Invariant measures for the flow of a first order partial differential equation

R. RUDNICKI

Institute of Mathematics, Silesian University 40-007 Katowice, Poland

(Received 4 May 1984)

Abstract. We prove that the dynamical systems generated by first order partial differential equations are K-flows and chaotic in the sense of Auslander & Yorke.

0. Introduction

The purpose of this paper is to apply a Brownian motion to the problem of the existence of invariant measures for the dynamical systems generated by some first order partial differential equations.

§ 1 contains basic notation and definitions. In § 2 we define a flow describing the evolution of solutions of partial differential equations. In the last section we give a construction of an invariant measure for such a flow. This measure is positive on the open sets and non-trivial. The corresponding system is a K-flow and the flow is chaotic in the sense of Auslander & Yorke [1]. These theorems generalize the results of Lasota [5], [6], Brunovský and Komornik [2], [3] and Dawidowicz [4].

1. Preliminaries

Let X be a topological Hausdorff space and let $S_t: X \to X$, $t \in \mathbb{R}$, be a group of transformations. We call the group $\{S_t\}$ a flow if the mapping

$$\mathbb{R} \times X \ni (t, x) \mapsto S_t x \in X$$

is continuous in (t, x). By a measure on X we mean any probabilistic measure μ defined on the σ -algebra $\mathscr{B}(X)$ of Borel subsets of X. A measure μ is called *non-trivial* with respect to $\{S_t\}$, if $\mu(P) = 0$, where P denotes the set of all periodic points of $\{S_t\}$. Let X be a linear topological space, and let μ be a measure on X. We will say that μ is a *Gaussian measure* if each continuous linear functional on X has a Gaussian distribution.

Denote by $C^{n}(U, V)$ the space of *n*-times continuously differentiable functions defined on U with values in V, where U and V are non-empty intervals. Assume that $C^{n}(U, V)$ is equipped with the topology of uniform convergence (with derivatives of order $\leq n$) on compact subsets.

2. Flow

Consider the initial value problem

$$u_t + a(x)u_x = b(x, u) \quad \text{for } (t, x) \in D,$$

$$u(0, x) = v(x) \quad \text{for } x \in U_1.$$
 (E)

In this section and throughout the paper we shall assume that a and b are given functions satisfying

- (1°) $a \in C^r(\bar{U}_1, \mathbb{R})$ for $r \ge 1$;
- (2°) $a(x) \neq 0$ for $x \in U_1$ and a(x) = 0 for $x \in \partial U_1$;
- (3°) there are constants K and L such that

$$|a(x)| \leq L + K|x|$$
 for $x \in U_1$;

- (4°) $b \in C'(U_1 \times \overline{U}_2, \mathbb{R}),$
- (5°) b(x, u) = 0 for $(x, u) \in U_1 \times \partial U_2$,
- (6°) there are continuous functions M(x) and N(x) such that

$$|b(x, u)| \le M(x) + N(x)|u|$$
 for $(x, u) \in U_1 \times U_2$.

Here U_1 and U_2 are open intervals (bounded or not) of the real line, $D = \mathbb{R} \times U_1$, \overline{U}_i denotes the closure of U_i in \mathbb{R} , and $\partial U_i = \overline{U}_i \setminus U_i$. These conditions will not be repeated in the statements of the theorems.

We denote by $\pi_i s$ the unique solution of the equation

$$x'(t) = a(x(t))$$

with the initial condition x(0) = s, $s \in U_1$. By $\psi(t, s, p)$ we denote the solution of the equation

$$y'(t) = b(\pi_t s, y(t))$$

with the initial condition $y(0) = p, p \in U_1$. From $(1^\circ)-(3^\circ)$ it follows that π is defined for all $(t, s) \in \mathbb{R} \times U_1$ and possesses *r*th-order continuous partial derivatives. For given $x_0 \in U_1$ the function $t \mapsto \pi_t x_0$ is a C'-diffeomorphism of \mathbb{R} onto U_1 . From $(1^\circ)-(6^\circ)$ it follows that ψ is a C'-mapping of $\mathbb{R} \times U_1 \times U_2$ into U_2 . The functions π and ψ satisfy the following equalities

$$\pi_{s+t} x = \pi_s(\pi_t x), \tag{2.1}$$

$$\psi(s+t, x, y) = \psi(s, \pi_t x, \psi(t, x, y))$$
(2.2)

for each s, $t \in \mathbb{R}$, $x \in U_1$ and $y \in U_2$. Let v be a continuously differentiable function from U_1 into U_2 . Then there exists exactly one solution of (E), namely

$$u(t, x) = \psi(t, \pi_{-t}x, v(\pi_{-t}x)).$$
(2.3)

Let v be a continuous function from U_1 into U_2 . Then u(t, x) given by the formula (2.3) will be called a generalized solution of (E).

For an integer $n, 0 \le n \le r$, we set $X = C^n(U_1, U_2)$ and $Y = C^n(\mathbb{R}, \mathbb{R})$. We shall consider solutions of equation (E) as the trajectories of the flow $\{S_i\}_{i \in \mathbb{R}}$ defined on X by the formula

$$(S_t v)(x) = u(t, x) = \psi(t, \pi_{-t} x, v(\pi_{-t} x)).$$
(2.4)

We now define a mapping $T: \mathbb{R} \times Y \rightarrow Y$ by

$$(T_t v)(s) = v(s-t).$$

It is clear that $\{T_t\}_{t \in \mathbb{R}}$ is a flow on Y.

THEOREM 1. There exists a homeomorphism Q of X onto Y such that $Q \circ S_t = T_t \circ Q$ for each $t \in \mathbb{R}$.

438

In order to prove this theorem we need the following lemma.

LEMMA 2.1. Let V_1 , V_2 , W_1 and W_2 be open intervals of \mathbb{R} . Assume that $f: W_1 \times V_2 \rightarrow W_2$ and $g: W_1 \rightarrow V_1$ are C^n -maps, $n \ge 0$. Then the map $P: C^n(V_1, V_2) \rightarrow C^n(W_1, W_2)$ defined by P(v)(x) = f(x, v(g(x))) is continuous.

The proof of this lemma is simple, so it is omitted.

Proof of theorem 1. Given a point $x_0 \in U_1$. The map $t \to \pi_t x_0$ is a C^n -diffeomorphism of \mathbb{R} onto U_1 . Let $h: U_1 \to \mathbb{R}$ be the inverse of πx_0 . Then h is a C^n -diffeomorphism of \mathbb{R} onto U_1 . Let p be a C^n -diffeomorphism of \mathbb{R} onto U_2 . Define the maps $Q: X \to Y$ and $N: Y \to X$ by

$$(Qv)(s) = p^{-1}(\psi(-s, \pi_s x_0, v(\pi_s x_0))) = p^{-1}((S_{-s}v)(x_0))$$

and

$$(Nv)(x) = \psi(h(x), x_0, p(v(h(x)))).$$

From lemma 2.1 the maps Q and N are continuous. Using (2.1) and (2.2) it is easy to verify that $N \circ Q = Q \circ N = I$. Thus Q is a homeomorphism of X onto Y. We verify that $Q \circ S_t = T_t \circ Q$,

$$(Q \circ S_t)(v)(x) = p^{-1}((S_{-x} \circ S_t v)(x_0)) = (Qv)(x-t) = (T_t \circ Q)(v)(x).$$

COROLLARY 1. The set of all periodic points of $\{S_i\}$ is dense in X.

Remark 1. From the definition of Q it follows that for every $s \in \mathbb{R}$ we have (Qv)(s) = (Qw)(s) iff $v(\pi_s x_0) = w(\pi_s x_0)$.

Examples. (1) Let b(x, u) = f(x) + g(x)u and $U_2 = \mathbb{R}$. Then $Qv = v_0 + Lv$, where L is a linear isomorphism from $C^n(U_1, \mathbb{R})$ onto $C^n(\mathbb{R}, \mathbb{R})$ and $v_0 \in C^n(\mathbb{R}, \mathbb{R})$.

(2) Let a(x) = x, $b(x, u) = \lambda u(1-u)$, $U_1 = \mathbb{R}^+$ and $U_2 = (0, 1)$. We take $x_0 = 1$ and $p(u) = e^u/(1+e^u)$. Then

$$(Qv)(s) = \ln v(e^s) - \ln [e^{\lambda s} - e^{\lambda s}v(e^s)].$$

3. Measure on the space $C^{n}(\mathbb{R},\mathbb{R})$

Let $w_t, 0 \le t < \infty$ be a Brownian motion defined on a probability space (Ω, Σ, P) . We may assume that the sample functions of w_t are continuous. Set $\xi_x^0 = e^{-x} w_{e^{2x}}$ for $x \in \mathbb{R}$. Then ξ_x^0 is a stationary Gaussian Markov process with mean value $E\xi_x^0 = 0$ and correlation function $E\xi_x^0\xi_{x+h}^0 = e^{-|h|}$. The sample functions of ξ_x^0 are continuous. The process ξ_x^0 is not differentiable in the mean. From the law of the iterated logarithm it follows that

$$\lim_{|x| \to \infty} \frac{\left| \xi_x^0 \right|}{|x|} = 0 \tag{3.1}$$

with probability 1. We assume that all sample functions of ξ_x^0 satisfy (3.1). Denote by *H* the closed linear subspace of $L^2(\Omega)$ spanned by all variables ξ_x^0 , $x \in \mathbb{R}$. The joint distribution of the random functions $\zeta_1, \ldots, \zeta_n \in H$ is Gaussian. Denote by \mathscr{F}_T the σ -algebra of events generated by the process w_i on the set *T*.

R. Rudnicki

Starting from the random process ξ_x^0 we can define, by induction, some new process. Set for $k \ge 0$

$$\xi_x^{k+1} = \int_{-\infty}^x e^{s-x} \xi_s^k \, ds. \tag{3.2}$$

By (3.1) the integral (3.2) exists for every $\omega \in \Omega$ and consequently the sample functions of ξ_x^n possess *n*th-order continuous derivatives. The integral (3.2) exists also in the mean and consequently ξ_x^n is a stationary Gaussian process. Write $\eta_x = \xi_x^n$. Then for every $\omega \in \Omega$ we have

$$\sum_{k=0}^{n} \binom{n}{k} \eta_{x}^{(k)} = \xi_{x}^{0}.$$
(3.3)

The process ξ_x^n is not (n+1)-times differentiable in the mean.

LEMMA 3.1. Let $\eta_x = \xi_x^n$, $n \ge 1$. The joint distribution of $(\eta_x, \eta'_x, \dots, \eta_x^{(n-1)}, \xi_x^0)$ is non-degenerate for every x.

Proof. The distribution of $(\eta_x, \eta'_x, \dots, \xi^0_x)$ is Gaussian and it is independent of x. Assume that it is degenerate. Then for every x

$$a_0\eta_x + a_1\eta'_x + \dots + a_{n-1}\eta_x^{(n-1)} + a_n\xi_x^0 = 0$$
 a.e. (3.4)

with at least one $a_k \neq 0$. Set $p = \max\{k: a_k \neq 0\}$. The process $a_0\eta_x + a_1\eta'_x + \cdots + a_n\xi_x^0$ is not (n+1-p)-times differentiable. This contradicts the equality (3.4).

Set $Y = C^n(\mathbb{R}, \mathbb{R})$ and $\eta_x = \xi_x^n$, $n \ge 0$. Let $\mathscr{B}(Y)$ be the σ -algebra of Borel subsets of Y. The σ -algebra $\mathscr{B}(Y)$ is generated by the sets of the form $\{\varphi \in Y : (\varphi(x), \ldots, \varphi^{(n)}(x)) \in B\}$, where $x \in \mathbb{R}$ and B is a Borel subset of \mathbb{R}^{n+1} . Thus for every $A \in \mathscr{B}(Y)$ we have $\{\eta \in A\} \in \Sigma$. We obtain a probability measure μ on $\mathscr{B}(Y)$ by setting $\mu(A) = P(\eta \in A)$ for all $A \in \mathscr{B}(Y)$.

Now we shall investigate the properties of μ . The following known property of Wiener measure will be used in the next lemma:

(3.5) If $\varphi:[0, a] \to \mathbb{R}$ is a continuous function and $\varphi(0) = 0$, then for every $\varepsilon > 0$ we have

$$P(|w_t - \varphi(t)| < \varepsilon \quad \text{for } t \in [0, a]) > 0.$$

LEMMA 3.2. $\mu(U) > 0$ for each non-empty open set U.

Proof. If n = 0, then the proof follows immediately from (3.5). We assume $n \ge 1$. We may assume, without loss of generality, that U is of the form

 $U = \{\varphi \in C^n(\mathbb{R}, \mathbb{R}) : |\varphi^{(k)}(x) - \varphi_0^{(k)}(x)| < \varepsilon \quad \text{for } x \in [a, b] \text{ and } 0 \le k \le n\},\$

where $\varphi_0 \in C^n(\mathbb{R}, \mathbb{R})$, $\varepsilon > 0$ and $a, b \in \mathbb{R}$. According to the definition of μ we have $\mu(U) = P(A)$, where

$$A = \{ \omega \in \Omega \colon |\eta_x^{(k)} - \varphi_0^{(k)}(x)| < \varepsilon \quad \text{for } x \in [a, b] \text{ and } 0 \le k \le n \}.$$

Let ψ_0 be a continuous function satisfying the following equation

$$\sum_{k=0}^{n} {n \choose k} \varphi_{0}^{(k)}(x) = e^{-x} \psi_{0}(e^{2x}).$$

Set $\alpha = e^{2a}$ and $\beta = e^{2b}$. By (3.3) and from the continuous dependence on the initial values and the parameter it follows that there exists $\delta > 0$ such that $A_{\delta} \cap B_{\delta} \subset A$,

440

where the sets A_{δ} and B_{δ} are given by formulae

$$A_{\delta} = \{ \omega \in \Omega : |\eta_a^{(k)} - \varphi_0^{(k)}(a)| < \delta \quad \text{for } 0 \le k \le n-1 \},$$

$$B_{\delta} = \{ \omega \in \Omega : |w_t - \psi_0(t)| < \delta \quad \text{for } t \in [\alpha, \beta] \}.$$

It is easy to verify that the random variables $\eta_a^{(k)}$ are $\mathscr{F}_{\leq \alpha}$ -measurable and, therefore, $A_{\delta} \in \mathscr{F}_{\leq \alpha}$. We also have $B_{\delta} \in \mathscr{F}_{\geq \alpha}$. By lemma 3.1 the joint distribution of $(\eta_a, \ldots, \eta_a^{(n-1)}, \xi_a^0)$ is Gaussian and non-degenerate. Consequently the joint distribution of $(\eta_a, \ldots, \eta_a^{(n-1)}, w_a)$ is also non-degenerate. Thus we have $P(A|\mathscr{F}_{=\alpha}) > 0$ almost everywhere on B_{δ} . According to (3.5) we have $P(B_{\delta}) > 0$. From the Markov property of Brownian motion it follows that

$$P(A_{\delta} \cap B_{\delta}) = \int_{B_{\delta}} P(A_{\delta} | \mathscr{F}_{=\alpha}) dP > 0,$$

which completes the proof.

LEMMA 3.3. The measure μ is invariant under $\{T_i\}$.

Proof. The invariance of μ follows directly from the stationarity of the process $(\eta_x, \eta'_x, \ldots, \eta^{(n)}_x)$.

LEMMA 3.4. The flow $\{T_i\}$ on $(Y, \mathcal{B}(Y), \mu)$ is a K-flow.

Proof. Let \mathcal{B}_0 be the smallest σ -algebra containing the sets of the form

$$A = \{\varphi \in C^n(\mathbb{R}, \mathbb{R}) \colon (\varphi(x), \dots, \varphi^{(n)}(x)) \in B\},\tag{3.6}$$

where $x \le 0$ and *B* is a Borel subset of \mathbb{R}^{n+1} . The σ -algebra $T_t\mathcal{B}_0$ is the smallest σ -algebra containing the sets of the form (3.6) with $x \le t$. Thus $\mathcal{B}_0 \subset T_t\mathcal{B}_0$ for t > 0, and $\mathcal{B}(Y)$ is the smallest σ -algebra containing all the σ -algebras $T_t\mathcal{B}_0$ for $t \in \mathbb{R}$. It remains to verify that the σ -algebra $\bigcap_{t \in \mathbb{R}} T_t\mathcal{B}_0$ contains only sets of measure zero or one. Let $A \in \bigcap_t T_t\mathcal{B}_0$. Now we define E by $E = \{\omega \in \Omega: \eta.(\omega) \in A\}$. Then $\mu(A) = P(E)$ and $E \in \bigcap_t \mathcal{A}_{\le t}$, where $\mathcal{A}_{\le t}$ is the smallest σ -algebra generated by the random variables $\eta_x, x \le t$. Since $\mathcal{A}_{\le t} \subset \mathcal{F}_{\le e^{2t}}$, this implies $E \in \bigcap_{t>0} \mathcal{F}_{\le t}$. Thus, according to the Blumenthal's zero-or-one law, P(E) is one or zero. This completes the proof.

LEMMA 3.5. μ is a Gaussian measure.

Proof. The map L defined by $L(\varphi) = (\varphi^{(n)}, \varphi(0), \varphi'(0), \ldots, \varphi^{(n-1)}(0))$ is a linear isomorphism between $C^n(\mathbb{R}, \mathbb{R})$ and $C^0(\mathbb{R}, \mathbb{R}) \times \mathbb{R}^n$. From this, and by the Riesz representation theorem every continuous linear functional defined on $C^n(\mathbb{R}, \mathbb{R})$ is of the form

$$f(\varphi) = \int_a^b \varphi^{(n)}(x) dg(x) + c_0 \varphi(a) + \cdots + c_{n-1} \varphi^{(n-1)}(a),$$

where g is a function of bounded variation defined on some interval [a, b], and $\{c_0, \ldots, c_{n-1}\}$ is a sequence of real numbers. From the definition of μ it follows that f has the same distribution as the random variable ζ defined by

$$\zeta = \int_{a}^{b} \eta_{x}^{(n)} dg(x) + c_{0}\eta_{a} + \cdots + c_{n-1}\eta_{a}^{(n-1)}.$$

The random variable ζ belongs to *H*, thus ζ has a Gaussian distribution. This completes the proof.

LEMMA 3.6. The measure μ is non-trivial.

Proof. We denote by P(t) the set of all periodic points of $\{T_i\}$ with period t (P(0) denotes the set of all stationary points of $\{T_i\}$). Let $P(\leq t)$ be the set of all periodic points with period $s \in (0, t]$. Then P(t) and $P(\leq t)$ are closed invariant subsets of Y. Suppose that $\mu(P) > 0$, where P is the set of all periodic points of $\{T_i\}$. Then $\mu(P(\leq t)) > 0$ for some t > 0. By ergodicity of $\{T_i\}$ it follows that $\mu(P(\leq t)) = 1$ if $\mu(P(\leq t)) \neq 0$. Let $t_0 = \inf\{t > 0: \mu(P(\leq t)) = 1\}$. Then $\mu(P(t_0)) = 1$. We may assume, without loss of generality, that $t_0 > 0$. Let A be a Borel subset of Y such that $0 < \mu(A) < 1$. Then the set $A \cap P(t_0)$ is invariant under T_{t_0} and $0 < \mu(A \cap P(t_0)) < 1$. This contradicts the total ergodicity of μ .

We may summarize results of this section as follows.

THEOREM 2. For every $n \ge 0$ there exists a probability measure μ defined on the σ -algebra of Borel subsets of $C^n(\mathbb{R}, \mathbb{R})$ satisfying the following conditions:

- (a) μ is invariant under $\{T_t\}$;
- (b) $\mu(U) > 0$ for each non-empty open set U;
- (c) $\{T_t\}$ is a K-flow on $(C^n(\mathbb{R},\mathbb{R}), \mathscr{B}(C^n(\mathbb{R},\mathbb{R})), \mu);$
- (d) μ is non-trivial;
- (e) μ is a Gaussian measure.

THEOREM 3. Let (X, S_i) be the flow defined in § 2. Then there exists a probability measure m defined on $\mathscr{B}(X)$ such that $(X, \mathscr{B}(X), m, S_i)$ satisfies the conditions (a)-(d) of theorem 2. Moreover, if b(x, u) is of the form b(x, u) = f(x) + g(x)u and $U_2 = \mathbb{R}$, then m is a Gaussian measure.

Proof. According to theorem 1 there exists a homeomorphism Q between X and $C^{n}(\mathbb{R}, \mathbb{R})$ such that $Q \circ S_{t} = T_{t} \circ Q$. Thus, we can define a measure m on $\mathscr{B}(X)$ by $m(A) = \mu(Q(A))$. The conditions (a), (b), (c) and (d) are a direct consequence of theorem 2. If b(x, u) = f(x) + g(x)u and $U_{2} = \mathbb{R}$, then Q is of the form $Qv = Lv + v_{0}$, where L is a linear isomorphism from X onto $C^{n}(\mathbb{R}, \mathbb{R})$. Thus, according to theorem 2(e), the measure m is Gaussian.

COROLLARY 2 (chaos). The flow $\{S_t\}$ satisfies the following two conditions:

- (a) every point $v \in X$ is unstable;
- (b) there exists $v \in X$ such that the trajectory of v is dense in X.

Remark 2. The construction of the measure m given in the proof of theorem 3 may be repeated as well replacing ξ_x^0 by $\xi_{\lambda x}^0$ with arbitrary $\lambda > 0$. It is interesting that the measures m_{λ_1} and m_{λ_2} corresponding to different λ_1 and λ_2 are mutually singular.

Remark 3. Let $\zeta_x, x \in U_1$, be the process given by the formula $\zeta_{-1}(\omega) = Q^{-1}\xi_{-1}^n(\omega)$. Then $m(A) = P(\zeta \in A)$ for each Borel subset A of X. From remark 1 it follows that $\zeta_x, x \in U_1$ is a Markov process for n = 0.

Invariant measures

REFERENCES

- [1] J. Auslander & J. Yorke. Interval maps, factors of maps and chaos. Tôhoku Math. J. II. Ser., 32 (1980), 177-188.
- [2] P. Brunovský. Notes on chaos in the cell population partial differential equation. Nonlinear Analysis 7 (1983), 167-176.
- [3] P. Brunovský & J. Komornik. Ergodicity and exactness of the shift on C[0,∞) and the semiflow of a first order partial differential equation. To appear.
- [4] A. L. Dawidowicz. On existence of invariant measure for the dynamical system generated by partial differential equation. Ann. Polon. Math. XXXIX (1983), 129-137.
- [5] A. Lasota. Invariant measures and a linear model of turbulence. Rend. Sem. Mat. Univ. Padova 61 (1979), 40-48.
- [6] A. Lasota. Stable and chaotic solutions of a first order partial differential equation. Nonlinear Analysis 5 (1981), 1181-1193.