of QT(R). 

P r e l i m i n a r i e s . Our basic references will be Goldman [2] and Lambek [4]. 
Throughout , all rings will have an ident i ty and all modules will be left uni tary . 

Le t R be a ring. By a torsion theory, r, we will mean a family of i^-modules 
closed under arbi t rary extensions, homomorphic images, and submodules. We 
let J^T be the filter of left ideals of R which are annihilators of elements of 
members of r. If M is a left i^-module, set T(M) = [m £ M\ Um = 0 for some 
U G ^ T } - T h e family r is then the collection of left i?-modules such t h a t 
r(M) = M. W e will refer to members of r as torsion modules and r(M) will 
be called the torsion pa r t of M. 

If r is a torsion theory, set 

QT(M) = J ^ H o m B ( t f f M/T(M)) 

for a left i^-module M. QT{M) is the quot ient module of M relative to the 
torsion theory r. 

A left i?-module M is called r-injective if for every U G ^ \ and every 
homomorphism / : U —> M, f lifts to a homomorphism f : R —> M. 

T h e following theorem, in pa r t due to M a r a n d a and in pa r t to Walker and 
Walker , and found in Goldman [2] is needed. 

T H E O R E M 1. Let QT(R) be the quotient ring ofR relative to the torsion theory r . 
The following are equivalent: 

(a) Every left QT(R)-module is r-injective. 
(b) Every left QT(R)-module is T-torsion free. 
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(c) QT(R) U = QT(R) for every U G #~T. 
(d) QT(R) ®BM^ QT(M) for every left R-module M. 

Torsion theories which satisfy any or all of the conditions (a)-(d) are said 
to have property T. 

Artinian quotient rings. We start with the problem of determining when 
QT(R) is semi-simple Artinian. 

LEMMA 1. If QT(R) is semi-simple Artinian, then &' T has property T. 

Proof. Since every left QT(R)-module is projective and hence a direct 
summand of a free QT(R) module, all left QT(R) modules are torsion free. 

LEMMA 2. If QT(R) is semi-simple Artinian and 0 —> R —> QT{R) exact, 
&'T consists of all essential left ideals of R. 

Proof. If U is an essential left ideal of R, then QT(R)U is an essential left 
ideal of Qr(R)> But QT(R) has no essential left ideals other than QT(R) itself, 
so QT(R) U = QT(R)- This implies U G ^'r\ for if x G R, x = ]CX=i otUi where 
Ui G U and qt G QT(R), i = I, . . . , n, and there exists a V G &~r such that 
U'qii C R for all i = 1,2, ... ,n, and so Urx C U, whence R/U is a r-torsion 
module. 

On the other hand, if U is in&~r and U is not essential, then there exists a 
left ideal A in R such that A ^ 0 and 4̂ Pi £/ = 0. But then A is isomorphic 
to a submodule of the r-torsion module R/U, which means A is a r-torsion 
module, which is a contradiction. 

In [5] Morita shows that if a ring map a : R —• 5 is an epimorphism in the 
category of rings and 5 becomes a right flat i?-module, then 5 = QT(R) for 
some r and if r has property T, then QT(R) is a flat epimorph of i?. 

The following generalizes the results of Sandomiersky [6]. 

THEOREM 2. Let 

a 
0-+R->S 

be an exact sequence of ring maps for which S becomes a right flat R-module and 
a is a ring epimorphism. Then the following are equivalent: 

(a) 5 is semi-simple Artinian. 
(b) S is the complete ring of left quotients of R, R has finite Goldie dimension, 

and Z(R) = 0. 
(c) S == QT(R),^T = {U\U an essential left ideal of R), and for any sequence 

of left ideals Ai~Z) A2~D ••• D An~^> ••• there exists a k such that Ak+i is 
essential in Akfor all i ^ 1. 

Proof. Since 5 is a flat epimorph of R, S ~ QT(R) for some torsion theory r. 
If (a) holds, by Lemmas 1 and 2 T(R) is the singular submodule of R, which 
must be zero because a is monic, so that dense left ideals and essential left 
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ideals coincide making QT(R) the complete ring of quot ients . T h e finite 
dimension then follows easily since tensor products commute with direct 
sums. This shows t h a t (a) =» (b) . 

For (b) => (a) we need t h a t S is semi-simple; bu t S is a regular ring which 
can be wri t ten as a sum of finitely m a n y indecomposable left ideals which 
makes it semi-simple. 

T o prove (a) <=> (c) we note t h a t the condition on the left ideals given in (c) 
is equivalent to Qr(R) having D.C.C. on left ideals and t h a t R is an essential 
submodule of QT(R). Wi th these two observations the proof follows easily. 

Remark. Th i s theorem generalizes Goldie's theorem on semi-simple classical 
quot ient rings, for if we take T(M) = {m\bm = 0, b a regular element in R}, 
then r is a torsion theory provided R is a left Ore ring, and also every essential 
ideal contains a regular element if R is a semi-prime Goldie ring. 

In case R is commuta t ive we have: 

COROLLARY. If R is commutative, then QT(R) is semi-simple Artinian if and 
only if QT(R) is the classical ring of quotients and every essential ideal contains 
a regular element. 

Proof. If QT(R) is semi-simple J^",. is the set of essential ideals. If U £ ^~T , 
then U D A\ © A2 © . . . © An where each At 9^ 0, QT(R)Ai is an indecom
posable QT(R) left ideal, and QT(R)A1 © . . . © QT(R)An = QT(R). Now each 
QT(R)Ai contains a primitive idempotent q^i such t h a t q&i -f q2a2 + . . . + 
qnan = 1 and q^a^^a^ = 0 if i ^ j . F rom this it follows t h a t a^q^i = at and 
aiÇ.jaj = 0 if i ^ j - Let x Ç R. Then ( £ ! = i at)x = 0 = ^ ^i^a^jX = 0 so 
t h a t X! Çja3x = 0. This shows t h a t S l = i a% IS a regular element in U. 

Conversely, if every essential ideal contains a regular element, then R can 
contain no infinite direct sums of left ideals. This implies QT(R) has D.C.C. on 
left ideals for QT(R) is already regular. 

In case QT(R) is quasi-Frobenius (Q.F.) we make the following observat ions: 

LEMMA 3. / / QT(R) is quasi-Frobenius, then r has property T. 

Proof. Let M be any simple Qr{R) module. Then , since QT(R) is Q.F. , 
M ~ L, a simple left ideal. B u t QT(R) is r-torsion free, so M is r-torsion free. 
I t follows t h a t every QT(R) module is r-torsion free and so r has proper ty T. 

LEMMA 4. If M is an infective QT{R)-module and T(M) = 0, then M is 
R-injective. 

Proof. Le t / be a left ideal of R and / : I -> M. T h e n 0 -+QI - » Q is exact 
and / : QI —> M, given by f{qi) = qf(i), is well defined because M is torsion 
free. Now there exists a m a p f : Q —> M such t h a t g restricted to QI is / . T h e 
restriction of g to the image of R yields the desired m a p because 
T{R) C\ I C k e r / again because T(M) = 0. 
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LEMMA 5. If 0 —> R —> QT(R) is exact and r has property T, then QT{R) is 
neotherian if and only if for every sequence of left ideals A i C A 2 C • • . of R 
there exists k such that r{Ak+i/Ak) = Ak+i/Akfor all i ^ 0. 

Proof. The proof is essentially the same as that for the D.C.C. in Theorem 1. 

THEOREM 3. If 0 —* R —> QT(R) is exact, the following are equivalent: 
(a) QT(R) is a Q.F. quotient ring of R. 
(b) QT(R) is the injective hull of R, T has property T, and for any sequence of 

left ideals Ax C. A2 <Z . . . (Z An . . . there exists k such that r{Ak+j/Ak) = 
Ak+j/Akfor allj è 0. 

(c) QT(R) is the injective hull of R. For every finitely generated R-module M 
which is torsion free there exists an integer n such that 0 —» QT(M) —> Xl=i QT(R), 

T has property T, and R has the maximum condition on left annihilators of QT(R). 

Proof, (a) <=> (b) follows from the lemmas, (a) <̂> (c) follows by the 
argument of Jans in [3] with only minor modifications. 

From another point of view we obtain: 

THEOREM 4. If 0 —» R —> 5 is an exact sequence of rings, S is Q.F.f 

T(S ®R S) = 0, and r(S/R) = S/R, then S ^ QT(R). 

Proof. We first need that S is a quotient ring for some torsion theory. It 
suffices by [5] to show 5 is a flat epimorphism of R. T(S 0 ^ 5 ) = 0 implies 
that R —» 5 is an epimorphism, for the kernel of 5 (g) R S —> 6* is r (S ® R S). To 
see that 5 is right flat over R we need to show that Hom z(5, Q/Z) is left 
injective over R (see [4]). But Hom z(5, Q/Z) is injective as an 5 module, 
hence projective as an S module, therefore r-torsion free, and so injective by 
the same methods as used in Lemma 4. The fact that T(S/R) = S/R completes 
the proof. 

The class of Q.F. rings is contained in the class of Q.F. 3 rings. Namely, R 
is Q.F. 3 if R has a minimal faithful left .R-module (minimal in the sense that 
it is a direct summand of every faithful i?-module). 

THEOREM 5. / / 0 -+R —» QT(R) exact and R is Q.F. 3, then QT(R) is 
Q.F. 3. 

Proof. If F is a minimal faithful R module then V is both injective, for it is 
a direct summand of the hull of R, and projective for it is a direct summand 
of R. We then have T(V) = 0, so QT(V) = V, so that F is a QT(R) module 
and is injective as such. Also, V is QT(R) projective for F is a direct summand 
of QT(R). V is QT(R) faithful, for if qV = 0, q G Qr(R), then for suitable 
U e &'r we have Uq C R and UqV = 0, giving Uq = 0 so that q = 0. 
Finally we need to show F is a direct summand of every faithful QT(R) 
module. Suppose X is a faithful QT(R)-module, then X is a faithful i^-module 
so F is a direct summand of X as an i^-module. Let X = F © IF. Suppose W 
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is not a QT(R) module. Then qw (? W for some q 6 Qr(R). Let qw = Vi + Wi. 
Then for some U 6 # \ , Uq C R so that [Tgw = Z7̂ i + Uwi G W for ail 
u € £/, i.e., Lfoi = 0. But, F is r-torsion free so Vi = 0 and the sum is QT(R)-
direct. 

If we ask that QT(R) be Q.F. 3 and Artinian we obtain: 

THEOREM 6. Let 0 —> R —-> QT(R) be exact. Then the following are equivalent: 
(a) Q7(R) is an Artinian Q.F. 3 rmg. 
(b) (i) QT(R) is left Noetherian; 

(ii) QT(R) contains a faithful infective R-module X such that for every 
R-submodule Y of X, X/QY contains a simple Q module or is zero, and R imbeds 
a finite direct sum of copies of X. 

Proof (a) => (b). If QT(R) is an Artinian Q.F. 3 ring, then let X be the 
minimal faithful ideal of QT(R). QT{R) imbeds in a finite direct sum of copies 
of X, and therefore, so does R. By Lemma 4 X is i^-injective. The last part 
of (ii) is clear so that X will serve for the faithful injecture of (ii). 

Conversely, if (b) holds we can show the X of (ii) is a faithful injective 
projective QT(R)-module in much the same manner as in the proof of 
Theorem 4, so that it remains to show QT(R) is Artinian. Note that 
0—> QT(R) —> © YTi=iX is exact because R is essential in QT(R). X is a 
Noetherian QT(R)-module such that every factor module has a non-zero 
socle and each of these socles is a finite direct sum of simple QT(R)-modules. 
A simple induction argument shows X has a composition series and hence 
has D.C.C., so QT(R) has D.C.C. on left ideals which completes the proof. 

Radicals. The Jacobson radical is the intersection of the maximal left ideals 
in any ring with unit. An alternative description is that it is the intersection 
of the annihilators of simple modules. This latter description provides a 
suitable method of calculating the Jacobson radical of QT(R). 

First we need a definition: 

Definition. For a torsion theory T, S is called a support module of r if 
(i) 5 * 0; 

(ii) T(S) = 0; and 
(iii) T(S/S') = S/S' for all non-zero i^-submodules S' of 5. 
We will call S simply supporting for r if 5 is a support module and QT(R)S' = 

QT(R)S for all non-zero i^-submodules S'. Note that if r has property T all 
supporting modules are simply supporting. 

THEOREM 7. The Jacobson radical of QT(R) = Pi {annihilators of QT(S), S a 
simply supporting module for r}. 

Proof. We shall first show that a simple QT(R)-module is QT(S) for some 
simply supporting i^-module S and conversely. Let X be a simple QT(R)-
module. Then X ^ QT{R)/M where M is a maximal left ideal of QT(R). Let 
Y be the inverse image of M in R under the canonical map of R to QT(R)> 
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Then R/Y is a simple supporting module for r. On the other hand, if 5 is 
simply supporting for r and F is a QT(R) -submodule of QT(S), then F H 5 ^ 0 
for 5 is essential in QT(S). But then, QT(R)(Yr\ S) C Y, so QT(S) is a simple 
QT(R)-module. The rest of the proof is clear. 

In case r has property T we obtain: 

COROLLARY. / / r has property T and 0-*R-^QT(R) is exact, then the 
Jacobson radical of QT(R) = Qr(R) (Pi {annihilators in R of supporting 
R-modules)). 

Proof. In this case each left ideal of QT(R) is generated by a left ideal of R 
and each supporting module is simply supporting. A simple inclusion argument 
gives the desired result. 

Connected with the Jacobson radical and Q.F. rings are the classes of 
uniserial and generalized uniserial rings. 

THEOREM 8. Let 0 -^ R —» QT(R) be exact. QT(R) is uniserial if and only if 
T has property T and there exist a unique nilpotent left ideal X of R such that 
R/X is a supporting module and Q^xyx**1) ^ QT(R/X) for all i ^ 0. 

Proof. If QT(R) is uniserial, then QT(R) is a Q.F. ring; so r has property T. 
Let N denote the Jacobson radial of QT(R). Let X = R Pi N. Then R/X is 
supporting and X is nilpotent. Also, QX{ = Ni for all i, for N is a two-sided 
ideal in QT(R). It follows that Q^X'/X^1) = QT(R/X) for all i. 

Conversely, if r has property T, then QT(R)X is the unique maximal left 
ideal of QT(R); hence it must be a two-sided ideal of QT(R) and also 
QT(R)XQT(R)X = QT(R)X2. From this we see that QT(R)X is nilpotent and 
the Jacobson radical of QT(R). Moreover, since QriX'/X^1) = QT(R/X) is 
simple, QT(R) has a composition series, which ensures QT(R) is a uniserial 
ring. 

THEOREM 9. If 0 —» R —> QT(R) is exact and T has property T, then QT(R) is 
generalized uniserial if and only if each indecomposable direct summand of R 
has a unique submodule X such that X is nilpotent and Xi/Xi+1 is a support 
module for every r. 

Proof. The proof follows from a similar argument to that used in Theorem 7. 

The Baer lower radical is also the prime radical of a ring and is given by 
the intersection of the annihilators of prime modules. A module M is prime 
if the annihilator of any non-zero submodule N is the same as the annihilator 
of M. The next lemma tells where the prime modules over QT(R) arise. 

LEMMA 6. If T has property T and T(M) = 0, then QT(M) is prime if and only 
if M is prime. 

Proof. Let lR(x) = {r\rx = 0} for x 6 M, an R module. Suppose M is a 
prime i?-module, r has property T and r(M) = 0. Let N be a submodule of M. 
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Then we claim that lR(QN) = lR(QM) if and only if lQ(QN) = lQ(QM). To 
see this, let r Ç lR(QN) and r g lR(QM). Then there exists rqm ^ 0 and 
rqN = 0. For some U G ^ \ , Urq Ç R and f/r^w Pi Jfcf ^ 0. But, 
£/r<Z ^ IR(N) and so [/rg C lR(M), a contradiction. This, of course, says that 
QM = Q(M) is a prime Ç-module. 

Conversely, if r has property T, M is a prime Q-module and iV is an R-
submodule of M, lR(N) = lR(M), and lB(QN) C lR(N). If the containment 
is proper, then for some r Ç R, rN = 0 and rqn ^ 0 for some q £ Q and 
n € N. But there is a £/G«fT such that Urq C i? and Z7rgiV H TV ̂  0, 
which is a contradiction. 

THEOREM 10. 7/ r &as property T, the Baer lower radical of QT{R) = QT{R) 

(P\ {annihilators in R of prime T-torsion free R-modules}). 

Proof. A simple inclusion argument using Lemma 6 yields the desired proof. 

Remark. The condition that 0 —> R —* QT(R) is exact in the theorems can 
be dropped with the obvious changes so that we work over R/T(R) in effect. 
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