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1

1Department of Earth and Environmental Science, University of Pennsylvania, 240 S. 33rd Street, Philadelphia,
PA 19104-6313, USA

2Department of Earth and Environmental Sciences, University of Illinois at Chicago, 845 West Taylor Street, Chicago,
IL 60607-7059, USA

Abstract—The characterization of freshly cleaved mica surfaces for surface structure and chemical
composition was briefly reviewed and focused on surface crystal chemistry using X-ray photoelectron
spectroscopy (XPS) and other surface-sensitive techniques. This paper considers micas, which are useful as
a first approximation for the behavior of many clay surfaces. Emphasis was given to phyllosilicate XPS
binding energies (‘‘chemical shift’’), which were described and used to obtain oxidation state, layer charge,
and chemical bonding information from the chemical shifts of different peaks. The chemical shift of the
Si2p binding-energy to lower values can result from a negative charge increase because of Si4+ replacement
by Al3+ and/or Fe3+. The apparent interlayer coordination number reduction from twelve to eight at
muscovite and tetraferri-phlogopite (001) surfaces was indicated by the XPS measured K2p binding-energy
and is consistent with bond relaxation. Although chemical shifts are valuable to distinguish chemical
bonding and oxidation state, chemical shifts usually cannot distinguish between different Al coordination
environments where Al is in both tetrahedral and octahedral sites.
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INTRODUCTION

Interest in mineral surface science has increased

significantly over the last decades. Innovative research

on mineral surfaces has generated a better understanding

of environmentally related aspects and promising indus-

trial process applications. In addition, a better character-

ization and understanding of Earth material surface

properties has been of fundamental importance to

mineralogy, geochemistry, solid-state physics, biology,

chemistry, and material science, as well as for pharma-

ceutical and cosmetic applications (Hochella, 1990, 1995;

Seyama and Soma, 2003; Carretero and Pozo, 2009, 2010;

Maurice, 2009; Somorjai and Li, 2011).

Surfaces of phyllosilicates affect the chemical

composition of ground and surface waters through

adsorption and desorption of organic and inorganic

compounds and by retarding transport of radionuclides

and heavy-metal pollutants. These surfaces are also

important in rock weathering, soil formation, and oil-

field reservoir behavior. The direct study of clay particle

surfaces is both difficult and complex because the

particles are fine-grained. In contrast, large mica flakes

are more easily investigated, and it is generally agreed

that micas are useful as a first approximation for the

behavior of many clay surfaces (e.g. Stucki et al., 1976).

Mineral properties, especially those of layer silicates,

depend to a large extent on the arrangement of the

atomic planes close to the surface, which may differ

from the bulk structure, e.g. in regard to redox state,

atomic coordination, or chemical bond type. The

influence of surface structure on physical properties

was demonstrated, for example, by the production of

mica-based pearlescent pigments with a parallel align-

ment of mica particles (Maisch et al., 1996; Gershenkop

et al., 2001; Junru et al., 2002; Tenório Cavalcante et

al., 2007).

Despite extensive phyllosilicate use in several indus-

trial processes, only limited studies have been conducted

to characterize the surface crystal chemistry of freshly

cleaved minerals (i.e., Bhattacharyya, 1993; Biino and

Groning, 1998; Kuwahara, 1999, 2001; Ilton et al., 2000;

Elmi et al., 2013, 2014a, 2014b).

Several studies focused on mechanisms for the

cohesion between mica surfaces (Obreimoff, 1930;

Gutshall et al., 1970; Metsik, 1972; Giese, 1974; Chan

and Richmond, 1977; Christenson, 1993; Moore and

Lockner, 2004; Fu et al., 2011; Sakuma, 2013), on

weathering (Bancroft et al., 1979; Hochella, 1995;

Maurice, 2009), and on metal adsoption between (001)

phyllosilicate surfaces and aqueous solutions (Fenter and

Sturchio, 2004; Lee et al., 2010, 2012, 2013).

The phyllosilicates are ideal for studying the cohe-

sion between clean, atomically smooth surfaces. Surface

properties and, in particular, the arrangement and

reactivity of intercalated species in phyllosilicates are

influenced by the net negative layer charge, the

composition of each surface site, and the topology of

the polyhedral linkages (Gutshall et al., 1970; Metsik,

1972; Giese, 1974, 1977, 1978). The origin of layer
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charge is in isomorphous cation replacement. Layer

charge is generally determined by chemical methods,

such as the structural-formula method, cation exchange

capacity (CEC), and alkylammonium-exchange method

(Czı́merováa et al., 2006). Adsorbed ions change the

phyllosilicate (001) surface negative charge and affect

phyllosilicate stability under aqueous conditions (Fenter

and Sturchio, 2004; Lee et al., 2010, 2012, 2013). The

structure of the interface between muscovite (001)

surfaces and aqueous monovalent and divalent metal

cation solutions can be measured using in situ specular

X-ray reflectivity and element-specific resonant anom-

alous X-ray reflectivity (RAXR) (Lee et al., 2010, 2012,

2013). The charge distribution in each sheet, however, is

difficult to establish using X-ray diffraction methods

because the unit cell is the average of all structural

environments. Complementary to RAXR, X-ray absorp-

tion near edge structure (XANES) and extended X-ray

absorption fine structure (EXAFS) can provide informa-

tion on local structures (i.e., Marcelli et al., 2006),

adsorbed metal cations (i.e., Beaulieu and Savage,

2005), or dissolution (i.e. Show et al., 2009) at the

phyllosilicate-water interface.

X-ray photoelectron spectroscopy (XPS) is a useful

technique for the analysis of layered structures, such as

phyllosilicates, where preferred crystal orientation is

achieved easily. XPS is especially valuable for phyllo-

silicate surface layer charge measurements. This review

focuses on the surface structure and chemistry of freshly

cleaved phyllosilicates studied using X-ray photoelec-

tron spectroscopy (XPS). The progress obtained in the

last decades to clarify structural aspects of freshly

cleaved phyllosilicate surfaces is emphasized. In addi-

tion, XPS data were compared to results obtained using

other surface-sensitive techniques, such as low-energy

electron diffraction (LEED), atomic force microscopy

(AFM), secondary ion mass spectrometry (SIMS), Auger

electron spectrometry (AES), and X-ray photoelectron

diffraction (XPD). Starting from the layer silicate bulk

structure, where the three-dimensional structure is well

established (for a review, see Brigatti and Guggenheim,

2002; Brigatti et al., 2011; Guggenheim, 2011), the

present paper considers compositional and structural

aspects of freshly cleaved phyllosilicate surfaces.

Phyllosilicate XPS binding energies are described here

to obtain oxidation state, layer charge, and chemical

bonding information from the chemical shifts of

different peaks.

The study of phyllosilicates by XPS can potentially

be applied in forensic science to identify, for example,

thin mineral layers deposited on substrates. These

deposits can result from explosions and/or fire, soil

and sand traces, particulate matter, cosmetics, or from

sequestration of marker elements and molecules on

surfaces (Watts, 2010). XPS reveals differences in

chemical composition between the surface and the bulk

mineral and assesses changes in composition and

chemical bonding as a result of surface interactions

with other materials. XPS can monitor adsorption,

desorption, dissolution, and exchange reactions on

mineral surfaces. However, XPS is still not widely

used in mineralogy and related geoscience fields to

examine crystal chemical variations (i.e. cation distribu-

tion and replacement, and relaxation or reconstruction

effects) from the bulk to the surface.

DESIGN TECHNIQUE FOR PHYLLOSILICATE

ANALYSIS

X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS), also known

as Electron Spectroscopy for Chemical Analysis

(ESCA), is a surface-sensitive technique, which deter-

mines the concentration and chemical states of elements

in the very near-surface layer (1�10 nm) of both

conductive and non-conductive materials. All elements,

except for H and He, are detectable by XPS at

concentrations of >0.1 atomic percent. An added

advantage is that XPS is essentially nondestructive

even for materials of high susceptibility to damage,

such as phyllosilicates. Thus, characteristic features of

XPS can reveal differences between the surface and bulk

mineral in chemical composition, oxidation state,

coordination number, and local bonding environment.

In addition, XPS can determine changes in composition

and chemical bonding that result from surface interac-

tions with other materials (Seyama et al., 2006). This is

possible because the X-radiation commonly used does

not produce chemical changes in the surface layers

(Wagner et al., 1979).

Surface analysis by XPS is generally performed by

sample irradiation using photons under ultra-high

vacuum (10�8 Torr) using soft X-rays (AlKa at

1486.6 eV or MgKa at 1253.6 eV). The irradiated

atoms emit photoelectrons after direct energy transfer

from the incident photons to core-level electrons in the

target surface. Photoelectrons emitted from atoms near

the surface escape into the vacuum chamber, where the

electrons are separated according to energy and counted.

The photoelectron binding energies are equal to the

energy difference between incident photons and the sum

of the photoelectron kinetic energy and the work

function of the sample-spectrometer system (Kerkhof

and Moulijn, 1979; Ratner and Castner, 2009). The

binding energy is characteristic of a given energy level

for each atom, and thus is dependent on the chemical

environment about a given atom (Ratner and Castner,

2009). Therefore, the interpretation of ESCA spectra of

phyllosilicate surfaces can provide information on the

molecular environment (i.e. oxidation state, multiplet

structure, chemical bonding, etc.) and provide a quanti-

tative elemental analysis of the surface (error < � 10 %).

Adventitious carbon (i.e. aliphatic hydrocarbon),

which is ubiquitous, has a 1s-valence band, and this
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peak is commonly used to fix the binding-energy scale

(assumed C1s-binding energy: 284.8 eV), although this

peak has a limited degree of accuracy and precision.

Koppelman et al. (1980) reported an accuracy of �0.2 eV

and a precision of �0.1 eV for the C1s-binding energy

referenced to the Au4f peak. For micas and phyllo-

silicates, many authors (Biino and Groning, 1998;

Seyama et al., 2006; Elmi et al., 2013, 2014a, 2014b)

have shown that repeated analysis of the same spot on a

mica sample yielded a precision of �0.1 eV for C1s when

referenced to the Si2p peak. The electron energy shift

(peak position) relative to that of the reference

compound is termed the chemical shift. The chemical

shift of the photoelectron binding energy is dependent on

the chemical environment of the atom, in particular the

oxidation state. Other local bonding arrangements,

including structural relaxation, perhaps can be deter-

mined, but results may be complicated by the cleavage

process during sample preparation. Because phyllo-

silicates are insulators, positive electrostatic charges

can form at the sample surface due to electron emission

during measurement (Seyama et al., 2006). However, the

electrical charge on the phyllosilicate surfaces produced

during analysis can be neutralized with an electron flood

gun.

Angle-resolved XPS (AR-XPS) is a technique that

varies the emission angle at which the electrons are

collected, thereby enabling electron detection from

different depths (Ratner and Castner, 2009). AR-XPS

applied to phyllosilicates can provide information about

ordering, layer thickness, and element and chemical state

distributions within the layers (depth profile reconstruc-

tion). However, this technique requires a single crystal

with a well ordered surface structure to generate a

spectrum and that the possibility of signal observation

from the mount is minimized (Ratner and Castner, 2009).

Detailed descriptions of XPS analytical strategies and

sample preparation applied to the (001) surfaces of

phyllosilicates are found in Biino and Groning (1998)

and Elmi et al. (2013, 2014a, 2014b).

LITERATURE DATA

The chemical and physical properties of layer

silicates indicate that bonding in the structure is highly

anisotropic with bonding between sheets usually weaker

than bonding between atoms within sheets. This

anisotropy is responsible for the perfect cleavage and

surface properties of phyllosilicates (Guggenheim,

2011).

Many solids exhibit a chemical composition at the

surface that is different from that in the bulk as a result

of, for example, oxidation, layering, and domain

formation. In contrast, the surface composition of

fresh-cleaved phyllosilicates has the overall composition

of the bulk material (Stucki et al., 1976; Elmi et al.,

2013, 2014a, 2014b), except for the surface oxygen

concentrations, which tend to exceed the bulk value

because of adsorbed species, such as atmospheric OH�

ions, CO2, and/or water molecules. Christenson and

Thomson (2016) observed that carbonate ions on air-

cleaved mica surfaces result from reactions between

atmospheric carbon dioxide and water catalyzed by the

mica surface. The CO2 would be expected to react at

hydroxyl sites in the outermost tetrahedral sheet to form

a bicarbonate species, which would then dissociate into a

carbonate and a proton. These species would be

stabilized near an aluminum site. The H+ replaces the

K+ to maintain charge balance, and two K+ with the

carbonate then form K2CO3, which is mobile on or near

the surface in the presence of water, but crystallizes

under dry conditions (Christenson and Thomson, 2016).

However, these authors did not consider the kinetics or

the extent of carbonate ion formation.

Interlayer site: Potassium

Hydroxyl orientation has a major influence on ionic

interlayer bonding strength in phyllosilicates because of

the strong repulsion between hydrogen and the interlayer

cation (Giese, 1977). For trioctahedral micas, in which

the O-H vector of the OH group points directly into the

interlayer site cavity, repulsion between hydroxyl groups

and interlayer cations can play a significant role in the

interlayer separation (Giese, 1975). Giese (1974) theo-

retically determined that the cleavage of dioctahedral

and trioctahedral micas occurs along the plane contain-

ing the K+ ions, which are equally distributed between

both new surfaces. Elmi et al. (2014b) examined a

complementary pair of cleaved polylithionite sample

surfaces, which were in contact before splitting. The

quantitative chemical compositions of both polylithio-

nite surface pairs were approximately the same and

indicate that about half of the interlayer cations remain

on each surface in accordance with Giese (1974) as

illustrated in Figure 1. Geatches and Wilcox (2014)

created a variety of dioctahedral, interlayer (cation)-

deficient 1M illite series models (cis-vacant, trans-

vacant, single cell, sandwich, and mixed-layer relaxed

models) via ab initio density functional theory (DFT).

They observed that when the K�O distances and

location are considered, the hydroxyl groups of the

octahedral sheet determine the interlayer K+ ion location

for all model types. In the sandwich-relaxed models,

relative to both the lower and upper layers, the K+ ions

lie directly above the hydroxyl group with the O-H

vectors pointing downwards and upwards, respectively

(Geatches and Wilcox, 2014).

From energy and symmetry considerations by LEED

measurements on muscovite, Müller and Chang (1968)

observed that the cleavage plane is a monolayer of K+

ions, and that the cleavage K+ ions are shared by the two

cleavage faces. This monolayer of K+ produces strong

surface electric dipoles. Müller and Chang (1968)

reported that the electric fields created during cleavage

Vol. 64, No. 5, 2016 Crystal chemistry of phyllosilicates, a review 539

https://doi.org/10.1346/CCMN.2016.064033 Published online by Cambridge University Press

https://doi.org/10.1346/CCMN.2016.064033


affect these dipoles to varying degrees, depending on

both the pressure and composition of the gases present

during cleavage. The SIMS data collected by Baun

(1980) for air-cleaved muscovite are consistent with the

cleavage surface occupied by a K plane and the K+ ions

shared equally between the separated surfaces. The XPS

binding energies for several phyllosilicates (Table 1)

show that K exhibits a small chemical shift for the

photoelectron line and the K2p binding-energy values

ranged from 293.0 to 294.5 eV. The highest values were

Figure 1. Model showing the XPS analysis depth in dioctahedral micas. Complementary pair of cleaved dioctahedral mica surfaces

in contact before splitting. The K ions are shared equally between the separated surfaces, as determined by Giese (1974), Elmi et al.

(2014b), Müller and Chang (1968), and Baun (1980). Conventional XPS analysis depth varies from 1 to 10 nm depending on

material. For micas, the XPS analysis depth is about 1�5 nm. The apparent reduction of interlayer coordination number to eight

observed by Elmi et al. (2013) and Elmi et al. (2014a) for muscovite and tetraferri-phlogopite (001) surfaces may be an average of the

outermost interlayer surface and the next interlayer at about 10 Å depth.

Table 1. Important K2p-binding energies (in eV) for selected layer silicates.

Compound K2p3/2

(eV)
Energy reference

(eV)
References

Na-K-montmorillonite 293.1 Si2s = 153.4 Seyama and Soma (1986)
K-montmorillonite 293.2 Si2s = 153.4 Seyama and Soma (1986)
Biotite 293.3 C1s = 284.6 Ilton and Veblen (1994)
Phlogopite 292.7 Si2s = 153.4 Seyama and Soma (1986)
Phlogopite 293.0 C1s = 284.6 Ilton and Veblen (1994)
Phengitic muscovite 293.26 Si2p = 102.36 Biino and Groning (1998)
Sodian-muscovite 293.36 C1s = 284.86 Elmi et al. (2013)
Tetraferri-phlogopite 293.6 C1s = 284.8 Elmi et al. (2014a)
Fe-bearing phlogopite 294.5 C1s = 284.8 Elmi et al. (2014a)
Polylithionite 293.3 C1s = 285.1 Elmi et al. (2014b)
Fe2+-rich polylithionite 293.3 C1s = 285.1 Elmi et al. (2014b)
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observed for tetraferri-phlogopite and Fe-bearing phlo-

gopite, and these values may be related to the summed

contributions from the tetrahedral and octahedral Fe3+

components.

LEED is widely used for directly characterizing the

atomic structure of perfect surfaces. For silicates,

Hochella et al. (1990) found that LEED can be

performed at the low crossover voltage which is

generally between 50 and 150 eV. However, this

technique does not probe the local atomic structure,

but considers an average structure sampled over a

diameter of 1 mm and a depth of about 1 nm (Ash et

al., 1988). Moreover, the sample must be a single crystal

with a well ordered surface structure to generate a back-

scattered electron diffraction pattern. LEED techniques

may also provide a quantitative crystallographic descrip-

tion of surface atomic positions.

The LEED diffraction patterns observed by Müller

and Chang (1968, 1969), Dorel et al. (2000), and

Ostendorf et al. (2008) on an air-cleaved muscovite

surface revealed the usual hexagonal closest-packed

periodicity based on Bragg reflections. Müller and

Chang (1968, 1969) ascribed the triangular shape of

Bragg spots in the muscovite surface LEED pattern to an

effect caused by the deflection of electric fields parallel

to the surface. These authors proposed that the electric

fields arose from domains of oriented surface dipoles

with features that were closely related to the surface

structure. Dorel et al. (2000) observed that conventional

LEED is usually not suitable for investigating defects

located near the surface of micas because the bulk

contribution masks layer contributions due to the finite

penetration depth of low-energy electrons. These authors

presented a novel experimental approach based upon a

simple LEED device which modulated the electron-beam

current to observe fine diffraction structures in an air-

cleaved mica surface. Using this approach, Dorel et al.

(2000) observed a series of rings at the topmost surface

layers (i.e. ‘‘Henzler rings’’) of muscovite on a scale of

1�5 nm. Dorel et al. (2000) argued that these rings are

defects resulting from the intrinsic arrangement of K at

the terminal sheet, because the cleavage process is

destructive and forms steps on the surface.

X-ray Photoelectron Diffraction (XPD) is another

surface-sensitive technique and the term XPD is used for

the diffraction effects observed in an XPS experiment.

The XPD technique is more sensitive to chemically non-

equivalent atomic species than XPS for the first few

atomic layers. Because long-range order is not required,

XPD is an atom-specific probe of short-range order to

determine the local atomic arrangement of complicated

materials, such as phyllosilicates (Ash et al., 1988;

Fadley, 1992; Evans and Hiorns, 1996).

Each type of atom has a unique diffraction signature

associated with the surrounding neighbors (Fadley,

1992). Thus, XPD is a powerful tool to differentiate

the octahedral cation sites in micas (Evans and Raftery,

1982; Ash et al., 1987). Detailed XPD analytical

strategies applied to phyllosilicate (001) surfaces are

found in Evans et al. (1979), Evans and Raftery (1980),

and Ash et al. (1988). For muscovite, Evans et al. (1979)

observed that K+ is twelve-fold coordinated in the

outermost layers. This result is in contrast with the

apparent reduction of interlayer-site coordination num-

ber to eight, which was observed by XPS for muscovite

and tetraferri-phlogopite (001) surfaces by comparing

binding energy values with literature data (Elmi et al.,

2013, 2014a). The XPS results may be an average of the

outermost interlayer surface and the next interlayer at

~10 Å depth (Figure 1). The apparent coordination

number reduction of the interlayer cation based on XPS

is, however, consistent with a bond relaxation because

the cleavage process is along the plane containing

interlayer sites. The loss of interlayer cation�oxygen
bonds may also produce tetrahedral sheet relaxation at

the muscovite surface.

Tetrahedral sheet: Silicon and Aluminum

Silicon. The Si2p binding energy of layer silicates, in

which some Si is substituted by Al, is 0.7 eV lower than

that of quartz or compounds containing only Si in the

tetrahedral site (Table 2). The primary reason for the

Si2p binding energy decrease from quartz to phyllo-

silicates is the apparent reduction in the silica network

polymerization driven by the Si content. The silicon

binding energy shows that different populations of Si

atoms correlate with substitutions in the layer and a

lower Si2p binding energy may result from a negative

charge increase on the silicate framework by Si4+

replacement by A13+ and/or Fe3+. This effect apparently

occurs in saponite and in hectorite, where the negative

charge is located in the tetrahedral SiO4 sheet (substitu-

tion of Si4+ by Al3+) and in the Mg octahedral sheet

(substitution of Mg2+ by Li+), respectively (Vantelon et

al., 2009). Seyama and Soma (1985) observed that the

negative charge on the silicate framework is delocalized

over Si, O, and tetrahedrally coordinated Al ions as a

result of the systematic shifts of the photoelectron

binding energies. Seyama and Soma (1985) observed

that the Si2s binding energy of phlogopite, in which

isomorphic substitution of Si by Al occurs, is lower than

that of a silicate in which isomorphic substitution does

not occur. Seyama and Soma (1985) considered that this

decrease of Si2s binding energy results from an increase

in the negative charge on the silicate framework because

of the replacement of Si4+ by Al3+. In contrast, Seyama

and Soma (1985) deduced from photoelectron binding

and Auger electron kinetic energies that the octahedrally

coordinated Al and Mg ions in the silicate mineral are

not subject to a strong effect from the negative charge on

the silicate framework. Seyama and Soma (1985) found

that the Al2p binding energy of tetrahedrally coordinated

Al ions decreases with decreasing Si2s binding energy in

montmorillonite, kaolinite, and phlogopite. This positive
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correlation indicates that the Al2p binding energy of the

Al ion in tetrahedral sites of the phyllosilicates, as well

as the Si2s binding energy of the Si ion in tetrahedral

sites, is influenced by the negative charge on the silicate

framework (Seyama and Soma, 1985).

Using XPS, Elmi et al. (2014b) observed that a

reduced and/or distorted coordination of tetrahedral

cations at the surface of polylithionite-1M was produced

after cleavage. This excess negative charge imbalance

probably enhances the reactivity of the surface by

attracting charged or polar (H2O) molecules. This

attraction may affect the coordination of tetrahedral

cations at the crystal surface. Si2p-XPS spectra show the

main peak at a binding energy of 102.4 eV and a small

peak at 99.4 eV for lepidolites (Elmi et al., 2014b). A

reduced Si cation coordination number at 99.4 eV

suggests sputter damage to the air-cleaved surface by

low energy Ar+ ion bombardment.

Poppa and Elliot (1971) suggested the need to prevent

beam damage to phyllosilicate surfaces particularly

when these minerals are used in nucleation and growth

process studies. These authors found that AES is a useful

analytical tool to evaluate mica surfaces prior to and

during the early stages of metal vapor deposition for

epitaxial thin film growth. This technique focuses and

scans the primary electron beam in the nanometer and

micrometer range to analyze the top-most layers (2�10
atomic layers). The experimental setup is similar to that

of a Scanning Electron Microscope (SEM), but in AES

the electrons are used both for imaging and for chemical

identification of the surface atoms. Auger transitions

require a minimum of three electrons, thus, only

elements with Z 5 3 can be analyzed (Mathieu, 2009).

With AES, Poppa and Elliot (1971) studied the surface

composition of muscovite at the beginning of deposition

by monitoring the substrate surface composition with

AES analysis at several conditions (air-cleavage, Ultra-

High Vacuum (UHV)-cleavage, muscovite surface heat-

ing at UHV or in oxygen). A limited number of Si4+ ions

with reduced coordination (<4) were observed in

muscovite. These authors observed using AES that

near-surface Si was reduced from Si4+ to elemental Si

and the uppermost K plane was depleted after extended

exposure to a 1 keV electron beam with a current density

of about 2610�6 A/mm2.

Aluminum. In layer silicates, Al atoms can occur in both

tetrahedral and octahedral sites. A net negative charge in

the tetrahedral sheet results from the replacement of

tetrahedral Si4+ by Al3+ and/or Fe3+, whereas a net

negative charge in the octahedral sheet is generated by

replacing the octahedral Al3+ ion by a divalent cation,

such as Fe2+ or Mg2+. The Al distribution affects surface

charge distribution and magnitude, which influences

phyllosilicate properties. For samples of phlogopite,

vermiculite, and lithium-rich biotite, cleavage was found

by XPD to occur in regions of high Al content (Evans et

al., 1979), whereas a lepidolite was shown to cleave

preferentially in Mn-enriched regions (Evans and

Raftery, 1982).

Several XPS studies attempted to distinguish the

coordination environment of A13+ in silicates (Table 3).

Anderson and Swartz (1974) reported identical A12p
binding energies for tetrahedral and octahedral alumi-

num in aluminosilicates. Ebina et al. (1997) and Barr et

al. (1997) observed that the Al2p binding energy

increased with an increase in the ratio of octahedral to

tetrahedral Al.

Table 2. Important Si2p binding energies (in eV) for selected layer silicates and quartz for Si in tetrahedral coordination.

Compound Si2p
(eV)

Energy reference
(eV)

References

SiO2 103.5 C1s = 284.6 Barr et al. (1995)
SiO2 103.4 C1s = 284.6 Briggs and Seah (1990); Barr et al. (1999)
SiO2 a-cristobalite 103.25 C1s = 284.6 Briggs and Seah (1990); Barr et al. (1999)
SiO2 a-quartz 103.65 C1s = 284.6 Briggs and Seah (1990); Barr et al. (1999)
Talc 103.13 C1s = 284.6 Briggs and Seah (1990); Barr et al. (1999)
Phlogopite 102.1 C1s = 284.6 Ilton and Veblen (1994)
Biotite 102.3 C1s = 284.6 Ilton and Veblen (1994)
Sodian muscovite 102.1 C1s = 284.86 Elmi et al. (2013)
Muscovite 102.36 C1s = 284.8 Biino and Groning (1998)
Muscovite 102.65 C1s = 284.4 Bhattacharyya (1993)
Margarite 102.36 C1s = 284.8 Biino et al. (1999)
Kaolinite 102.7 C1s = 284.4 Koppelman et al. (1980)
Kaolinite 102.75 C1s = 284.6 Barr et al. (1995)
Montmorillonite 102.45 C1s = 284.6 Barr et al. (1995)
Pyrophyllite 102.88 C1s = 284.6 Briggs and Seah (1990); Barr et al. (1999)
Tetraferri-phlogopite 102.7 C1s = 284.8 Elmi et al. (2014a)
Fe-bearing phlogopite 102.2 C1s = 284.8 Elmi et al. (2014a)
Polylithionite 102.3 C1s = 285.1 Elmi et al. (2014b)
Fe2+-rich polylithionite 102.4 C1s = 285.1 Elmi et al. (2014b)
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Barr et al. (1997) noted that a more positive

octahedral sheet character coupled with the relatively

net negative tetrahedral sheet results in ionic Al�O
bonds that are stronger in kaolinite and allophane than in

Al2O3. This increase in Al2p binding energy found for

1:1 layer minerals, such as kaolinite, should be enhanced

for the 2:1 layer minerals, such as pyrophyllite or

smectite. This enhancement is related to the octahedral

sheet, which compensates for the charge of two adjacent

negatively charged tetrahedral sheets. The greater ionic

character of the Al�O bond is reflected in the higher

Al2p binding energy for montmorillonite (74.8 eV) in

comparison to beidellitic montmorillonite (dioctahedral

smectite with tetrahedral charge from Kunipia F;

Kunimine Kogyo Co., Ebina et al., 1997) and kaolinite

(Barr et al., 1997). Koppelman (1979) and Barr et al.

(1997) suggested further that OH and/or F enhance the

positive character of Al and result in a moderate increase

in the Al2p binding energy. The Al2p spectra of Na-rich

muscovite from Elmi et al. (2013) and Fe2+-rich

polylithionite from Elmi et al. (2014b) (Figure 2) show

that the Al2p binding energy increase results from an

increase in silicate framework negative charge because

of Si4+ replacement by Al3+. Figure 3 shows that, in

general, the Al2p binding energy increased with increas-

ing Al coordination. As the binding energies of Al2p
from the tetrahedral and octahedral Al atoms generally

overlap, the deconvolution of the peak is problematic

and makes distinguishing between four- and six-coordi-

nated species difficult. Figure 3 shows that the binding

energy values of Al2p from both tetrahedral and

octahedral Al atoms are intermediate between the

octahedral and tetrahedral binding energy values. This

effect is probably related to the overlap of Al2p binding-

energy values from the tetrahedral and octahedral Al

atoms.

Biino and Groning (1998) and Elmi et al. (2013)

showed that distinguishing between IVAl and VIAl

contributions is not straightforward using a Gauss-

Voigt deconvolution procedure. Barr et al. (1997) used

an alternative identification approach based on the Al2p/

Si2p full-width at half-maximum (FWHM). In alumino-

silicates that contain only VIAl, the Al2p/Si2p FWHM

ratio is approximately equal to one, whereas in

aluminosilicates with both IVAl and VIAl, this ratio is

apparently greater than one (Barr et al., 1997). In

muscovite, however, the Al2p/Si2p ratio is close to 1

(Al2p/Si2p = 1.02) and, therefore, this approach is not

useful to distinguish the IVAl contribution from the

greater VIAl contribution in phyllosilicates (Elmi et al.,

2013). Separation between the centers of the tetrahedral

and octahedral Al contributions to the Al2p peak must be

sufficiently large relative to the Gaussian broadening to

observe differences in Al contributions. A comprehen-

sive Si/Al concentration profile as a function of depth

should be developed in future studies to combine data

from home laboratory XPS and synchrotron XPS. Bare et

al. (2016) showed that, when the inelastic mean free path

of the photoelectrons is considered, home laboratory

aluminosilicate XPS does not provide a true measure-

ment of the surface stoichiometry, whereas variable

kinetic energy XPS provides a more surface sensitive

Table 3. Important Al2p binding energies (in eV) for selected phases.

Compound Al
coordination

Al2p
(eV)

Energy reference
(eV)

References

Al metal 72.9 Au4f = 84.0 Hinnen et al. (1994)
Al metal 72.8 Au4f = 84.0 Domen and Chuang (1989)
Al metal 72.7 Au4f = 84.0 Sarapatka (1993)
g-Al2O3 octahedral 74.5 C1s = 284.7 Strohmeier (1994)
g-Al2O3 octahedral 73.9 C1s = 284.4 Barr et al. (1997)
Al(OH)3 octahedral 74.1 C1s = 284.4 Barr et al. (1997)
Analcime tetrahedral 73.9 C1s = 284.4 Barr et al. (1997)
Sodalite tetrahedral 73.6 C1s = 284.4 Barr et al. (1997)
Saponite tetrahedral 73.7 C1s = 284.6 Ebina et al. (1997)
Kaolinite octahedral 74.5 C1s = 284.8 Remy et al. (1992)
Kaolinite octahedral 74.7 C1s = 284.8 Wagner et al. 1982
Kaolinite octahedral 74.3 C1s = 284.4 Barr et al. (1997)
Montmorillonite octahedral 74.8 C1s = 284.4 Barr et al. (1997)
Dioctahedral smectite octahedral 74.5 C1s = 284.6 Ebina et al. (1997)
Biotite octahedral 74.0 C1s = 284.6 Ilton and Veblen (1994)
Phengitic muscovite octahedral 74.26 Si2p = 102.36 Biino and Groning (1998)
Sodian-muscovite octahedral 74.1 C1s = 284.8 Elmi et al. (2013)
Phlogopite tetrahedral and octahedral 73.8 C1s = 284.6 Ilton and Veblen (1994)
Magnesium chlorite tetrahedral and octahedral 74.1 C1s = 284.6 Ebina et al. (1997)
Fe-bearing phlogopite tetrahedral and octahedral 74.2 C1s = 285.1 Elmi et al. (2014a)
Polylithionite tetrahedral and octahedral 74.4 C1s = 285.1 Elmi et al. (2014b)
Fe2+-rich polylithionite tetrahedral and octahedral 74.4 C1s = 285.1 Elmi et al. (2014b)
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measurement. The synchrotron data collected by Bare et

al. (2016) were acquired at a water vapor partial pressure

of 0.5 mbar and at a temperature of 225 ºC compared to

the ultra-high vacuum and room temperature environ-

ment of the home laboratory XPS data, thereby making

comparison difficult. For a true comparison of home

laboratory XPS to synchrotron XPS studies, both data

sets need to be collected under similar conditions.

The results reported by Ebina et al. (1997) show that

DFT calculations are reliable tools to determine the

qualitative distribution of octahedral and tetrahedral Al

in phyllosilicates, and the technique produces a useful

curve-fitting procedure. Evans and Raftery (1982) used

XPD and observed that in lepidolite the octahedral Al

sites are readily distinguished from the Li and Mn sites,

and concluded that Al predominantly occupies M2 cis

sites, whereas Li+ and Mn2+ prefer M1 trans sites. The

XPD data collected by Evans and Raftery (1982) also

showed that 40 � 5% of the Al is tetrahedrally

coordinated.

Octahedral sheet: Iron and Magnesium

Several studies used XPS to distinguish between Fe2+

and Fe3+ (Table 4). The Fe2p spectra of silicate minerals

Figure 2. (a) Al2p spectrum of Na-muscovite displayed as a plot of electron binding energy vs. intensity from Elmi et al. (2013). (b)

Al2p spectrum of Fe2+-rich polylithionite displayed as a plot of electron binding energy vs. intensity from Elmi et al. (2014b). The

Al2p binding energy increase may result from an increase in the negative charge on the silicate framework because of Si4+

replacement by Al3+.

Figure 3. Relationship between Al coordination and Al2p-binding energy on selected samples from the literature (data from Table 3).
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have satellite peaks that are characteristic of the

different Fe oxidation states (Figure 4). Binding energies

for Fe2+ are characteristically 2�3 eV lower than those

for Fe3+. According to several authors (Stucki et al.,

1976; Biino and Groning, 1998; Grosvenor et al., 2004;

Elmi et al., 2014a, 2014b), the peak at about 710 eV in

unaltered trioctahedal micas is generally assigned to

Fe3+, and the small Fe2+ peak is generally assumed to be

masked by the background of the larger Fe3+ peak

(Figure 4). Table 4 compares the binding energies of

Fe2p3/2 of select compounds containing Fe2+ and Fe3+. In

many cases, the dominating factor in the chemical shift

is related to ion charge, whereby a more positive charge

led to a more positive shift. The binding energy

increased in the order Fe < Fe2+ < Fe3+ (Table 4), a

trend that is clearly displayed in Figure 5 and that was

also observed experimentally by Bancroft et al. (1979).

One explanation of the observed shifts in Fe3+ and Fe2+

energies, where Fe is bonded to O, OH, or F, is related to

changes in the coordination environment around the Fe

ions as a result of oxidation and reduction reactions in

biotite. Stucki et al. (1976) observed that the Fe3+ peak

shift to lower binding energy indicates a change in

coordination environment occurred upon oxidation.

Stucki et al. (1976) observed that Fe3+ peaks occurred

at 710.0 eV for unaltered biotite and at 709 eV for

oxidized biotite. This result may be related to either Fe2+

in the structure or to a change in the Fe3+ coordination

number as a result of the reduction reaction. Ash et al.

(1988) observed that mirror plane characteristics of

C2/m in the XPD data confirm that M2 and M3 are not

differentiated in biotite.

Table 4. Important binding energies (in eV) for Fe2p3/2 peaks of selected Fe compounds.

Compound Fe
valence state

Fe2p3/2
(eV)

Fe2p3/2
satellite
(eV)

Energy
reference
(eV)

References

Fe 0 706.70 – C1s = 284.60 Descostes et al. (2000)
Fe 0 706.8 C1s = 285.0 Andersson and Howe (1989)
Fe 0 706.90 – C1s = 285.0 Brion (1980)
Fe 0 706.6 C1s = 285.0 Langevoort et al. (1987)
Fe 0 706.5 C1s = 285.0 Hawn and Dekoven (1987)
Fe 0 707.0 Au4f7/2 = 84.0 Mathieu and Landolt (1986)
Fe 0 707.5 Au4f7/2 = 84.0 Conner (1978)
Fe 0 706.8 Au4f7/2 = 84.0 Asami and Hashimoto (1977)
FeO +II 709.85 715.50 C1s = 284.60 Descostes et al. (2000)
FeO +II 709.7 C1s = 285.0 Hawn and Dekoven (1987)
FeO +II 709.50 – C1s = 285.0 Brion (1980)
FeO (chromite) +II 710.3 C1s = 285.0 Langevoort et al. (1987)
FeF2 +II 711.50 – C1s = 284.8 Grosvenor et al. (2004)
FeF3 +III 715.10 724.0 C1s = 284.8 Grosvenor et al. (2004)
FeF3 +III 713.7 Hawn and Dekoven (1987)
Fe2(SO4)3 +III 713.25 718.95 C1s = 284.60 Descostes et al. (2000)
Fe2(SO4)3 +III 713.5 – C1s = 285.0 Brion (1980)
Fe2O3 +III 711.4 C1s = 285.0 Brion (1980)
Fe2O3 +III 711.2 C1s = 285.0 Langevoort et al. (1987)
Fe3O4 +II 708.30 – C1s = 285.0 Brion (1980)
Fe3O4 +III 710.20 – C1s = 284.60 Descostes et al. (2000)
Fe3O4 +II 709.00 – C1s = 284.8 Grosvenor et al. (2004)
Fe3O4 +III 711.40 – C1s = 284.8 Grosvenor et al. (2004)
g-FeOOH +II 710.3 – C1s = 284.8 Grosvenor et al. (2004)

+III 713.3 – C1s = 284.8 Grosvenor et al. (2004)
Iron sodium silicate glass +II 709.7 715.0 C1s = 284.6 Mekki et al. (1996)

+III 711.2 719.0 C1s = 284.6 Mekki et al. (1996)
Olivine (Mg,Fe)2SiO4 +II 710.4 – Au4f7/2 = 84.0 Seyama and Soma (1987)
Nontronite +III 711.8 Au4f7/2 = 83.9 Stucki et al. (1976)
Biotite +II 708.6 Au4f7/2 = 83.9 Stucki et al. (1976)

+III 711.0 Au4f7/2 = 83.9 Stucki et al. (1976)
Tetraferriphlogopite +II 710.70 716.0 C1s = 284.8 Elmi et al. (2014a)

+III 712.5 720.0 Elmi et al. (2014a)
Fe-bearing phlogopite +II 709.3 716.0 C1s = 284.8 Elmi et al. (2014a)

+III 712.5 720.0 Elmi et al. (2014a)
Polylithionite +II 710.7 716.8 C1s = 285.1 Elmi et al. (2014b)

+III 713.0 730.0 Elmi et al. (2014b)
Fe2+-rich polylithionite +II 710.7 716.8 C1s = 285.1 Elmi et al. (2014b)

+III 713.0 730.0 Elmi et al. (2014b)
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The type and arrangement of the nearest-neighbor

anions surrounding the cation and, in some cases, non-

nearest neighbors, also influence the chemical shift

(Haycock et al., 1978; Seyama and Soma, 1984, 1985;

Mittal et al., 2004; Seyama et al., 2006; Elmi et al.,

2014a). Koppelman (1979) observed that the electro-

negativity of anions (from O to F) further increase Mg

and Al binding energies. Table 5 lists binding-energy

values for select compounds studied by XPS, where Mg

is bonded with OH or F anions. In brucite, Mg(OH)2,

(Haycock et al., 1978) and Mg/Fe-rich spinel, MgFe2O4,

(Mittal et al., 2004), where Mg coordinates with OH

groups or O, the binding energies are 1303.1 eV and

1302.7 eV, respectively. However, if O is substituted by

F, the binding energy of Mg shifts to higher values

(MgF2, binding energy = 1306.5 eV, Seyama and Soma,

Figure 4. Fe2p spectra (background subtracted) with the curve fit obtained for tetra-ferriphlogopite (a) and Fe bearing-phlogopite (b)

from Elmi et al. (2014a). The deconvolution of the Fe2p3/2 peak (Binding Energy, BE = 712.5 eV) leads to two main components: one

component is at BE = 710.7 eVwith an associated satellite peak at BE = 716.0 eV, and the second component is at BE = 712.5 eV with

an associated satellite peak at BE = 720.0 eV. Because of the inability to determine the contributions of each component following a

Gauss-Voigt deconvolution procedure, the main 2p3/2 peak maximum at BE = 712.5 eV represents the summation of the tetrahedral

and octahedral Fe3+ components.
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1984). For tetra-ferriphlogopite and Fe-bearing phlogo-

pite (1305.9 eV and 1306.8 eV, Elmi et al., 2014a),

Mg2+ ions in Fe-bearing phlogopite can be preferentially

bonded to F over OH groups, in addition to O atoms.

CONCLUDING REMARKS

XPS data for fresh-cleaved phyllosilicates were

described here to document that oxidation state, layer

charge, and chemical bonding information can be

obtained from the variations in binding energies

(‘‘chemical shifts’’) of different peaks. The type and

arrangement of nearest-neighbor anions that surround

the cation and, in some cases, non-nearest neighbors,

also influence the chemical shift. Chemical shifts are

sufficient to distinguish oxidation states and different

chemical bonding to nearest neighbors. However, XPS

cannot be used to distinguish different coordination

environments of cations that are present both in

tetrahedral and octahedral sites. The distribution of Al

atoms affects the distribution and magnitude of the

surface charge, which influences the properties of

Figure 5. Relationship between Fe valence state and Fe2p3/2 binding energy on selected Fe compounds from the literature (data from

Table 4).

Table 5. Important Mg2p and Mg1s binding energies (in eV) for selected layer silicates.

Compound Mg coordination Spectral line Binding energy
(eV)

Energy reference
(eV)

References

Mg metal 1s 1303.4 C1s = 284.00 Steiner et al. (1978)
Mg metal 2p 49.30 C1s = 284.00 Jerome et al. (1986)
MgO octahedral 1s 1303.9 Au4f = 84.00 Seyama & Soma, 1984
MgO octahedral 2p 50.25 C1s = 284.00 Jerome et al. (1986)
Mg(OH)2 octahedral 1s 1302.7 C1s = 284.50 Haycock et al. (1978)
Mg(OH)2 octahedral 2p 49.50 C1s = 284.50 Haycock et al. (1978)
MgF2 octahedral 1s 1304.95 C1s = 284.45 Wagner (1980)
MgF2 octahedral 2p 51.95 C1s = 284.45 Wagner (1980)
Talc octahedral 2p 50.46 C1s = 284.60 Wagner et al. (1982)
Montmorillonite octahedral 1s 1305.3 Au4f = 84.00 Seyama and Soma (1984)
Phlogopite octahedral 1s 1303.7 Au4f = 84.00 Seyama and Soma (1985)
Phengitic muscovite octahedral 2p 50.55 Si2p = 102.36 Biino and Groning (1998)
Biotite octahedral 2p 50.20 C1s = 284.6 Ilton and Veblen (1994)
Phlogopite octahedral 2p 49.60 C1s = 284.6 Ilton and Veblen (1994)
Tetraferriphlogopite octahedral 1s 1305.9 C1s = 284.8 Elmi et al. (2013)
Fe-bearing phlogopite octahedral 1s 1306.8 C1s = 284.8 Elmi et al. (2013)
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phyllosilicates. Although several XPS studies attempted

to distinguish the coordination environment of Mg2+ and

A13+ in silicates, the binding-energy values of Al2p
indicate that when IVAl and VIAl occur together, the sites

cannot be clearly distinguished. With respect to XPS,

XPD has the great advantage over XPS of being

sensitive to local short-range atomic arrangements in

phyllosilicates. X-ray photoelectron diffraction, thus, is

useful to discriminate between different Al coordination

numbers as detected in biotite.

Several authors observed that the negative layer

charge on the silicate framework is delocalized over Si,

O, and IVAl ions owing to the systematic shifts of

photoelectron binding energies. The chemical shift of

the Si2p binding energy to lower binding-energy values

may result from an increase in the negative layer charge

in the silicate framework because of Si4+ replacement by

A13+ and/or Fe3+. The Al2p binding energy of tetra-

hedrally coordinated Al ions in montmorillonite, kaolin-

ite, and phlogopite decreases with decreases in Si2s
binding energy. This positive correlation indicates that

the silicate framework negative charge influences the

Al2p and Si2s binding energies of Al and Si ions in

tetrahedral sites.

The attraction of polar H2O molecules after cleavage

produces a reduced and/or distorted coordination of

tetrahedral cations at the crystal surface. Several authors

reported that the binding energy of Mg depends on the

chemistry of the anion site and the local environment

around the cation site. If O is substituted by F, the

binding energy of Mg is shifted to higher values.

This paper presents different viewpoints on the

cleavage mechanism obtained from different surface-

sensitive techniques. LEED and SIMS measurements on

air-cleaved muscovite surfaces have shown that cleavage

occurs along the K plane and the K+ ions were shared

equally between the separated surfaces. Quantitative

XPS analyses for polylithionite surface pairs are

approximately identical, indicating that about half of

the interlayer cations remain on each surface, which is

consistent with LEED and SIMS data and with

theoretical models.

XPD experiments on muscovite suggest that K+ is

twelve-fold coordinated nearest to the outermost layers.

The apparent reduction of interlayer coordination number

to eight at the surface, which was observed by XPS for

muscovite and tetraferri-phlogopite (001) surfaces, is

consistent with bond relaxation due to cleavage along

the plane that contains interlayer sites. The loss of

interlayer cation�oxygen bonds may also produce a

tetrahedral sheet relaxation at the muscovite surface.

This review highlights progress that has been

achieved in the last decades to clarify structural aspects

of freshly cleaved phyllosilicate surfaces by the use of

surface-sensitive techniques. Surface crystal chemical

studies of phyllosilicates that are cleaved in air promise

to significantly advance both pure and applied science,

and these studies will have a substantial impact on future

technology. Much remains to be studied to fully under-

stand cleavage mechanisms, surface layer charge,

different cation coordination environments in both

tetrahedral and octahedral sites, and the possible

presence of interlayer domains. Conventional XPS,

which is characterized by a fixed photon energy, limited

energy resolution, and larger spot size may discriminate

between different atoms and the surface oxidation state,

but a large crystal size is required. Reducing electron

spot size will reduce the count rate and limit the quality

of the investigation. The possibility to tune photon

energy to increase the photoionization cross-section, to

enhance energy resolution, and to reduce spot size is

available at third generation synchrotron radiation

facilities. Thus, synchrotron use could distinguish

between the coordination environments of Mg2+ and

A13+ in silicates. A comprehensive elemental concentra-

tion profile as a function of depth may be developed

combining the data from home laboratory XPS and

synchrotron XPS in future experiments. Moreover, the

possibility to tune the XPS surface sensitivity/sampling-

depth by varying the acquisition conditions (i.e.,

fluorescence, total/partial electron yield, grazing inci-

dence conditions) may improve the knowledge of

phyllosilicate surface properties. The potential roles of

irregular surface topologies on coordination environ-

ments and bonding should also be explored in future

experiments.
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