
Ergod. Th. & Dynam. Sys., (2024), 44, 1923–1944 © The Author(s), 2023. Published by Cambridge
University Press.
doi:10.1017/etds.2023.71

1923

Cr-chain closing lemma for certain partially
hyperbolic diffeomorphisms

YI SHI† and XIAODONG WANG‡

† School of Mathematics, Sichuan University, Chengdu 610065, P. R. China
(e-mail: shiyi@scu.edu.cn)

‡ School of Mathematical Sciences, CMA-Shanghai, Shanghai Jiao Tong University,
Shanghai 200240, P. R. China

(e-mail: xdwang1987@sjtu.edu.cn)

(Received 4 November 2022 and accepted in revised form 1 September 2023)

Abstract. For every r ∈ N≥2 ∪ {∞}, we prove a Cr -orbit connecting lemma for
dynamically coherent and plaque expansive partially hyperbolic diffeomorphisms
with one-dimensional orientation preserving center bundle. To be precise, for such a
diffeomorphism f, if a point y is chain attainable from x through pseudo-orbits, then for
any neighborhood U of x and any neighborhood V of y, there exist true orbits from U to
V by arbitrarily Cr -small perturbations. As a consequence, we prove that for Cr -generic
diffeomorphisms in this class, periodic points are dense in the chain recurrent set, and
chain transitivity implies transitivity.
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1. Introduction
Following from Yoccoz [29], the goal of the theory of dynamical systems is to understand
most of the dynamics of most systems. Here ‘most systems’ means dense, generic, open
and dense dynamical systems. The various perturbation techniques have played crucial
roles in the study of most systems, for instance in the exploration of the famous C1-stability
conjectures. Pugh’s celebrated work: the C1-closing lemma [27] which realizes closing a
non-wandering orbit to get periodic orbits, initiated the theory of C1-perturbations. Mañé’s
ergodic closing lemma [22] provides more information on the closing points. Another work
by Mañé [23] creates homoclinic points by Cr , r = 1, 2 perturbations. These two works
[22, 23] are indispensable in solving the C1-stability conjecture [22, 24] and the ergodic
closing lemma is a milestone in both differentiable dynamical systems and ergodic theory.
An improved version of the C1-closing lemma is obtained by Hayashi [18] that connects
two orbits which visit a same small region. Hayashi’s work is now called the C1-connecting
lemma, see also works by Wen and Xia [28]. More developments can be found for instance
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in [2, 13]. The strongest C1-perturbation lemma is the C1-chain connecting lemma proved
by Bonatti and Crovisier [4], which connects pseudo orbits under small C1-perturbations.
In particular, works in [4, 8] realize closing a chain recurrent orbit (or a chain recurrent set).

We recall some notions and definitions now. Let M be a C∞ closed Riemmanian
manifold and denote by Diffr (M) for any r ∈ N ∪ {∞} the space of Cr -diffeomorphisms
on M endowed with the Cr -topology.

Given f ∈ Diffr (M) and δ > 0, a collection of points

{xa , xa+1, . . . , xb} where − ∞ ≤ a < b ≤ +∞
is called a δ-pseudo orbit if it holds

d(xi+1, f (xi)) < δ for every a ≤ i ≤ b − 1.

Given two points x, y ∈ M , one says that y is attainable from x under f, denoted by x ≺f y,
if for any neighborhood U of x and any neighborhood V of y, there exist z ∈ U and n ≥ 1
such that f n(z) ∈ V ; and y is chain attainable from x under f, denoted by x �f y, if for
any δ > 0, there exists a δ-pseudo orbit {x0, x1, . . . , xn} from x to y, that is, x0 = x and
xn = y. A point x ∈ M is non-wandering if x ≺f x, and the set of non-wandering points
of f is denoted by �(f ). A point x ∈ M is chain recurrent if x �f x, and the set of chain
recurrent points of f is denoted by CR(f ). The set of periodic points is denoted by Per(f ).

Note that compared with non-wandering/chain recurrent points, periodic points have
the strongest recurrence property. One would like to ask whether or not the weaker
recurrence can be perturbed into stronger ones. Given f ∈ Diffr (M), a point p ∈ M

is called Cr -closable if for any Cr -neighborhood U of f, there exists g ∈ U such that
p ∈ Per(g). For uniformly hyperbolic systems, Anosov’s shadowing lemma [1] implies
that every chain recurrent point is Cr -closable (in fact without perturbation). For a general
diffeomorphism f, as has been mentioned above, Pugh’s closing lemma [27] verifies that
every x ∈ �(f ) is C1-closable and Bonatti–Crovisier’s chain closing lemma [4] verifies
every x ∈ CR(f ) is C1-closable.

For dynamics beyond uniform hyperbolicity and when r ≥ 2, things turn out to be much
more complicated and delicate. Gutierrez [15] built an example which showed that the local
perturbation method for proving the C1-closing lemma does not work in the C2-topology.
Mañé [23] proved a C2-connecting lemma which creates homoclinic points for hyperbolic
periodic points with some assumption in the measure sense. Recently, a series progress
has been achieved in the Cr -closing lemma for Hamiltonian and conservative surface
diffeomorphisms, see [3, 7, 10].

In higher dimensions, Gan and the first author [12] proved the Cr -closing lemma for
partially hyperbolic diffeomorphisms with one-dimensional center bundle for every r ∈
N≥2 ∪ {∞}. Inspired by [12], we explore Cr -perturbation results for a certain class of
partially hyperbolic diffeomorphisms.

We say that a diffeomorphism f ∈ Diffr (M) is partially hyperbolic if the tangent space
T M admits a Df -invariant continuous splitting T M = Es ⊕ Ec ⊕ Eu and there exists
k ≥ 1 such that for any x ∈ M , it holds

‖Df k|Es
x
‖ < min{1, m(Df k|Ec

x
)} ≤ max{1, ‖Df k|Ec

x
‖} < m(Df k|Eu

x
).
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Here for a linear operator A, one denotes by ‖A‖ its norm and by m(A) its conorm, that is,
m(A) = inf{‖Av‖ : ‖v‖ = 1}.

Let PHr (M), r ≥ 1 be the space consisting of all Cr -partially hyperbolic diffeomor-
phisms of M endowed with the Cr -topology, then PHr (M) ⊂ Diffr (M) is an open subset.
We say f ∈ PHr (M) is dynamically coherent if there exist two f -invariant foliations
Fcs and Fcu that are tangent to Es ⊕ Ec and Ec ⊕ Eu, respectively. It is clear that
Fc = Fcs ∩ Fcu is an f -invariant foliation tangent to Ec. For a dynamically coherent
partially hyperbolic diffeomorphism f, one always denotes the partially hyperbolic splitting
by T M = Es

f ⊕ Ec
f ⊕ Eu

f or T M = Es ⊕ Ec ⊕ Eu for simplicity when there is no
confusion. Also, one denotes the stable/center/unstable foliations by F s/Fc/Fu.

For f ∈ PHr (M) being dynamically coherent and a constant ε > 0, an ε-pseudo orbit
{xi}bi=a is called an ε-center pseudo orbit if f (xi) ∈ Fc

ε (xi+1) for any a ≤ i ≤ b − 1. We
say f is ε-plaque expansive if any two bi-infinite ε-center pseudo orbits {xi}i∈Z, {yi}i∈Z
satisfying

d(xi , yi) < ε for every i ∈ Z,

must satisfy yi ∈ Fc
ε (xi) for every i ∈ Z. Here Fc

ε (x) is the disk centered at x in Fc(x)

with radius ε. We say f is plaque expansive if it is ε-plaque expansive for some ε > 0.

Notation 1.1. For r ∈ N≥2 ∪ {∞}, we denote by DPHr
1(M) (respectively DEPHr

1(M)) the
set of all partially hyperbolic diffeomorphisms f ∈ PHr (M) that satisfies properties (a)
and (b) (respectively (a), (b), and (c)):
(a) the center bundle Ec is orientable with dimEc = 1, and Df preserves the orienta-

tion;
(b) f is dynamically coherent;
(c) f is plaque expansive.

It has been proved [19, Theorems 7.1 and 7.4] that dynamic coherence plus plaque
expansiveness is a robust property for C1-partially hyperbolic diffeomorphisms. Thus,
DEPHr

1(M) forms an open set in Diffr (M) for every r ≥ 1. There are a series of partially
hyperbolic diffeomorphisms belonging to DEPHr

1(M):
(1) derived-from-Anosov partially hyperbolic diffeomorphisms on 3-torus T

3 [16, 26],
where Df preserves the center orientation;

(2) partially hyperbolic diffeomorphisms with circle center fibers on 3-torus T3 [16, 26]
and 3-nilmanifolds N [17], where Df preserves the center orientation;

(3) discretized Anosov flows [25], i.e., partially hyperbolic diffeomorphisms which are
leaf conjugate to Anosov flows.

In particular, every dynamically coherent and plaque expansive partially hyperbolic
diffeomorphism with one-dimensional center admits a double cover with Ec orientable
and an iteration of the lifting diffeomorphism belongs to DEPHr

1(M).

Remark 1.2. It has been conjectured [19] that every dynamically coherent partially
hyperbolic diffeomorphism must be plaque expansive. Actually, all known examples of
dynamically coherent partially hyperbolic diffeomorphisms are plaque expansive.

In this paper, we prove that for every r ∈ N≥2 ∪ {∞} and every f ∈ DPHr
1(M), if

a point y is chain attainable from x, then any small neighborhoods of x and y can be
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connected through true orbits by arbitrarily small Cr -perturbations of f. Let X r (M) be the
space of Cr -vector fields on M for r ∈ N ∪ {∞}. Given X ∈ X r (M) and τ ∈ R, denote by
Xτ the time-τ map generated by X. We say X is transverse to a co-dimension one bundle
Es ⊕ Eu if X(x) is transverse to Es

x ⊕ Eu
x in TxM for every x ∈ M .

THEOREM A. For any r ∈ N≥2 ∪ {∞}, assume f ∈ DPHr
1(M) and X ∈ X r (M) is a

vector field that is transverse to Es ⊕ Eu. For any two points x, y ∈ M with x �f y, there
exist pk ∈ M , τk ∈ R, and nk ∈ N such that:
• τk → 0 as k → ∞;
• pk → x and (Xτk

◦ f )nk (pk) → y as k → ∞.
In particular, if y = x, then (Xτk

◦ f )nk (pk) = pk . This means every chain recurrent point
of f ∈ DPHr

1(M) is Cr -closable.

Remark 1.3. When r = 1, this orbit connecting lemma was proved by Bonatti and
Crovisier in [4] for every f ∈ Diff1(M). See [8, 9] for more developments and applications
of chain connecting lemmas in C1-topology.

Recall that f ∈ Diff1(M) is transitive if for any two open sets U , V ⊂ M , there
exists n ≥ 1 such that f n(U) ∩ V �= ∅. This is equivalent to x ≺f y for every x, y ∈ M .
Similarly, f is chain transitive if x �f y for every pair of points x, y ∈ M . It is clear that
transitivity implies chain transitivity. Concerning that DEPHr

1(M) forms an open set in
Diffr (M) for every r ≥ 1, we could study generic properties for DEPHr

1(M). We show that
for Cr -generic f ∈ DEPHr

1(M), transitivity and chain transitivity are equivalent. Recall
that a property is generic if it holds for every element in a dense Gδ subset.

COROLLARY B. For every r ∈ N≥2 ∪ {∞}, there exists a dense Gδ subset R ⊂
DEPHr

1(M) such that for any f ∈ R, the following properties hold.
(1) x �f y if and only if x ≺f y.
(2) Periodic points are dense in the chain recurrent set: CR(f ) = �(f ) = Per(f ).
(3) If f is chain transitive on M, then f is transitive on M.

Remark 1.4. Transitive dynamics that are beyond uniform hyperbolicity have attracted
much interest from dynaminists, for instance [5, 6]. There exist chain transitive partially
hyperbolic diffeomorphisms with one-dimensional center bundle which are accessible but
not transitive [11]. It is worthy to see whether Corollary B holds for Cr -generic partially
hyperbolic diffeomorphisms with one-dimensional center bundle.

2. Lifting dynamics and leaf conjugacy
As have been mentioned, our proof is inspired by [12]. This section is devoted to state the
necessary preliminaries, some of which are borrowed from [12]. We first give an outline.
• First, we give a Lipschitz center shadowing property for dynamically coherent partially

hyperbolic diffeomorphisms proved in [21] which insures that one can always consider
center pseudo orbits in our setting.

• Second, we parameterize each center leaf through the real line R and associate it
with an order from R by the fact that dim(Ec) = 1. Then one could lift the center
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dynamics to
⊔

i∈Z Ri where each Ri = R. Moreover, we prove that by replacing some
intermediate points of a center pseudo orbit if necessary, one could always assume the
center pseudo orbit jumps in an ordered way. This will be done in §2.2.

• Third, we extend the lifting dynamics on
⊔

i∈Z Ri to a tubular neighborhood by
pulling back a C∞-bundle F s ⊕ Fu which is C0-close to Es ⊕ Eu. Theorem 2.10
guarantees that the center curves for the dynamics in the tubular neighborhood admit
a Lipschitz shadowing property under perturbations. This appears in §§2.3 and 2.4.

• Finally, based on the preparations in this section, we will prove a push-forward (or
push-backward) perturbation result in §3 which allows us to prove Theorem A by more
delicate estimates.

One first recalls the following proposition from [21, Theorem 1] which states a Lipschitz
center shadowing property for dynamically coherent partially hyperbolic diffeomorphisms.
Roughly speaking, for such a system, any pseudo orbit with small jumps would be
shadowed by a center pseudo orbit. See also similar results in [20].

PROPOSITION 2.1. [21] Assume f ∈ PH1(M) is dynamically coherent. Then there
exist ε0 > 0 and L > 1 such that for any ε ∈ (0, ε0) and any ε-pseudo orbit
{wa , wa+1, . . . , wb}, −∞ ≤ a < b ≤ +∞, there exists an Lε-center pseudo orbit
{xa , xa+1, . . . , xb} satisfying

d(xi , wi) < Lε for any a ≤ i ≤ b.

Moreover, if wa = wb where −∞ < a < b < +∞, then the new center pseudo orbit can
be chosen to satisfy xa = xb.

Proof of the ‘moreover’ part. The statement of Proposition 2.1 before the ‘moreover’ part
is [21, Theorem 1]. Thus, we only need to prove the ‘moreover’ part. We first revisit the
steps in the proof of [21, Theorem 1]. Note that one could always consider a bi-infinite
pseudo orbit {wi}i∈Z because any finite or one-sided-infinite pseudo orbit can be extended
naturally to a bi-infinite one (see for instance §2.2 below).

(1) Fix two constants δ0 > 0, L0 > 1 such that for any 0 < δ ≤ δ0 and any two points
x, y ∈ M satisfying d(x, y) < δ, then Fcu

x (L0δ) intersects F s
y (L0δ) at a unique point and

similarly for Fcs
x (L0δ) and Fu

y (L0δ). This local product property is guaranteed by the
transversality and continuation of local foliations.

(2) By considering an iterate of f [21, Lemma 1] (or by taking an adapted metric as in
§2) and by decreasing δ0 if necessary, one has

ds(f (x), f (y)) < λds(x, y) for all y ∈ F s
x (δ0) for all x ∈ M ,

du(f −1(x), f −1(y)) < λds(x, y) for all y ∈ Fu
x (δ0) for all x ∈ M ,

where ds/u denotes the metric on the stable/unstable foliations and λ ∈ (0, 1) is a constant
depending only on the contracting/expanding ratio of Df along Es/Eu.

(3) Then there exist two constants ε0 ∈ (0, δ0) and L1 > L0 such that for any ε ∈
(0, ε0) and any bi-infinite ε-pseudo orbit {wi}i∈Z, the map hs

i : F s
wi

(L1ε) → F s
wi+1

(L1ε)

is well defined where for every z ∈ F s
wi

(L1ε), the image hs
i (z) is the unique point of

Fcu
f (z)(L0δ0) ∩ F s

wi+1
(L1ε). This corresponds to [21, Lemma 2].
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(4) Consider the set Xs = ∏+∞
i=−∞ F s

wi
(L1ε) endowed with the Tikhonov product

topology and consider the map H : Xs → Xs with (a bit different to [21] as they are
working on the tangent bundle while here we consider local leaves on the manifold directly.
These two ways are equivalent through the exponential map)

H({zi}) = {z′
i+1} where z′

i+1 = hs
i (zi).

Applying the Tikhonov–Schauder fixed point theorem, the map H has a (maybe not
unique) fixed point. This induces an orbit of center unstable leaves {Fcu

ys
i
}i∈Z (that is,

f (Fcu
ys
i
) = Fcu

ys
i+1

for any i ∈ Z) where ys
i+1 ∈ Fcu

f (ys
i )

(L1ε) and which satisfies that ys
i

is close to wi for all i ∈ Z. Symmetrically, one obtains an orbit of center stable leaves
{Fcs

yu
i
}i∈Z which satisfies that yu

i is close to wi for all i ∈ Z.
(5) The intersection {Fcs

yu
i

∩ Fcu
ys
i
}i∈Z forms an orbit of center leaves {Fc

yi
}i∈Z with yi

being close to wi for all i ∈ Z. Finally, following arguments in [21, pp. 2907–2908], there
exists a center pseudo orbit {xi}i∈Z that shadows {wi}i∈Z. In this step, the constant ε0 may
be decreasing once again and L1 is replaced by a larger L.

The ‘moreover’ part is almost included in the proof of [21, Theorem 1]. We give
an explanation here. To simplify symbols, we let 0 = a < b = n < +∞ and consider a
pseudo orbit {w0, w1, . . . , wn} with wn = w0. One first repeats it forward and backward
to get a bi-infinite periodic pseudo orbit, that is, let wi = wi mod n for i ∈ Z. Then Steps
(1)–(3) still work. We only need to verify that in Step (4), one could choose a fixed point of
H which induces a periodic orbit of center unstable leaves {Fcu

ys
i
}i∈Z, that is, ys

i = ys
i mod n.

To do this, we consider the finite composition (rather than considering H)

Hs
n = hs

n−1 . . . hs
1 ◦ hs

0 : F s
w0

(L1ε) → F s
wn

(L1ε) = F s
w0

(L1ε),

which is well defined by Step (3). Note that each hs
i is a composition of a local

cu-holonomy with f, thus, Hs
n is continuous. However, Hs

n maps F s
w0

(L1ε) into itself where
F s

w0
(L1ε) is an s-dimensional disk. Applying the Tikhonov–Schauder fixed point theorem,

the map Hs
n has a (maybe not unique) fixed point ys

0 ∈ F s
w0

(L1ε). This induces an orbit
segment of center unstable leaves {Fcu

ys
i
}i∈[0,n] with f (Fcu

ys
i
) = Fcu

ys
i+1

for 0 ≤ i ≤ n − 1

and ys
0 = ys

n. Moreover, one also has that ys
i is close to wi for all i ∈ [0, n] following

arguments in [21, pp. 2907–2908]. Repeating {Fcu
ys
i
}i∈[0,n] forward and backward, that is,

let ys
i = ys

i mod n for i ∈ Z, one gets a periodic orbit of center unstable leaves {Fcu
ys
i
}i∈Z.

Symmetrically, we can get a periodic orbit of center stable leaves {Fcs
yu
i
}i∈Z. As in Step

(5), the intersection {Fcs
yu
i

∩ Fcu
ys
i
}i∈Z forms a periodic orbit of center leaves {Fc

yi
}i∈Z with

yi being close to wi for all i ∈ [0, n] and yi = yi mod n. We take xi to be the unique
intersection of the local leaf of Fcu

ys
i

with the local leaf of F s
yu
i
. Here, {xi}ni=0 is the periodic

Lε-center pseudo orbit we need, see [21, p. 2908] for the estimation of the constant L. (This
is the first line of [21, p. 2908] where they use the notation ‘yk’ while here we use ‘xi’.)

Remark 2.2. As a consequence of Proposition 2.1, for a dynamically coherent f ∈
PH1(M), for any x ∈ CR(f ) and any ε > 0, there exists a periodic ε-center pseudo orbit

{x0, x1, . . . , xn = x0} satisfying d(x0, x) < ε.
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2.1. Preliminary settings. From now on, unless emphasized, we always assume
f ∈ DPHr

1(M), r ∈ N≥2 ∪ {∞}. In this subsection, we will fix some elements for
f ∈ DPHr

1(M), r ∈ N≥2 ∪ {∞}. The first is a metric on M that is adapted to the partially
hyperbolic splitting. Second, one associates an order to each (1-dimensional) center
bundle. Finally, one fixes two C∞-sub-bundles F s and Fu that are C0-close to Es and Eu,
respectively.

Let d be a C∞-Riemannian metric on M that is adapted [14] to the splitting Es ⊕ Ec ⊕
Eu. To be precise, there exist constants 0 < λ < 1 and 0 < η0 < 10−3 such that for any
z ∈ M , it satisfies:
• ‖Df |Es

z
‖ < min{λ, ‖Df |Ec

z
‖} ≤ max{λ−1, ‖Df |Ec

z
‖} < m(Df |Eu

z
);

• the three sub-bundles are almost orthogonal mutually:

min
vα∈Eα

z ,‖vα‖=1
dTzM(vα , Eβ

z ⊕ E
γ
z ) > 1 − η0 where {α, β, γ } = {s, c, u};

• for α = s, c, u, the projection πα
z : TzM → Eα

z satisfies ‖πα
z (v)‖ ≤ 2‖v‖ for any v ∈

TzM .
Here, ‖ · ‖ is the vector norm on T M and dTzM(·, ·) is the distance induced by the
Riemannian metric d. Such an adapted Riemmanian metric d always exists by the classical
arguments in [19].

Denote by π : T M → M the natural projection from T M to M and by πα : T M → Eα

the bundle projection map. For v ∈ T M , let v = vs + vc + vu be the direct sum
splitting with vα = πα(v), α = s, c, u. To simplify notation, denote s = dim(Es) and
u = dim(Eu). For any constant a > 0, the a-cone field Ca(E

c) of Ec is defined as

Ca(E
c) = {v ∈ T M : ‖vs + vu‖ ≤ a‖vc‖}.

A C1-curve γ : I → M , where I is an interval, is called tangent to the a-cone field of Ec

if the tangent line of γ is contained in Ca(E
c) everywhere.

Let X ∈ X r (M) be a vector field that is transverse to Es ⊕ Eu everywhere. Since
dim(Ec) = 1, one has that Ec

z
∼= R for any z ∈ M . Moreover, since Ec is orientable and

Df preserves the orientation, one can associate to each Ec
z an order induced by R such

that Df |Ec keeps this order. Without loss of generality, we assume that X ∈ X r (M) is
positively transverse to Es ⊕ Eu everywhere. To be precise, it satisfies that πc(X(z)) > 0
with respect to the order of Ec

z for every z ∈ M . The other case when X is negatively
transverse to Es ⊕ Eu everywhere is symmetric by taking the inverse orientation of Ec.

Note that in general, Es and Eu are only continuous sub-bundles of T M . One takes two
C∞-sub-bundles F s and Fu of T M that are η0-C0-close to Es and Eu, respectively. To
be precise,

dim(Fα) = dim(Eα) and � (Fα , Eα)

= max
z∈M

max
v∈Fα

z ,‖v‖=1
dTzM(v, Eα

z ) < η0 for α = s, u.

Thus, T M = F s ⊕ Ec ⊕ Fu is still a direct sum decomposition. In particular, by taking
F s and Fu close enough to Es and Eu, respectively, one can guarantee that X is also
transverse to F s ⊕ Fu.
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2.2. Parameterizing and lifting center dynamics. For each z ∈ M , denote by Fc
z the

center leaf of z. Based on the fact that dim(Fc
z ) = 1, one parameterizes the center leaves

{Fc
z }z∈M and lifts the center dynamics on the parameterization. Then we prove that every

center pseudo orbit with small jumps could be replaced by one that jumps in an ordered
way and that preserves the initial and end points, see Lemma 2.5.

2.2.1. Parameterization of the center foliation. Note that Fc
z either is non-compact and

diffeomorphic to R, or is compact and diffeomorphic to S
1. Let θz : R → Fc

z be a C1 map
such that:
• θz(0) = z;
• θ ′

z(t) is the positive unit vector of Ec
θz(t)

for all t ∈ R.

To emphasize the dependence of the base point z, we denote Rz = θ−1
z (Fc

z ). Note that
when Fc

z is non-compact, then θz is a diffeomorphism and is isometric in the sense that
dc(θz(t1), θz(t2)) = |t2 − t1|, where dc(·, ·) is the metric on the center foliations. When Fc

z

is compact, then θz is a universal covering map and is locally isometric.

2.2.2. The constant ε0. Since the length of all (compact) center leaves has a uniform
lower bound, one can take a small constant 0 < ε0 < 1 such that for every z ∈ M and
every interval I with length no larger than 10ε0, the restricted map θz|I is isometric.

Take ε ∈ (0, ε0). Assume

� = {x0, x1, . . . , xn}
is an ε-center pseudo orbit. One extends � to be bi-infinite. To be precise, let

�∞ = {xi}+∞
i=−∞ = {. . . , x−1, x0, x1, . . . , xn, xn+1, . . .}

such that

xi = f i(x0) when i ≤ −1 and xi = f i−n(xn) when i ≥ n + 1.

To simplify notation, denote Ri = Rxi
and θi = θxi

: Ri → Fc
xi

. Since f (xi) ∈ Fc
xi+1

and
each θi is locally isometric, then there exists a unique ti+1 ∈ (−ε, ε) such that f (xi) =
θi+1(ti+1). In particular, one has ti+1 = 0 when i ≤ −1 or i ≥ n.

2.2.3. Lifting dynamics. Note that {θz}z∈M defines a line-fiber over M. The dynami-
cal system f : M → M induces natural dynamics f̂ :

⊔
i∈Z Ri → ⊔

i∈Z Ri such that
for all i ∈ Z, the restriction f̂ |Ri

: Ri → Ri+1 is a diffeomorphism and for all t ∈ Ri ,
it satisfies

θi+1 ◦ f̂ (t) = f ◦ θi(t) and |f̂ (0i )| < ε.

That is to say, the following diagram commutes:

⊔
i∈Z

Ri

f̂ ��

θ

��

⊔
i∈Z

Ri

θ

��
M

f �� M
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where θ |Ri
= θi for i ∈ Z. Since Df preserves the orientation of Ec, each f̂ |Rz

is strictly
increasing. In particular, one has that f̂ (0i ) = ti+1 for every i ∈ Z. Moreover, the map
θ :

⊔
i∈Z Ri → M is a normally hyperbolic leaf immersion following [19, p. 69], see also

[12, Proposition 4.4].

Remark 2.3. When Fc
x0

is non-compact, so as Fc
xi

for all i ∈ Z, then θi is a diffeomor-
phism, and f̂ |Ri

: Ri → Ri+1 is defined as f̂ |Ri
= θ−1

i+1 ◦ f ◦ θi . When otherwise Fc
x0

is compact, so as Fc
xi

for all i ∈ Z, then each θi can be seen as a universal covering
map of S

1 and f : Fc
xi

→ Fc
xi+1

can be seen as a circle diffeomorphism, thus one can
take f̂ |Ri

: Ri → Ri+1 to be the unique lifting map of f |F c
xi

that satisfies |f̂ (0i )| < ε.

Moreover, in both cases, f̂ (0i ) = 0i+1 whenever i ≤ −1 or i ≥ n.

Remark 2.4. The reason why we extend the center pseudo-orbit � to the bi-infinite one �∞
is that, in this way, one obtains an invariant set

⊔
i∈Z Ri of the lifting system f̂ . However,

one could lift the center dynamics as above over a general bi-infinite pseudo-orbit, but we
will concentrate on the finite part � in the following.

Recall that f (xi) = θi+1(ti+1) which is equivalent to say f̂ (0i ) = ti+1, with |ti+1| < ε

for all i ∈ Z and in particular ti+1 = 0 when i ≤ −1 or i ≥ n. The following lemma states
that replacing some points if necessary, the center pseudo orbit � can be chosen to jump
in an ordered way.

LEMMA 2.5. Replacing some of the intermediate points in {x1, x2 . . . , xn−1} if necessary,
one can assume that the ε-center pseudo orbit � from x0 to xn satisfies that all ti , 1 ≤ i ≤ n

have the same sign. That is to say, either −ε < ti ≤ 0 for all 1 ≤ i ≤ n or 0 ≤ ti < ε for
all 1 ≤ i ≤ n.

Proof. Note that f (Fc
xi

) = Fc
xi+1

. We split the proof into two cases whether the center
leaves are compact or not.

Non-compact case. Assume each Fc
xi

, i = 0, 1, . . . , n is non-compact and thus diffeo-
morphic to R by θi . To simplify notation, we define an order ‘≤’ on each Fc

xi
inherited

from that of R. To be precise, for every w, w′ ∈ Fc
xi

, one defines w ≤ w′ (respectively
w < w′) if and only if θ−1

i (w) ≤ θ−1
i (w′) (respectively θ−1

i (w) < θ−1
i (w′)).

Notice that f i(x0) ∈ Fc
xi

for each i = 0, 1, . . . , n. If in the trivial case f n(x0) = xn,
then one just takes xi = f i(x0) for each i = 1, 2, . . . n − 1 and as a result, every ti = 0.
So in the following, without loss of generality, assume that f n(x0) < xn and the other
case where xn < f n(x0) is symmetric. One concludes Lemma 2.5 in the non-compact
case from the following claim.

CLAIM 2.6. Replacing some of the intermediate points in {x1, x2, . . . , xn−1} if necessary,
we can choose � to satisfy that f i+1(x0) ≤ f (xi) ≤ xi+1 for any 0 ≤ i ≤ n − 1. This
implies that −ε < ti ≤ 0 for all 1 ≤ i ≤ n.

Proof of Claim 2.6. By the fact that Df preserves the orientation of Fc, the assumption
f n(x0) < xn implies f i(x0) < f −n+i (xn) for any i = 0, 1, . . . , n.
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We associate to the center pseudo orbit � = {x0, x1, . . . , xn} an integer
k = k(�) ∈ [0, n] defined by the following:
• if f n(x0) ≤ f (xn−1) ≤ xn holds, then k is the smallest integer in [0, n − 1] such that

for any i ∈ [k, n − 1], it satisfies f i+1(x0) ≤ f (xi) ≤ xi+1;
• if otherwise, take k = n.

If k = k(�) = 0, then Claim 2.6 satisfies automatically for �. Thus, in the following,
one assumes that k = k(�) ≥ 1.

By the choice of k, one knows that the inequality f k(x0) ≤ f (xk−1) ≤ xk does not hold.
Note that if k is taken as in the first case, then f k+1(x0) ≤ f (xk) implies f k(x0) ≤ xk; and
if in the second case where k = n, then one also has f k(x0) ≤ xk by assumption. Thus,
considering the orders of f k(x0), f (xk−1) and xk , there are the following two cases: either
f (xk−1) < f k(x0) ≤ xk or f k(x0) ≤ xk < f (xk−1).

Sub-case (a). If f (xk−1) < f k(x0) ≤ xk , the fact dc(f (xk−1), xk) < ε implies
dc(f k(x0), xk) < ε. Thus, the new collection

{x0, f (x0), . . . , f k−1(x0), xk , xk+1, . . . , xn−1, xn}
is an ε-center pseudo orbit that satisfies Claim 2.6 and one just denotes it by �′.

Sub-case (b). Now we assume f k(x0) ≤ xk < f (xk−1). By the orientation-preserving
property, we have f −1(xk) < xk−1 and x0 ≤ f −k(xk). Thus, there exists a minimal
j ∈ [1, k − 1] such that xi ≤ f −k+i (xk) for any i ∈ [0, j − 1] while f −k+j (xk) < xj . In
particular, when i = j − 1, the inequality xj−1 ≤ f −k+j−1(xk) implies that f (xj−1) ≤
f −k+j (xk)(< xj ). Thus,

dc(f (xj−1), f −k+j (xk)) ≤ dc(f (xj−1), xj ) < ε.

Consider the new collection

{x0, x1, . . . , xj−1, f −k+j (xk), f −k+j+1(xk), . . . , f −1(xk), xk , xk+1, . . . , xn−1, xn}.
This is an ε-center pseudo orbit and on Fc

xk
, it satisfies that

f k(x0) < f (f −1(xk)) = xk ≤ xk .

So we denote the new collection by �′′ in Sub-case (b).
Note that in Sub-case (b), the newly defined ε-center pseudo orbit �′′ satisfies that

k(�′′) ≤ k(�) − 1 < k(�). Moreover, the two endpoints x0 and xn are always kept. Since
the length of the pseudo orbit is finite, this process ends in finite steps. The final ε-center
pseudo orbit, denoted also by �′ as in Sub-case (a), satisfies Claim 2.6.

Compact case. Assume each Fc
xi

, i = 0, 1, . . . , n is compact and thus θi : Ri → Fc
xi

is a universal covering map. By the locally isometric property of θi , one can see that the
piece �̂ = {00, 01, 02, . . . , 0n−1, 0n} is an ε-pseudo orbit of the lifting dynamics f̂ , where
0i ∈ Ri is the zero point on Ri for any i = 0, 1, . . . , n. Note that f̂ (0i ) = ti+1. Applying
the same arguments as in the non-compact case, one can assume that all ti , 1 ≥ n have the
same sign. This completes the proof of Lemma 2.5.
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Remark 2.7. Since each f̂ |Ri
is strictly increasing, thus, when � is taken to satisfy that

−ε < ti ≤ 0 for all 1 ≤ i ≤ n as in Lemma 2.5, then f̂ i (00) ≤ 0i for all 1 ≤ i ≤ n. The
other case is symmetric.

One fixes the constants 0 < λ < 1 and 0 < η0 < 1/10−3 from §2.1 and 0 < ε0 < 1 in
§2.2.

2.3. Lifting bundle. Recall that we have fixed two C∞-sub-bundles F s and Fu that are
C0-close to Es and Eu, respectively. In this section, for a bi-infinite center pseudo orbit
�, we pull back the bundle F s ⊕ Fu over M to

⊔
i∈Z Ri through the C1-immersion map

θ :
⊔

i∈Z Ri → M . Then we obtain a tubular neighborhood of
⊔

i∈Z Ri on which one
could define an exponential map to M and a bundle map which is partially hyperbolic. The
construction follows essentially from [12, §4.1] where the ideas originates from [19]. We
sketch the arguments and conclusions here. Also some of the notation is borrowed from
[12].

Assume ε ∈ (0, ε0) and let � = {x0, x1, . . . , xn} be an ε-center pseudo orbit from
§2.2 that satisfies Lemma 2.5. Let �∞ = {xi}+∞

i=−∞ be the extended bi-infinite center
pseudo orbit such that xi = f i(x0) when i ≤ −1 and xi = f i−n(xn) when i ≥ n + 1
as in §2.2. One pulls back the C∞-bundle F s ⊕ Fu over M by the C1-leaf immersion
θ :

⊔
i∈Z Ri → M to get a fiber bundle θ∗(F s ⊕ Fu) over

⊔
i∈Z Ri . Thus, one has the

following commuting diagram:

θ∗(F s ⊕ Fu)
θ∗ ��

π

��

F s ⊕ Fu

π

��⊔
i∈Z

Ri
θ �� M

For each t ∈ Ri where i ∈ Z, one pulls back the Riemannian metric on F s
θi(t)

⊕ Fu
θi(t)

and thus the fiber

θ∗(F s ⊕ Fu)t : = θ∗(F s
θi (t)

⊕ Fu
θi(t)

)

over t ∈ Ri is a linear space equipped with an inner product structure. In this way, one
defines a metric ‖ · ‖t on θ∗(F s ⊕ Fu)t . For any constant δ > 0, any t ∈ Ri , and any
interval I ⊂ Ri , one denotes

θ∗(F s ⊕ Fu)t (δ) = {v ∈ θ∗(F s ⊕ Fu)t : ‖v‖t ≤ δ},

θ∗(F s ⊕ Fu)I (δ) =
⋃
t∈I

θ∗(F s ⊕ Fu)t (δ),

and
θ∗(F s ⊕ Fu)(δ) =

⋃
t∈⊔

i∈Z Ri

θ∗(F s ⊕ Fu)t (δ).

In particular, when δ = 0, the 0-section θ∗(F s ⊕ Fu)(0) is reduced to
⊔

i∈Z Ri .
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For t ∈ Ri and v ∈ θ∗(F s ⊕ Fu)t , let

�(v) = expθi (t)
(θ∗(v)).

In this way, one defines the exponential map � : θ∗(F s ⊕ Fu) → M . Then by [12,
Proposition 4.5], there exists a constant δ0 > 0 that depends only on f , F s , Fu such that
for any 0 < δ ≤ δ0 and for any t ∈ ⊔

i∈Z Ri , the set �(θ∗(F s ⊕ Fu)(t−δ,t+δ)(δ)) is open
in M. Moreover, the exponential map � is a diffeomorphism from θ∗(F s ⊕ Fu)(t−δ,t+δ)(δ)

to its image. As a consequence, there exists a constant C0 > 1 that depends on f such that
for any t ∈ ⊔

i∈Z Ri and any v ∈ θ∗(F s ⊕ Fu)t (δ0/C0), there exists a unique vector

θ∗f (v) : = �−1 ◦ f ◦ �(v) ∈ θ∗(F s ⊕ Fu)t (δ0/2),

where �−1 is defined from �(θ∗(F s ⊕ Fu)(t−δ0,t+δ0)(δ0)) to θ∗(F s ⊕ Fu)(t−δ0,t+δ0)(δ0).
That is to say, one has the following commuting diagram:

θ∗(F s ⊕ Fu)(δ0/C0)
θ∗f ��

�

��

θ∗(F s ⊕ Fu)(δ0/2)

�

��
M

f �� M

Moreover, the lifting map θ∗f is a diffeomorphism from θ∗(F s ⊕ Fu)(δ0/C0) to its
image. However, one pulls back the Riemannian metric on M through � to obtain a
local metric d̃(·, ·) on θ∗(F s ⊕ Fu)(δ0). To be precise, for any two v1, v2 ∈ θ∗(F s ⊕
Fu)(t−δ0,t+δ0)(δ0) for some t ∈ ⊔

i∈Z Ri , one has d̃(v1, v2) = d(�(v1), �(v2)). See
similar statements in [12, pp. 32].

Remark 2.8. When restricted to the 0-section θ∗(F s ⊕ Fu)(0) (which is
⊔

i∈Z Ri as
pointed out above), the map

θ∗f |θ∗(F s⊕Fu)(0) : θ∗(F s ⊕ Fu)(0) → θ∗(F s ⊕ Fu)(0)

is reduced to f̂ :
⊔

i∈Z Ri → ⊔
i∈Z Ri . In this sense, the map θ∗f is in fact an extension

of f̂ to a tubular neighborhood of
⊔

i∈Z Ri . Thus, in the following, we identify the
0-section θ∗(F s ⊕ Fu)(0) to

⊔
i∈Z Ri and associate the order on

⊔
i∈Z Ri to θ∗(F s ⊕

Fu)(0). One has

θ∗f |θ∗(F s⊕Fu)(0) = f̂ :
⊔
i∈Z

Ri →
⊔
i∈Z

Ri .

Remark 2.9. We point out that [12, Proposition 4.5] deals with periodic center leaves while
here we consider general ones. However, the existence of δ0 and C0 only depends on the
uniform hyperbolicity of the two extreme bundles Es/Eu (or equivalently on the constant
0 < λ < 1) and the bounded norm of f.

The partially hyperbolic splitting T M = Es ⊕ Ec ⊕ Eu induces a partially hyperbolic
structure for the bundle map θ∗f : θ∗(F s ⊕ Fu)(δ0/C0) → θ∗(F s ⊕ Fu)(δ0/2) over the
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diffeomorphism f̂ :
⊔

i∈Z Ri → ⊔
i∈Z Ri with partially hyperbolic splitting

T⊔
i∈Z

Ri
θ∗(F s ⊕ Fu) = θ∗(Es)|⊔

i∈Z
Ri

⊕ T

( ⊔
i∈Z

Ri

)
⊕ θ∗(Eu)|⊔

i∈Z
Ri

= (θ∗(Es) ⊕ θ∗(Ec) ⊕ θ∗(Eu))|⊔
i∈Z

Ri
.

The main ingredient is that θ :
⊔

i∈Z Ri → M is a normally hyperbolic immersion
following [19, p. 69]. The detailed proofs can be found in [12, Proposition 4.6].

One fixes the constants δ0 > 0 and C0 > 1 from §2.3.

2.4. Lipschitz shadowing of invariant manifolds and leaf conjugancy. Recall that X ∈
X r (M) is a Cr vector field which is positively transverse to Es ⊕ Eu (and also transverse
to F s ⊕ Fu) everywhere and Xτ is the time-τ map generated by X. In this section, we
consider the lifting bundle map of the composition Xτ ◦ f (which can be seen as Cr -small
perturbations of f provided τ is small). This allows us to have a Lipschitz shadowing
property of invariant manifolds (Theorem 2.10) and a leaf conjugacy map (§2.4.1).

The transverse property implies that X has no singularity. Denote fτ = Xτ ◦ f : M →
M for every τ ∈ R. One lifts X to be a vector field X̃ on θ∗(F s ⊕ Fu)(δ0) as follows:

X̃(v) = D�−1(X(�(v))) for all v ∈ θ∗(F s ⊕ Fu)(δ0).

The lifting vector field X̃ is C0-continuous on θ∗(F s ⊕ Fu)(δ0), while for τ small, the
time τ -map X̃τ generated by X̃ is a C1-diffeomorphism from θ∗(F s ⊕ Fu)(δ0/2) to
its image in θ∗(F s ⊕ Fu)(δ0) and satisfies X̃τ = �−1 ◦ Xτ ◦ �. One has the following
theorem which is stated in [12, Lemma 4.9, Theorems 4.2 and 4.3], and whose proofs
are originated from [19, Theorem 6.8] and based on [19, Theorem 6.1] which shows the
existence and properties of local invariant manifolds. Recall that we have fixed the constant
0 < η0 < 10−3 from §2.1.

THEOREM 2.10. There exist two constants τ0 > 0 and L > 1 such that for any τ ∈
[−τ0, τ0], the following properties are satisfied.
(1) The family of C1-diffeomorphisms

f̃τ = X̃τ ◦ θ∗f : θ∗(F s ⊕ Fu)(δ0/C0) → θ∗(F s ⊕ Fu)(δ0)

is well defined and f̃τ → θ∗f in the C1-topology as τ → 0. Moreover, one has

d̃(v, X̃τ (v)) ≤ L · |τ |, for all v ∈ θ∗(F s ⊕ Fu)(δ0/C0).

(2) There exists an f̃τ -invariant C1-smooth section στ :
⊔

i∈Z Ri → θ∗(F s ⊕ Fu)(δ0)

which is defined as

στ

( ⊔
i∈Z

Ri

)
=

⋂
n∈Z

f̃ n
τ (θ∗(F s ⊕ Fu)(δ0/C0)),
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and which varies continuously with respect to τ . The two C1-manifolds,

Wcs
τ =

+∞⋂
n=0

f̃ −n
τ (θ∗(F s ⊕ Fu)(δ0/C0)) and Wcu

τ =
+∞⋂
n=0

f̃ n
τ (θ∗(F s ⊕ Fu)(δ0/C0)),

intersect transversely at στ (
⊔

i∈Z Ri ) = Wcs
τ ∩ Wcu

τ . Moreover, the section στ

converges to σ0 in the C1-topology as τ → 0, where σ0(
⊔

i∈Z Ri ) = ⊔
i∈Z Ri is

the 0-section.
(3) For any t ∈ Ri , i ∈ Z and any C1 map ϕ : Es

θi(t)
(δ0) ⊕ Eu

θi(t)
(δ0) → Ec

θi(t)
(δ0)

satisfying ϕ(0) = 0, ‖∂ϕ/∂α‖ ≤ η0 for α = s, u, the C1-submanifold

Dsu
θi(t)

= expθi (t)
(Graph(ϕ))

= expθi (t)
({vsu + ϕ(vsu) : vsu ∈ Es

θi(t)
(δ0) ⊕ Eu

θi(t)
(δ0)})

intersects �(στ ((t − δ0, t + δ0))) at a unique point q = q(t , τ , ϕ). Moreover, let
vsu
q ∈ Es

θi(t)
(δ0) ⊕ Eu

θi(t)
(δ0) be such that q = expθi (t)

(vsu
q + ϕ(vsu

q )), then

‖vsu
q ‖ + ‖ϕ(vsu

q )‖ ≤ L · |τ |,
which in particular implies that στ (

⊔
i∈Z Ri ) ⊂ θ∗(F s ⊕ Fu)(L · |τ |).

Remark 2.11. Note that the map f̃τ = X̃τ ◦ θ∗f in Theorem 2.10 is the lift of
fτ = Xτ ◦ f . In particular, when τ = 0, one has f̃0 = θ∗f and as a consequence (recall
Remark 2.8), when restricted to the 0-section θ∗(F s ⊕ Fu)(0) = ⊔

i∈Z Ri , it satisfies:

f̃0|⊔
i∈Z

Ri
= θ∗f |⊔

i∈Z
Ri

= f̂ :
⊔
i∈Z

Ri →
⊔
i∈Z

Ri .

2.4.1. Leaf conjugacy. Given a constant η ∈ (0, η0] and an (s + u)-dimensional
C∞-sub-bundle F of T M that is η-C0-close to Es ⊕ Eu. For a point z ∈ M and a constant
0 < δ ≤ δ0, let

DF
z (δ) = expz(Fz(δ)).

Then following the arguments in [12, §4.2] (different to our setting here, as [12, §4.2] deals
with a bundle Es ⊕ F where Es is the contracting sub-bundle in the partially hyperbolic
splitting and F is an u-dimensional C∞-sub-bundle that is C0-close to the expanding
sub-bundle Eu), there exists a constant δ1 = δ1(F , η) ∈ (0, δ0] such that the following
properties are satisfied.
(1) For any point z ∈ M , the set DF

z (δ1) is a Cr -smooth local manifold whose tangent
bundle is 2η-close to Es ⊕ Eu. To be precise,

� (TwDF
z (δ1), (Es ⊕ Eu)w) < 2η, for all w ∈ DF

z (δ1).

As a consequence, there exists a Cr -map ϕsu
z : Es(δ1/2) ⊕ Eu(δ1/2) → Ec(δ1/2)

satisfying that:
• Graph(ϕsu

z ) = exp−1(DF
z (δ1)) ∩ TzM(δ1/2);

• ϕsu
z (0su

z ) = 0c
z and ‖∂ϕsu

z /∂α‖ < 2η for α = s, u.
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(2) Given a C1-center curve γ c with radius δ1 and centered at a point z ∈ M , the set

BF
z (γ c, δ1) =

⋃
w∈γ c

DF
w(δ1)

is a neighborhood of z in M and the family

DF (γ c) = {DF
w(δ1) : w ∈ γ c}

forms a C0-foliation of BF
z (δ1). Moreover, the foliation DF (γ c) is transverse to any

C1-curve γ ∈ BF
z (δ1) that is tangent to the η-cone filed of Ec.

(3) By the uniform transversality and compactness, for any constant δ ∈ [0, δ1], there
exists δ′ ∈ [0, δ1] such that given a C1-center curve γ c with radius δ1 and centered
at a point z ∈ M , if γ1 and γ2 are two C1-curves tangent to the η0-cone field of Ec

in BF
z (γ c, δ1) with endpoints wi , w′

i , i = 1, 2 that satisfy

w1, w2 ∈ DF
w0

(δ1) and w′
1, w′

2 ∈ DF
w′

0
(δ1) where w0, w′

0 ∈ γ c,

then length(γ1) ≥ δ implies length(γ2) ≥ δ′.
Denote D̃F

t (δ) = �−1(DF
θ(t)(δ)) for 0 < δ < δ1. Then

DF (δ1/10) =
{
D̃F

t (δ) ∩ θ∗(F s ⊕ Fu)(δ1/10) : t ∈
⊔
i∈Z

Ri

}

forms a C0-foliation of θ∗(F s ⊕ Fu)(δ1/10) that is transverse to (�−1)∗(Ec) everywhere.
Following the idea of [19, §7], one can define a leaf conjugacy as follows. There exists
a constant τ1 = τ1(η, F , δ1) ∈ (0, τ0] where τ0 is from Theorem 2.10, such that for every
τ ∈ [−τ1, τ1], the leaf conjugacy

hτ :
⊔
i∈Z

Ri →
⊔
i∈Z

στ (Ri ),

where

hτ (t) = στ (Ri ) ∩ D̃F
t (δ1), for all t ∈ Ri ,

is well defined. In particular, when τ = 0, the map h0|Ri
is the identity map Id |Ri

.
The constant η and the bundle F (thus δ1 = δ1(η, F) and τ1 = τ1(η, F , δ1)) will be

determined in Proposition 3.1 in the next section.

3. Proofs of main theorems
In this section, we prove Theorem A and Corollary B. Let f ∈ DPHr

1(M), r ∈ N≥2 ∪ {∞}
and X ∈ X r (M) be a vector field that is positively transverse to Es ⊕ Eu. For the proof of
Theorem A, all the settings and assumptions are taken from §2.

3.1. A global perturbation along the center direction. One has the following proposition
that realizes perturbations along center directions. The idea essentially follows from
arguments in [12, Proposition 4.17] with the difference that [12, Proposition 4.17] deals
with periodic leaves while here we consider general cases. We will include the proof for
completeness. Recall in Remarks 2.8 and 2.11, the 0-section θ∗(F s ⊕ Fu)(0) is identified
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to be
⊔

i∈Z Ri and thus is associated with an order from
⊔

i∈Z Ri . Also restricted on
θ∗(F s ⊕ Fu)(0), one has f̃0|⊔

i∈Z Ri
= θ∗f |⊔

i∈Z Ri
= f̂ .

PROPOSITION 3.1. There exist a constant η = η(f , X) ∈ (0, η0], an (s + u)-dimensional
C∞ sub-bundle F ⊂ T M that is η-close to Es ⊕ Eu and τ2 = τ2(f , X, η, F) ∈ (0, τ1]
such that the following properties are satisfied. For τ ∈ [−τ2, τ2], let hτ :

⊔
i∈Z Ri →⊔

i∈Z στ (Ri ) be the leaf conjugacy

hτ (t) = στ (Ri ) ∩ D̃F
t (δ1) for all t ∈ Ri ,

then for any τ ∈ [−τ2, τ2], there exists �τ > 0 such that for any t ∈ Ri , one has:
(1) if 0 < τ < τ2, then

f̃τ ◦ hτ (t) > hτ (θ
∗f (t) + �τ );

(2) if −τ2 < τ < 0, then

f̃τ ◦ hτ (t) < hτ (θ
∗f (t) − �τ).

Here the order on each στ (Ri ) is inherited from that on Ri . The constants δ1 = δ1(η, F)

and τ1 = τ1(η, F , δ1) are from §2.4.1.

Proof. We only prove the case when τ > 0 since the other case when τ < 0 is symmetric.

3.1.1. The lifting vector field X̂ on T M . One first lifts X to T M in the following way:
given a point z ∈ M , let X̂z = D exp−1

z (X). Then X̂z is a vector field which is well
defined in a neighborhood of the zero vector 0z ∈ TzM . Note that for v ∈ TzM , its tangent
space Tv(TzM) ∼= TzM , thus it admits a direct sum Tv(TzM) = Es

z(v) ⊕ Ec
z(v) ⊕ Eu

z (v)

induced by TzM = Es
z ⊕ Ec

z ⊕ Eu
z . For v ∈ TzM close to 0z, denote

X̂z(v) = X̂s
z(v) ⊕ X̂c

z(v) ⊕ X̂u
z (v),

where X̂α
z (v) ∈ Eα

z (v), α = s, c, u. Recall that X is positively transverse to Es ⊕ Eu, thus
there exist constants δ2 > 0, a0 > 0, and b0 > 0 such that for any z ∈ M:
• for any v ∈ TzM(δ2) = Es

z(δ2) ⊕ Ec
z(δ2) ⊕ Eu

z (δ2), it satisfies

‖X̂c
z(v)‖ ≥ b0, and ‖X̂s

z(v) + X̂u
z (v)‖ < a0‖X̂c

z(v)‖ ≤ 2a0‖X̂‖;

• for any v ∈ Es
z(δ2) ⊕ Eu

z (δ2), the curve expz(v × Ec
z(δ2)) is tangent to the η0-cone

field of Ec.
Recall that one has defined an order on Ec

z that is induced from the orientation of Ec in
§2.1. One thus can associate the order of Ec

z to Ec
z(v) for each v ∈ TzM . Then we have

X̂c
z(v) ≥ b0 > 0 for every vector v ∈ TzM(δ2).

3.1.2. The choices of constants η, τ ′ and the C∞ bundle F. Let τ0 > 0 and L > 1 be the
two constants given by Theorem 2.10. Now we take the constant η = η(f , X) ∈ (0, η0] and
the (s + u)-dimensional C∞ sub-bundle F ⊂ T M as follows.
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• Take η to satisfy

0 < η < min
{
η0,

b0

8 · [(‖Df ‖ + 1) · L + 2a0‖X̂‖]

}
.

• Take an (s + u)-dimensional C∞ sub-bundle F ⊂ T M that is η-close to Es ⊕ Eu,
that is, � (F , Es ⊕ Eu) < η.

Associated to η and F, there exist δ1 = δ1(η, F) ∈ (0, δ0] and τ1 = τ1(η, F , δ1) ∈ (0, τ0]
that are from §2.4.1. Set δ′ = 10−2 min{δ1, δ2} and take a constant τ ′ = τ ′(f , X, η, F) ∈
(0, τ0] that satisfies

0 < τ ′ < min
{
τ1,

δ′

100L(‖X‖ + 1)‖Df ‖
}

,

where ‖X‖ = supx∈M ‖X(x)‖ and ‖Df ‖ = supx∈M ‖Df (x)‖.

3.1.3. The estimation of moving along the center direction. Fix t ∈ Ri and denote
z0 = θi(t). For any τ ∈ [−τ ′, τ ′], let qτ = �(hτ (t)). By the choices of constants
and Theorem 2.10, one has that qτ ∈ DF

z0
(δ′). Moreover, considering the direct sum

exp−1(qτ ) = vsu
qτ

+ vc
qτ

∈ Esu
z0

⊕ Ec
z0

, it satisfies that

‖vsu
qτ

‖ ≤ L · τ ≤ δ′

100(‖X‖ + 1)‖Df ‖ .

Let ϕsu
z0

: Es
z0

(δ1/2) ⊕ Eu
z0

(δ1/2) → Ec
z0

(δ1/2) be the Cr -map satisfying that

Graph(ϕsu
z0

) = exp−1(DF
z0

(δ1)) ∩ TzM(δ1/2),

then one has

vc
qτ

= ϕsu
z0

(vsu
qτ

) < 2η · ‖vsu
qτ

‖ ≤ 2η · L · τ ≤ 2η · δ′

100(‖X‖ + 1)‖Df ‖ .

Note that z0 = θi(t) and f (z0) = θi+1(θ
∗f (t)). By the choices of constants above, for

any τ ∈ [−τ ′, τ ′], one has

f (qτ ) ∈ Bf (z0)(δ
′/10) and fτ (qτ ) = Xτ ◦ f (qτ ) ∈ Bf (z0)(δ

′).

Consider the direct sum

exp−1
f (z0)

(f (qτ )) = vsu
f (qτ ) + vc

f (qτ ) ∈ Esu
f (z0)

⊕ Ec
f (z0)

,

then one has the following claim.

CLAIM 3.2. There exist a continuous function ξ : R → R
+ that depends on f and X

satisfying that:
(1) ξ(τ ) = o(τ ) as τ → 0;
(2) the following estimates holds:

• ‖vsu
f (qτ )‖ ≤ (‖Df (z0)‖ + ξ(τ )) · ‖vsu

qτ
‖ ≤ (‖Df (z0)‖ + ξ(τ )) · Lτ ;

• ‖vc
f (qτ )‖ ≤ (‖Df |Ec

z0
‖ + ξ(τ )) · ‖vc

qτ
‖ ≤ 2η · (‖Df |Ec

z0
‖ + ξ(τ )) · Lτ .

The second formula implies that

vc
f (qτ ) ≥ −2η · (‖Df |Ec

z0
‖ + ξ(τ )) · Lτ .
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Proof of the Claim. The proof is essentially because the map exp−1
f (z0)

◦f ◦ expz0
is

C1-smooth at 0z0 and D(exp−1
f (z0)

◦f ◦ expz0
)(0z0) = Df (z0). See the details in the proof

of [12, Claim 4.19].

3.1.4. The action of X̂τ on exp−1
f (z0)

(f (qτ )). Note first that

expf (z0)
◦X̂τ (exp−1

f (z0)
(f (qτ ))) = Xτ ◦ f (qτ ) = fτ (qτ ) = � ◦ f̃τ (hτ (t)) : = pτ .

This gives

X̂τ (exp−1
f (z0)

(f (qτ ))) = exp−1
f (z0)

(� ◦ f̃τ (hτ (t))) = exp−1
f (z0)

(pτ ).

We consider the direct sum

X̂τ (v
su
f (qτ ) + vc

f (qτ )) = X̂τ (exp−1
f (z0)

(f (qτ ))) = vsu
pτ

+ vc
pτ

∈ Esu
f (z0)

⊕ Ec
f (z0)

.

It satisfies that for every τ ∈ [−τ ′, τ ′]:
• ‖vsu

pτ
‖ ≤ ‖vsu

f (qτ )‖ + supv∈Tf (z0)M(δ2)
(‖X̂s

f (z0)
(v) + X̂u

f (z0)
(v)‖) · τ ≤ ‖vsu

f (qτ )‖ +
2a0‖X̂‖ · τ ;

• vc
pτ

≥ −‖vc
f (qτ )‖ + infv∈Tf (z0)M(δ2) ‖X̂c

f (z0)
(v)‖ · τ ≥ −‖vc

f (qτ )‖ + b0 · τ .
Combined with Claim 3.2, one has

‖vsu
pτ

‖ ≤ [(‖Df (z0)‖ + ξ(τ )) · L + 2a0‖X̂‖)] · τ and

vc
pτ

≥ b0 · τ − 2η · (‖Df |Ec
z0

‖ + ξ(τ )) · L · τ .

3.1.5. The constant τ2. By item (1) of Claim 3.2, since ξ(τ ) is a positive infinitesimal
as τ → 0, there exists τ2 ∈ (0, τ ′] such that for any τ ∈ [−τ2, τ2], the following holds:

0 < ξ(τ) < 1 and [(‖Df ‖ + 1) · L + 2a0‖X̂‖)] · |τ | < δ′.

Consider the disk DF
f (z0)

(δ′) and let ϕsu
f (z0)

: Es
f (z0)

(δ1/2) ⊕ Eu
f (z0)

(δ1/2) → Ec
f (z0)

(δ1/2)

be the Cr -map whose graph determines DF
f (z0)

(δ′) through the exponential map expf (z0)
.

When τ ∈ (0, τ2], by the choice of η, one has

vc
pτ

− ϕsu
f (z0)

(vsu
pτ

) > b0 · τ − 2η · (‖Df |Ec
z0

‖ + 1) · L · τ − 2η‖vsu
pτ

‖
> b0 · τ − 2η · [2(‖Df ‖ + 1) · L + 2a0‖X̂‖] · τ

> b0 · τ − b0

2
· τ = b0

2
· τ .

Thus, when 0 < τ < τ2, the point

pτ = expf (z0)
(vsu

pτ
+ vc

pτ
) = fτ (qτ ) = � ◦ f̃τ (hτ (t))

belongs to DF
θi+1(t)

(δ′) for some t ′ ∈ Ri+1 that satisfies

t ′ > θ∗f (t).

Finally, consider the segment

γ : = expf (z0)
({vsu

pτ
+ vc : ϕsu

f (z0)
(vsu

pτ
) ≤ vc ≤ vc

pτ
}).
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One has that γ is tangent to the η0-cone field of Ec with length uniformly bounded
from from below (depending on τ ). By item (3) of §2.4.1, there exists �τ > 0 such that
t ′ − θ∗f (t) > �τ . As a consequence, one has

f̃τ ◦ hτ (t) > hτ (θ
∗f (t) + �τ ).

This completes the proof.

Remark 3.3. The constant �τ depends on f , X, F , and τ but is independent of the choice
of center pseudo orbit �.

3.2. Proof of Theorem A. Based on Proposition 3.1, we are ready to prove Theorem A.
As we have mentioned before, we have to deal with general orbits of center leaves rather
than periodic ones which are considered in the proof of [12, Theorem 2.3].

Proof of Theorem A. Let f ∈ DPHr
1(M), r ∈ N≥2. Assume X ∈ X r (M) is a vector field

that is transverse to Es ⊕ Eu and the constant ε0 is taken as in §2.1. Let L > 1 be from
Theorem 2.10. Let the constant η > 0, the C∞-bundle F ⊂ T M , and the constant τ2 be
from Proposition 3.1. For each

k > 2 max
{

1
τ2

,
L + 1

ε0

}
,

let �1/k > 0 be the constant associated to τ = 1/k from Proposition 3.1 and take ε ∈
(0, ε0) satisfying

0 < ε < min{1/k, �1/k}.
Assume x �f y. By Proposition 2.1, one takes an ε-center pseudo orbit

� = {x0, x1, . . . , xn}
such that

d(x0, x) < ε and d(xn, y) < ε.

Moreover, one assumes that � satisfies Lemma 2.5. Additionally, if x ∈ CR(f ), that is,
y = x, one can take � to satisfy that x0 = xn by Proposition 2.1 and Remark 2.2. Without
loss of generality, we assume that −ε < ti ≤ 0 for each 0 ≤ i ≤ n and the other case is
symmetric.

Let �∞ = {xi}+∞
i=−∞ be the extended bi-infinite center pseudo orbit such that xi =

f i(x0) when i ≤ −1 and xi = f i−n(xn) when i ≥ n + 1. Denote by

θ∗f : θ∗(F s ⊕ Fu)(δ0/C0) → θ∗(F s ⊕ Fu)(δ0/2)

the bundle dynamics associated to �∞ as in §2.3. Moreover, let

f̃τ = X̃τ ◦ θ∗f : θ∗(F s ⊕ Fu)(δ0/C0) → θ∗(F s ⊕ Fu)(δ0)

be the action of lifting vector field of X composed with θ∗f as in §2.4.
From the choice of center pseudo orbit �, one knows that

f̃ i
0 (00) = (θ∗f )i(00) ≤ 0i for all 1 ≤ i ≤ n.
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In the trivial case when f̃ n
0 (00) = 0n, which is equivalent to f n(x0) = xn, the collection

{x0, x1, . . . , xn} is a piece of orbit segment from x0 to xn and the conclusion holds
automatically.

We now assume that f̃ n
0 (00) < 0n. Consider the bundle dynamics θ∗f on the lift-

ing bundle θ∗(F s ⊕ Fu) and its perturbation f̃1/k = X̃1/k ◦ θ∗f defined on θ∗(F s ⊕
Fu)(δ0/C0). Let h1/k :

⊔
i∈Z Ri → ⊔

i∈Z σ1/k(Ri ) be the leaf conjugacy in §2.4.1. Note
that by the choices of constants, one has

−�1/k < −ε < ti ≤ 0 for all 1 ≤ i ≤ n.

By Proposition 3.1, one has the following estimation for the zero point 00 ∈ R0:

f̃ n
1/k(h1/k(00)) > f̃ n−1

1/k (h1/k(θ
∗f (00) + �1/k)) = f̃ n−1

1/k (h1/k(t1 + �1/k))

> f̃ n−1
1/k (h1/k(01))

> · · · · · ·
> f̃1/k(h1/k(0n−1))

> h1/k(θ
∗f (0n−1) + �1/k) = h1/k(tn + �1/k)

> h1/k(0n).

Recall that f̃ n
0 (00) < 0n and στ as well as hτ varies continuously with respect to τ .

Thus, there exists τk ∈ (0, 1/k) such that

f̃ n
τk

(hτk
(00)) = hτk

(0n).

Let pk = �(hτk
(00)) and qk = �(hτk

(0n)), then it satisfies

f n
τk

(pk) = (Xτk
◦ f )n(pk) = qk .

Moreover, by Theorem 2.10, one has that

d(x, pk) ≤ d(x, x0) + d(x0, pk) < ε + L · τk <
L + 1

k
,

d(y, qk) ≤ d(y, xn) + d(xn, qk) < ε + L · τk <
L + 1

k
.

In particular, when x ∈ CR(f ), that is, y = x, one has x0 = xn as well as 00 = 0n,
which implies that

pk = �(hτk
(00)) = �(hτk

(0n)) = qk .

As a consequence, one has that f n
τk

(pk) = (Xτk
◦ f )n(pk) = pk .

By taking k → ∞, this allows ε to be arbitrarily small for the ε-center pseudo orbit �.
This finishes the proof of Theorem A.

3.3. Proof of Corollary B. Based on Theorem A, the proof of item (1) in Corollary B
is obtained from the classical Baire arguments, see for instance [4, §5] and [13, §3]. Items
(2) and (3) are direct consequences of item (1). We provide a short proof for completeness
of the paper. As we have mentioned, the reason that we consider the set DEPHr

1(M) in
Corollary B is because DEPHr

1(M) forms an open set in PHr (M).
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Proof of Corollary B. As a consequence of [12, Theorem A], there exists a dense Gδ

subset R0 in DEPHr
1(M) such that every f ∈ R0 satisfies �(f ) = Per(f ).

Take a countable basis {On}n∈N of M and let {Wn}n∈N be the countable collection
where every Wn is the union of finitely many elements in {On}n∈N. For each n, m ∈ N,
one defines the following two open sets Hn,m and Nn,m in DEPHr

1(M):
• f ∈ Hn,m if there exists a neighborhood U of f in DEPHr

1(M) such that for any g ∈ U ,
there exists k ≥ 1 satisfying gk(Wn) ∩ Wm �= ∅;

• f ∈ Nn,m if there exists a neighborhood U of f in DEPHr
1(M) such that for any g ∈ U

and for any k ≥ 1, it satisfies gk(Wn) ∩ Wm = ∅.
It is not difficult to verify that Nn,m = Int(DEPHr

1(M) \ Hn,m), where Int(·) means taking
the interior. Thus, Hn,m ∪ Nn,m is open dense in DEPHr

1(M). Let

R = R0 ∩
( ⋂

n,m∈N
(Hn,m ∪ Nn,m)

)
.

Then R is a dense Gδ subset in DEPHr
1(M). We claim that the conclusions of Corollary B

hold for f ∈ R.
Let f ∈ R. Assume x �f y. For any neighborhood U of x and any neighborhood V of y,

take n, m ∈ N such that Wn ⊂ U and Wm ⊂ V . By Theorem A, for any neighborhood U of
f in DEPHr

1(M), there exists g ∈ U and k ≥ 1 such that gk(Wn) ∩ Wm �= ∅. This implies
that f ∈ Hn,m since f ∈ Hn,m ∪ Nn,m. As a consequence, there exists � > 1 such that
f �(U) ∩ V �= ∅ by the definition of Hn,m together with the fact Wn ⊂ U and Wm ⊂ V .
Since U and V are taken arbitrarily, one has x ≺f y. This proves item (1).

By item (1), for any x ∈ CR(f ), it satisfies x ≺f x which is equivalent to say x ∈
�(f ). Thus, one has CR(f ) = �(f ). Since f ∈ R, one has �(f ) = Per(f ), This verifies
item (2).

To prove item (3), assume f ∈ R is chain-transitive. For any two non-empty open sets
U , V ⊂ M , there exists x ∈ U and y ∈ V such that x �f y. By item (1), one has x ≺f y,
thus there exists n ≥ 1 such that f n(U) ∩ V �= ∅. This proves that f is transitive.
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