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ABSTRACT. Seismic reflection techniques are a powerful way to probe physical properties of subglacial
strata. Inversion of seismic data for physical properties may be hampered, however, by lack of
knowledge of the source amplitude as well as lack of knowledge of the compressional and shear
attenuation in the ice. New methods are described to measure the source signature that require no a
priori knowledge of the ice attenuation profile. Another new method is described to obtain the angular
dependence of the subglacial bed reflection coefficient that is relatively insensitive to knowledge of the
ice attenuation. Finally, a correction is provided to a long-standing error in the literature regarding
measurement of the bed normal incidence reflection coefficient.

1. INTRODUCTION

The mechanisms for rapid basal motion of glaciers and ice
streams are poorly understood, but vitally important to better
quantify the mass balance of Antarctica and Greenland.
Internal deformation of the ice is strongly dependent on the
crystal orientation fabric within the ice, with strongly
oriented ice relatively softer in shear. The presence of basal
water in films or in massive units is important both for
dynamic glaciology and for locating and characterizing
subglacial lakes that might contain extremophilic life.

Seismic wave speeds in ice and in the subglacial
sediments and rocks depend on the bulk moduli, the
strength of anisotropy and on the densities of the materials.
Shear wave velocities are extremely sensitive to the shear
modulus and to fluid content, which is related to porosity.
Seismic reflection profiling can be used to map gross
subglacial structure and to determine properties of the
bed, including till porosities (Blankenship and others, 1987).
Seismic reflection amplitudes are sensitive to boundaries
where acoustic impedance (defined as the product of
density and seismic velocity) changes, and to the roughness
of the boundary. These parameters, which can be efficiently
determined by seismic profiling — rock and sediment type
and roughness at the subglacial boundary; fluid presence,
fluid layer thickness and porosity of the sediments; thickness
of the subglacial sedimentary layer — are all crucial
parameters in understanding basal sliding, subglacial till
deformation, internal deformation and subglacial hydrology.
Indeed, aside from drilling to the bed, which is extremely
expensive, seismic imaging is the only way to determine
these properties.

The polar glaciological community has successfully
exploited travel-time variability at non-normal incidence
(Bentley and Chang 1971; Kapitsa and others, 1996) as well
as normal-incidence reflection amplitude of the basal
reflector to gather considerable information about the
properties of that interface in various settings (Blankenship
and others, 1987; Smith, 1997; Anandakrishnan and others,
1998). There have also been attempts to exploit the
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non-normal-incidence reflection amplitude to determine
subglacial properties (Nolan and Echelmeyer 1999; Ananda-
krishnan 2003).

However, several challenges exist that tend to make
quantitative estimates of the properties at the subglacial
boundary difficult. One challenge is that the compressional
and shear attenuation in the ice may be highly variable and
poorly constrained. Another challenge is that the source
amplitude is often unknown. Both of these limit the ability to
quantify the bed reflection coefficient, or in other words
lead to bed reflection coefficients with large uncertainties.
The large uncertainties have significant implications for
understanding the glacial environment and glacial dynamics
since uncertainties can preclude distinguishing, say, un-
consolidated sediment from crystalline rock or preclude
distinguishing deforming from non-deforming sediments.

The objective of this paper is to address both causes of
uncertainties and provide a method for obtaining an
estimate of the bed reflection coefficient in situations where
lack of knowledge of the ice attenuation and/or the source
signature would otherwise lead to significant uncertainties.
Though the techniques presented here are general, calcula-
tions are provided for glacial environments to demonstrate
the methods, inasmuch as seismic reflection data analysis in
glacial environments is particularly prone to uncertainties in
attenuation, and source amplitudes (typically explosives) are
also difficult to estimate.

After a brief review of a standard technique for obtaining
the bed reflection coefficient (section 2), methods are
proposed in section 3 for obtaining source amplitude
independent of knowledge of the attenuation. In section 4,
another method is proposed for obtaining the angular
dependence of the reflection coefficient or the relative
amplitude vs angle (rAVA). This method requires an estimate
of the medium attenuation, but is substantially less sensitive
to attenuation uncertainties than other techniques.

Consider a seismic reflection experiment (see Fig. 1) with
source and receiver placed on the surface with the object of
estimating the properties of the horizon labeled ‘bed’. The
material properties between the source-receiver and the bed
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bed

Fig. 1. Seismic reflection experiment geometry. In the text, the
origin of the coordinate system is placed at the location of the
source (x).

can be variable in the z dimension. With sufficient signal-to-
noise ratio, both the primary reflection and the first multiple
are recorded at receiver (57) with amplitudes A; and A,
respectively, given by

A] = AO'W R(01b)eiad1
Az = Ao"}/z R2 (sz)e_“dz (‘])

di~ /P2 +(2iH)?% i=1,24%,

where Aq is the source amplitude relative to a reference
range do=1m, H is the thickness of the intervening medium,
d is the distance along the path, the ~; include spreading
losses and the effect of the interface on the received
amplitude (e.g. for a receiver on a free surface, at normal
incidence the received amplitude is double that of a receiver
far from the boundary), r is source-receiver offset, R is the
reflection coefficient and « is the attenuation. Note that the
angles 6;, are measured between the interface and the ray
(‘grazing angle’) rather than the normal and the ray
(‘incidence angle’).

The assumptions are as follows, many of which have been
made solely for clarity in presentation. Thickness H is
assumed constant over the area illuminated at the bed, and
bed roughness is assumed small, which can be formally

stated as 2(kosin6)* < 1, where k is the wavenumber and o
is the root-mean-square (rms) bed roughness. It is also
assumed that the reflection coefficient at the upper bound-
ary is —1 (though including the exact reflection coefficient at
the upper interface is straightforward) and that layering in
the medium has a negligible impact on the received
amplitudes (adding layers does not change the conclusions,
only the mathematical complexity). Also, the distance along
the ray path has been approximated here by straight-line rays
which may be adequate over some angular range, but could
easily be computed if the velocity profile is estimated.

Itis clear that if observations for only a single bounce (A;)
are available, then there are three unknowns near normal
incidence: source amplitude, Ao, the bed reflection co-
efficient, R, and the ice attenuation, « (it is assumed that the
spreading loss and thickness, H, are known or can be
estimated reasonably well). By combining the first and
second bounce amplitudes, a common practice is to reduce
the number of unknowns to two. This approach is briefly
described in section 2. In sections 3 and 4, a (fortuitous)
opportunity is exploited to eliminate two unknowns in the
above equations.
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2. BED REFLECTION AS A FUNCTION OF R, o

A number of researchers (e.g. Smith, 2007) have used the
ratio of the amplitudes to make inferences about properties
of the subglacial bed. Taking the ratio of the amplitudes of
the first and second bed reflections, the unknown source
amplitude, Ay, is eliminated by recognizing that near normal
incidence the reflection coefficient is nearly constant with
angle:

— &ﬂ o(dy—dh)
R(Day) = Gtk e, @)
In the limit of grazing angle approaching 7/2, v4/v, =2 since
the spreading loss due to distance is simply a factor of 2 and
the ratio of other factors (ray tube cross-section and interface
effects) is unity. Thus, the normal incidence reflection
coefficient becomes

R(m/2) =2 % e?oH (3)
and, expressing this in terms of energy,
2 A% 4aH
R*(m/2) = 4? e, (4)
1

Note that a number of papers (e.g. Roéthlisberger, 1972;
Smith, 1997, 2007; Vaughan and others, 2003) in the
glaciology literature have a similar expression, but differing
by a factor of 1/2 in the exponent (R? « e?*). The factor of
1/2 originates from Réthlisberger (see his equation (73)) who
defined an ‘attenuation constant’ relative to energy rather
than amplitude and hence the factor 1/2. Attenuation,
however, is fundamentally and very widely defined relative
to amplitude, not energy (e.g. Sheriff and Geldart, 1995).
The confusion from different quantities with identical units
leads the latter papers to erroneously use the amplitude
attenuation coefficient in an expression derived from energy
considerations. This led to underestimates of the true
reflection coefficient and hence estimates of impedance of
the subglacial bed.

The magnitude of the errors depends on the ice thickness
and attenuation of the particular case. As a specific example,
consider a case with H~2200m and a=0.21x10>m™'
(akin to Rutford Ice Stream, West Antarctica; Smith, 1997).
In this case, the reflection coefficient was underestimated by
a factor of 0.63 relative to the true reflection coefficient
given by Equation (4). Thus, the largest reflection coefficient
in that study should have been |R| ~ 0.35 instead of the
reported |R| ~0.22. The errors in |R| lead to errors in
estimating the acoustic impedance of the bed. The error in
bed impedance is a function of |R|, with errors increasing
with increasing |R|: for example, for |R|=0.1, the bed
impedance was underestimated by a factor of 0.93; for
|[R|=0.3, by a factor of 0.79; for |R| = 0.5, by a factor of 0.64.

Of particular relevance to this paper is the fact that the
uncertainties (in |R| and bed impedance) are much larger
than were predicted. For example, a normal incidence
reflection coefficient of 0.2 would actually have
lower/upper bound uncertainties of 0.11 and 0.6 (using
the same attenuation uncertainties as used by Smith). The
resulting acoustic impedance, 5.2 x 10°kgm™s™" then has
lower/upper bound uncertainties of 4.3 x10° and
13.9 x 10°kgms™', resulting in a wide range of possible
subglacial environments (the true uncertainties in this case
are nearly four times larger than reported). The large
uncertainties mean, for example, that it can be much more
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difficult to determine with reasonable confidence whether
the bed is deforming or non-deforming.

The main point of this section is that a significant
limitation of this method (Equation (4)) is the large
uncertainty associated with the unknown (and highly
variable) attenuation. Attenuation is a strong function of
temperature, which is generally poorly known in glaciers.
These large uncertainties lead to difficulty in determining the
bed properties and were the motivation for the new
techniques described in the following sections.

3. SOURCE CALIBRATION
3.1. Multiple bounce method

Generally, with two equations and three unknowns, one of
the unknowns can always be eliminated. However, in the
case of Equation (1), one can exploit the exponential factor
to eliminate two of the unknowns by taking the ratio

At _ ol@(&b)ﬁea(drzm)/ (5)
A R2(01) 72

and, in the limit of 6 approaching n/2, d,=2d,=4H, a
simple expression for the source amplitude is obtained,
A2 1
Ao Ay 201 (6)

It is important to note that this expression requires no
knowledge of either the attenuation or the bed reflection
coefficient. Thus, it is an extremely useful way to measure
source characteristics and quantify shot-to-shot variability.
In an isovelocity medium bounded by a free surface,
1/2’}/1 = H/2d0

At angles close to normal incidence, the source ampli-
tude can be obtained by

A V2
Ap = 12 ga2di=db) 7
0 A7 @)

The accuracy of Equation (7) away from normal incidence
depends upon the degree to which the reflection coefficient
differs between angles 6;, and 6,,. In many cases it is
expected that Equation (7) should be valid in the range
within approximately 10° of normal incidence.

In addition to being a convenient expression for esti-
mating the source amplitude, Equation (7) also has the virtue
that it is relatively insensitive to the uncertainties in the
attenuation. Note that the quantity 2d; —d, in the exponent
is very small and is identically zero at normal incidence. At
angles near normal incidence, the exponential
is well approximated (via Taylor series expansion) by
exp(3ar’/8H) and in many instances will be nearly unity.

This method provides source calibration only for
source angles close to normal incidence, which could be
problematic if the source beam pattern were strongly
asymmetric. However, in polar environments, the source is
often initiated in firn which has a strong positive seismic
velocity gradient, leading to near-vertical ray paths for bed-
reflected arrivals. Thus, even in an experiment with a source
exhibiting a strong angular dependence, the above tech-
nique may suffice.

Finally it is noted that if the source has a shear wave
component, the source shear amplitude could also be
obtained using Equations (6) and (7) with the amplitudes of
the first and second shear multiple.
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bed

Fig. 2. Seismic reflection experiment geometry and ray paths for
direct path experiment.

3.2. Direct path method

Here we obtain an expression for the source amplitude using
the same strategy as in section 3.1 but using direct path
measurements instead of bed reflections. Consider the
geometry in Figure 2, where we assume paths that do not
interact with the bed boundary. The amplitudes for the direct
path are

B = Apyie ¥, (8)

where s is path length. Now the uncertainties of the
unknown attenuation can be minimized by taking a pair of
arrivals where the ratio of the ray-path distances s,/s; =2. If it
can be assumed that the depth-averaged attenuation is
approximately the same for the two paths (which would be
true, for example, if both paths sampled all or most of the
firn layer) then the source amplitude is simply
312 2

Ao By 9)
So whilst knowledge of the velocity profile is required, there
is no requirement for knowledge of the attenuation to obtain
source amplitude.

4. BED REFLECTION COEFFICIENT VS ANGLE

This section is concerned with estimating the angular
dependence of the reflection coefficient (AVA) which
generally contains useful information about the bed
properties.

4.1. Direct estimation of the reflection coefficient,
AVA

Given a dataset with one and two bounces from the bed
near normal incidence, one could use Equation (6) to
estimate the source amplitude (and its shot-to-shot vari-
ability) and then rearrange the A; from Equation (1) to obtain
R(O11,):
AT

R(61p) Ao e (10)
This approach is comparable in some ways to Equation (3),
but it has the important advantage of being able to separate
out source variability from bed variability. This could be
potentially important for exploring, for example, so-called
sticky spots beneath glaciers and ice streams. Subglacial
friction variability often has surface expression in topog-
raphy and accumulation variability. Thus in regions of
significant topography, this technique could reduce the
error introduced by source variability. The disadvantage of
using Equation (10) is that like Equation (3) it is sensitive to
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Fig. 3. Compressional (black) and shear (gray) velocities in the
upper (firn) layer used in the example. Velocities are assumed
constant below 200 m.

potentially large uncertainties in the attenuation. Hence in
section 4.2 a different approach is explored.

4.2. Estimation of the relative reflection coefficient,
rAVA

Here we are interested in measuring the angular depend-
ence of the reflection coefficient, or rAVA (relative AVA). By
relinquishing the requirement for an absolute value of the
reflection coefficient, uncertainties associated with the
unknown attenuation can be substantially reduced. The
kernel of the idea is to minimize the uncertainties associated
with the attenuation by minimizing the path length
differences in the ratio. Starting with Equation (5) and
rearranging terms to obtain the reflection coefficient ratio
which depends on factors that are measurable or predictable
or have relatively small uncertainties,

R? (6p)

2
_ A% e(di—dy). (1)

R2 (sz) o A2A0 ’y]z

Thus, at various offsets, r, the ratio of reflection coefficients
at different angles can be measured, with only a small
contribution from the unknown attenuation (2d;-d, is
small). In practice, one would use small offsets to obtain
Ao via Equation (6), and the receivers at further offsets would
be used to estimate the reflection coefficient ratio, via
Equation (11). While individual ratios of reflection coeffi-
cients at various angles can be computed using Equa-
tion (11), an explicit relationship providing the angular
dependence of R is lacking.

To address this, the angular dependence can be obtained
by recursively relating each angular ratio to a reference
angle. Which reference angle is chosen is arbitrary, but a
convenient angle would be the highest angle in the dataset
(not counting the datum or data used to obtain Ap). This
recursive referencing can be formally written, starting from
the first receiver, j=1, as

R(00)  R(an)
(o) k(o)

where the superscript indicates the receiver number, and n~
indicates the previous value of n. In other words, the

n satisfies 90" ~ g, (12)
1b 2b
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Table 1. Angles at the bed for the first and second bounce.
Receivers are spaced at 100 m intervals; source depth 60 m

Recl Rec2 Rec3 Rec4 Rech Rec6

O1p (°) 89 88.1 87.1 86.1 85.2 84.3
Oap (°) 89.5 89 88.5 88.1 87.6 87.1

reflection coefficient at a receiver N, R(6:,)"N, can be
determined relative to the reflection coefficient at the
arbitrary reference angle, here selected as R(62"), so long
as the following holds: the angle of the multiple reflection at
N is the same as the angle of the primary reflection at
another receiver (shown in Equation (12) as n~). Note that n
does not necessarily take on consecutive integer values; in
other words, the number of products in Equation (12) is not
always N—j.

The method might be best understood by examining a
specific example. Consider an experiment with H=3000m
and a smooth basalt bed with compressional, shear velocities
and density respectively of V,=5.7kms™', V,=3.3kms™'
and p=2.7gcm™ below an ice layer with the velocity
profile (provided by L. Peters from a site near the South Pole)
shown in Figure 3. There are 101 receivers spaced at 100 m
intervals, yielding angles at the bed ranging from 30° to 90°.
The zeroth receiver (at r=0 offset) is used to obtain Ay. The
bed angles of the next five receivers are listed in Table 1.

For the regular receiver spacing here, it can be seen that
the bed angle at 6;,'" is the same as the bed angle at 6,,,
where the superscript refers to the receiver number. Thus, we
can obtain an estimate of R(0;,%=88.1°) relative to
R0, = 89.5°) by

R(@5§>) R(egp) R(f)g?) .

R(e)  R(o0) R(02)

The next angle to be estimated is for n=4 (receiver 4)
because the angle of the multiple at receiver 46,," is
approximately equal to the angle at another receiver
(receiver 2) 6,,%.Thus, the estimate of R(0;,* =86.1°)
relative to R(#,," =89.5°) is

R(eg;w) ) R(egp) R(agg>) R(egg>) | ”
R(egp) R(egp) R(egg>) R(egy)

This process can be continued, and, in this case of equally
spaced phones, the receivers at which the angles for the
multiple match those of the primary for another receiver are
multiples of 2, i.e. N=1,2, 4, 8, 16.. . If the value of R(#,,")
was known, then of course the absolute reflection co-
efficient would be obtained. However, if R(#,,") is not
known, one can choose an arbitrary value for it and still
obtain a correct estimate of the angular dependence.

In practice, the receiver spacing may not lead to any
receiver pairs with the condition 6, = 6,,"” precisely met.
Nevertheless as long as the angles are reasonably close (the
assumption is that R is slowly varying between the two
angles), the errors will be modest. If the reflection coefficient
is not slowly varying (which might be conservatively
assumed if the closest angles differ by many degrees) the
reflection coefficient ratios can be interpolated.
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For our example of 100 receiver locations (again, the
zeroth one is used to estimate Ag), and starting at receiver
No. 1, this procedure will lead to eight estimates (N=1, 2, 4,
8, 16, 32, 64, 100) of the relative reflection coefficient.
However, one can also start at other values, j=3, 5, 7..., to
obtain more estimates of R. In this general case, the method
is most succinctly written by starting from the ratio of the
reflection coefficient at the angle of interest and moving up
in grazing angle (decreasing n)

R(g(N)) =1 R(Q(n))
A 2 7. p satisfies 07) ~ 9. (15)

R(Q(])) N R<9<”)) 2b 1b

2b 2b

While this is superficially the same as Equation (12), it
allows for arbitrary values of N, whereas Equation (12) does
not. Furthermore, in practice, this approach numerically
forces the largest approximation or interpolation near
normal incidence where the reflection coefficient should
be most slowly varying, hence minimizing error.

To complete the example above, the relative reflection
coefficient has been calculated by this method and
compared with the exact solution. In Figure 4, the gray
crosses represent the numerical solution obtained via
Equation (15) with an arbitrary reference of
|[R(89.5°)| = 0.4. Note that the angular dependence of the
rAVA solution closely follows the exact solution with a
multiplicative offset. In order to more clearly determine the
accuracy of the method, the solution if the normal incidence
reflection coefficient was known is also plotted. The
excellent agreement indicates that the underlying idea is
sound. The small errors in the rAVA estimate (<2% and
invisible on the scale of the plot) are associated with the

assumption that the R is varying slowly between 0(2%_) and

9%) when the two angles are not identical. Interpolation
could reduce these errors, but seems unnecessary for the
synthetic data here.

Though the method does not give the absolute reflection
coefficient, the angular dependence of R nevertheless
provides a great deal of information about the bed
characteristics. In some cases, there are enough clues in
the angular dependence to obtain a good estimate of
absolute R. For example, in Figure 4, even lacking know-
ledge of absolute R, it is clear that there is a critical angle
associated with compressional waves at 47°, which (given
an estimate of properties at the base of the ice) would yield a
good estimate of the compressional speed of the bed (in this
case 5700ms™"). Furthermore, using that value and an
appropriate density would give a reasonable value for the
normal incidence reflection coefficient and hence yield an
estimate of absolute R. In cases where the angular range is
limited, such clues may or may not exist.

It should be noted that this approach can also be used to
obtain the angular dependence of Ry, R, and Ry,. For the
latter two quantities, the normal incidence reflection
coefficient is identically zero (hence unobservable), so some
other reference angle should be used. It is also noted that
while the method gives the magnitude of R, the sign of R can
be obtained from the polarity of the bed reflection.

4.3. AVA and rAVA uncertainties

Here the uncertainties of the methods discussed above are
briefly explored. In particular, we focus on the unknown
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Fig. 4. Comparison of the exact reflection coefficient of ice over
basalt (black line) with rAVA method (gray crosses) without a priori
knowledge; an arbitrary reference of R(89.5°)=0.4 was used. The
properly normalized angular dependence (gray circles) agrees very
closely with the exact solution, indicating that the recursive
referencing procedure is correct.

attenuation coefficient which in some environments tends to
drive the overall uncertainty.

As a numerical example, consider the uncertainties
associated with the bounds given by Smith (1997) for ice
attenuation. He used «=0.21 x 102 m™~', with lower and
upper bounds of 0.067 x 10~ and 0.46 x 107> respectively.
Using the environment given above, we can quantitatively
examine the contribution of attenuation uncertainties
associated with the rAVA approach compared with that of
AVA (using Equation (6) in conjunction with Equation (1);
see section 4.1). This comparison is shown in Figure 5a,
where the uncertainties associated with rAVA (black) are
more than an order of magnitude smaller than that associ-
ated with AVA (gray). The quantity plotted is the amplitude
attenuation factor exp(aD), where D is the effective
distance. The greatly reduced uncertainty associated with
rAVA is due to the decrease in the D: D=Q2d,-d,)/2 for
rAVA but D = d, for AVA. These distances vs angle are shown
in Figure 5b. One can also compare the uncertainties of
Equation (4) used by Smith (1997, 2007) and others with
rAVA at normal incidence in Figure 5, since Equation (4) has
the same uncertainties as AVA at normal incidence.

It should be noted that the uncertainties of Figure 5a were
calculated under the condition that the attenuation is
constant with depth. If attenuation is not constant with
depth (which is generally the case), the uncertainties will
evolve differently with angle than shown here and the
uncertainties will be larger. Nevertheless, Figure 5 gives a
reasonable first-order picture of the uncertainties for a
simple environment.

Inspection of Figure 5 indicates that by using rAVA, the
angular dependence of the reflection coefficient is obtained
with smaller uncertainties than the absolute reflection
coefficient. This should be useful for probing the bed
properties inasmuch as the angular dependence may
provide many useful clues as to the bed properties. While
several strategies could be invoked depending on the nature
and quality of the measurements, another possibility would
be to use Equation (4) to estimate R(n/2) and then use the
rAVA technique to obtain an absolute estimate of R(6).
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Fig. 5. (a) Comparison of uncertainties associated with the amplitude attenuation factor exp(aD), where D is the effective distance associated
with each method: rAVA (black line) and AVA (gray line). (b) Effective distance associated with rAVA (black line) and AVA (gray line).

It is not the intent here to do a full uncertainty analysis,
but note that Equation (15) is the product of ratios derived
from the data; this means that errors and uncertainties will
propagate. Bias errors will have the greatest impact at low
grazing angles (where multiple biased terms are required).
Random errors, on the other hand, will be smallest at low
angles, since the product of many terms will have an
averaging effect. Since rAVA inherently uses ratios, some
common causes of bias errors would disappear, including
errors in receiver calibration and source amplitude. In order
to explore the impact of random errors, a zero-mean
Gaussian ‘noise’ with a standard deviation of 0.05 has been
added to the reflection ratios (right-hand side of Equa-
tion (15)), with the result shown in Figure 6. Besides the
averaging effect mentioned above, one would expect larger
errors in angular regions where the reflection coefficient
ratio is rapidly changing (recalling discussion above on
interpolation errors). Simulation shows that for this example,
the standard deviation is ~0.05 at low angles, 0.1 near the

Reflection coefficient, R

0 30 60 90
Bed angle (°)

Fig. 6. Effect of random errors in reflection ratios on rAVA (gray
dots). The errors are zero-mean Gaussian distributed with a 0.05
standard deviation. For clarity in presentation, it is assumed here
that the normal incident reflection coefficient is known.
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peak (critical angle) at 47° and 0.06 near normal incidence.
The salient point of the plot is that at this level of noise or
uncertainty, the angular dependence of the reflection
coefficient still contains a great deal of information. If the
random errors are large, their impact can be reduced by
averaging over angle or fitting the data to a functional form
and interpolating based on the fit.

As a final comment, it should be noted that the strategy
for developing the rAVA technique exploits a ratio A;%/A,
which minimizes the total path length, thus minimizing
uncertainties due to the attenuation. At the same time as
minimizing attenuation uncertainties, this ratio also tends to
reduce uncertainties associated with the spreading factor
contained in .

5. CONCLUSIONS

Analysis of seismic reflection data to obtain estimates of
subglacial bed properties requires estimation of source
amplitude and attenuation in the ice (among other factors).
Generally the attenuation is poorly known and this leads to
large uncertainties in the reflection coefficient, i.e. large
uncertainties in the bed properties. For example, the
uncertainties due to attenuation can be so large that it is
not possible to distinguish unconsolidated sediments from
crystalline rock.

In this paper, simple methods were derived for extracting
the source amplitude and the angular dependence of the bed
reflection coefficient minimizing the effect of uncertainties
associated with the unknown (or poorly constrained) ice
attenuation. The two methods for obtaining source ampli-
tude do not require any knowledge of attenuation in the
medium. The method for the angular dependence of the
reflection coefficient does require an estimate of the
attenuation, but it is much less sensitive to uncertainties in
the attenuation than previous methods. These methods are
important to the glaciology community because they firstly
provide new strategies for processing data to recover
conditions at the base of ice sheets that are critical to better
numerical modeling. Secondly, the techniques we suggest
will aid in the design of new experiments targeted at those
environments.
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