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A model for drift velocity mediated scalar eddy
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Low Stokes number particles at dilute concentrations in turbulent flows can reasonably be
approximated as passive scalars. The added presence of a drift velocity due to buoyancy
or gravity when considering the transport of such passive scalars can reduce the turbulent
dispersion of the scalar via a diminution of the eddy diffusivity. In this work, we propose
a model to describe this decay and use a recently developed technique to accurately and
efficiently measure the eddy diffusivity using Eulerian fields and quantities. We then show
a correspondence between this method and standard Lagrangian definitions of diffusivity
and collect data across a range of drift velocities and Reynolds numbers. The proposed
model agrees with data from these direct numerical simulations, offers some improvement
to previous models in describing other computational and experimental data and satisfies
theoretical constraints that are independent of Reynolds number.
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1. Introduction

The motion of particles in a turbulent carrier fluid subject to exogenous body forces
manifests in myriad applications such as ash settling (Mingotti & Woods 2020), energy
production (Ishii 1977; Guet & Ooms 2006) and bubbly wakes (Carrica et al. 1999). These
particles may experience multiphysics including nucleation, coalescence, dissolution and
growth, but their dispersion by energetic eddies of the background flow naturally lends
itself to the field of turbulence modelling. In the framework of population balance
equations, as reviewed in Shiea et al. (2020), particles can be segregated into size classes
associated with a drift velocity, ud, relative to the background flow with root-mean-square
velocity urms. In nature, ud/urms can be large; a Hinze-scale 1 mm bubble, the largest size

† Email address for correspondence: oshende@stanford.edu, alimani@stanford.edu

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 989 A14-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

45
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:oshende@stanford.edu
mailto:alimani@stanford.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.457&domain=pdf
https://doi.org/10.1017/jfm.2024.457


O.B. Shende, L. Storan and A. Mani

that should not undergo breakup, may rise at 12 cm s−1, while a characteristic upper ocean
turbulence velocity is closer to 2 cm s−1 (Detsch & Harris 1989; Deane & Stokes 2002;
D’Asaro 2014).

For dilute, low Stokes number (St) particle-laden flows with negligible particle–particle
interactions, the particle concentration – or void concentration – fields can be described
with the passive scalar advection–diffusion equation (Moraga et al. 2003). A low St
particle flow is one for which the particle momentum relaxation time is far smaller than
the flow time scale, and ‘dilute’ flows should have particle volume fractions (φ) less than
∼O(10−3) (Brandt & Coletti 2022). Each class can be evolved separately and forces like
buoyancy and gravity are accounted for with additional velocity components from relations
like the drag law of Schiller & Naumann (1935). For sedimenting particles, this drift is
aligned with the gravity vector; in the case of bubbly flows, it is generally anti-parallel.

Solving for full-resolution scalar evolution when only a mean state is required to
determine quantities of engineering interest is prohibitively expensive. Averaging to find
the mean occurs in homogeneous spatio-temporal dimensions, defined through Reynolds
averaging or filtering in the large-eddy simulation context. When averaging is applied
to the Navier–Stokes and advection–diffusion equations that govern the evolution of
scalar-laden fluid flows, the turbulent scalar flux, given by uic, appears. Here, ui and c
are the fluctuating velocity and scalar fields, respectively, and •̄ is an average. This term
represents unresolved scalar transport by turbulence and its closure is essential to making
transport simulations tractable.

A common model form for the turbulent scalar flux is gradient diffusion, written
analogously to Fickian diffusion as uic = −Dij(∂C/∂xj), with Dij representing eddy
diffusivity and C the full scalar field. Foundational work has shown eddy diffusivity
decays with increased drift, but few extant models for capturing the flux are algebraic
closed-form expressions (Yudine 1959; Moraga et al. 2003; Reeks 2021). An exception is
Csanady (1963), which derives an expression for particle diffusivity scaling as a function
of ud from theoretical arguments about the form and relevant parameters of the velocity
autocorrelation, but Squires & Eaton (1991) showed disparities between it and measured
experimental and computational turbulent data.

As Csanady (1963) serves as a starting point for more complex models (e.g. Wang
& Stock 1993) and particle-laden turbulence is still a ripe topic (e.g. Berk & Coletti
2021), we wish to revisit this problem using the recently developed macroscopic forcing
method (MFM) to calculate eddy diffusivity (Mani & Park 2021; Shirian & Mani 2022).
In general, the eddy diffusivity is a non-local spatial and temporal operator, but when there
is separation of scales between the large-eddy size and the scalar cloud size, as is relevant
for this problem, measurement of a single local coefficient of eddy diffusivity, denoted
D0 and sometimes called a dispersion coefficient, suffices. Mani & Park (2021) showed
that D0 is the leading-order moment of the full eddy diffusivity operator and Shende &
Mani (2022) used it to predict scalar transport. Furthermore, it is the first term in the
Kramers–Moyal approximation of the integro-differential kernel that defines the true eddy
diffusivity operator.

In this work, we propose a model using measurements of eddy diffusivity by MFM in
numerical simulations of scalar fields driven by homogeneous, isotropic turbulence (HIT)
over a range of drift velocities. The MFM has more favourable computational costs when
compared with a similar Lagrangian method for this a priori modelling approach. The
proposed model better fits empirical data and theoretical constraints for tracers subject to
drift.
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A drift velocity mediated eddy diffusivity model

2. Model problem

Consider a triply periodic cubic domain of HIT. When ud = 0, the diffusivities along the
three principal axes – D0

11, D0
22 and D0

33 – are all equal to D0. If we impose a non-negative
drift velocity in the x1 direction, the symmetry of the set-up is broken such that only the
diffusivities in the x2 and x3 directions are equal and all are affected by drift. While the
derivation herein reaches conclusions similar to others (e.g. Csanady 1963; Squires &
Eaton 1991; Mazzitelli & Lohse 2004), we distinctly adopt an Eulerian perspective.

For ud = 0, we begin with the Lagrangian formulation of eddy diffusivity of Taylor
(1922), with the scalar represented by tracer particles with position Xi(t) and velocity
Vi(t). Taylor (1922) writes the eddy diffusivity in the x1 direction of a ensemble of such
particles, in the long time limit. If the velocity field is statistically stationary, this can be
expressed as

D0
11 =

∫ ∞

0
〈(V1(τ + t)V1(t)〉 dτ, (2.1)

where 〈•〉 represents an average over the ensemble and τ is a temporal offset. In the
high Péclet number (Pe) limit, where molecular diffusivity is far smaller than eddy
diffusivity, Vi(t) is the flow velocity at a given particle’s position. Therefore, we can
express the underlying Eulerian velocity field component, u1, as a function of the full
three-dimensional tracer position, X . This yields

D0
11 =

∫ ∞

0
〈u1(X (t), t)u1(X (t + τ), t + τ)〉 dτ. (2.2)

We define a standard complementary characteristic turbulence length scale as

L11 = 1
u2

rms

∫ ∞

0
〈u1(x1, x2, x3, t)u1(x1 + r, x2, x3, t)〉 dr, (2.3)

where r is a spatial offset, 〈•〉 now represents an average over all independent variables.
Here, urms normalizes the velocity autocorrelation at zero displacement, namely

√〈u1u1〉.
Classical Brownian motion analysis posits that scalar diffusivity at infinite time scales as

u2
rmsτk, where τk ≡ Lk/urms denotes some time scale of the underlying flow development

and Lk = 2L11 is the large-eddy length scale. Consider the scalar field now with some
constant drift velocity, ud, with respect to the flow: for very small ud, the fundamental
turbulence statistics felt by a scalar parcel are not largely affected and the classical model
holds. In the opposite limit that urms � ud such that L11/ud � τk, however, this picture is
not appropriate.

In this limit, the scalar field transits the turbulence field at a very fast time scale τd =
L11/ud, such that scalar particles drift before the local flow has evolved. The turbulence can
therefore be considered frozen compared to the evolution of the scalar field for computing
(2.2), and a leading-order approximation for the differential translation of a scalar parcel
is �X1 = dr ≈ ud dt. Thus, the addition of a very large drift is equivalent to examining
a translating inertial coordinate frame with respect to the frozen flow, akin to Taylor’s
hypothesis. These premises allow us, for very large ud, to rewrite (2.2) as

lim
ud→∞ D0

11 =
∫ ∞

0
〈u1(x1, x2, x3, t)u1(x1 + udτ, x2, x3, t)〉 dτ. (2.4)

We have here posited that the change in particle position is purely due to drift, and over
the time of O(L11/ud) � τk where the kernel is non-zero, the field u1 does not change.
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If we now use a change of variable between the displacement and the drift velocity, we can
write

lim
ud→∞ D0

11 =
∫ ∞

0
〈u1(x1, x2, x3, t)u1(x1 + r, x2, x3, t)〉d(r/ud) = u2

rms
L11

ud
. (2.5)

Here, L11 is the correlation length scale in (2.3) and it requires the spatial correlation
drop to zero in the domain. For the transverse diffusivities, D0

22 = D0
33. We can therefore

similarly write

lim
ud→∞ D0

22 =
∫ ∞

0
〈u2(x1, x2, x3, t)u2(x1 + r, x2, x3, t)〉d(r/ud) = u2

rms
L22

ud
. (2.6)

Appealing to the isotropy of the underlying velocity fields, we also can show that

lim
ud→∞ D0

22 =
∫ ∞

0
〈u1(x1, x2, x3, t)u1(x1, x2 + r, x3, t)〉d(r/ud) = u2

rms
L22

ud
. (2.7)

This asymptotic limit jibes with intuition, as a particle with infinite ud samples zero
mean velocity over every time horizon in homogeneous turbulence. This decay of D0

ii with
increasing ud/urms, the ‘crossing trajectories’ effect of Yudine (1959) and Csanady (1963),
persists in relatively high Reynolds number (Re) bubble experiments (Mathai et al. 2018).

We seek a model form that analytically matches the exact behaviour at the infinite
and zero drift velocity limits. In the intermediate regime, the model should be a smooth
and monotonic function of the drift velocity, so a simple model form that captures the
asymptotic limits of infinite and zero drift is

D0
ii

D0 ≈
(

1 +
(

udD0

Liiu2
rms

)αii )−1/αii

=
(

1 +
(

ud

u∗
ii

)αii
)−1/αii

. (2.8)

Here, αii is a free parameter and u∗
ii is an Eulerian ‘diffusion velocity’ that competes with

the drift and is defined using Eulerian measures as

u∗
ii = u2

rmsLii

D0 . (2.9)

In incompressible flows, L22 = L33 = L11/2 (Csanady 1963). The eddy diffusivity
at large drift velocity can be written as D0

ii/D0 = u∗
ii/ud. In contrast, Csanady (1963)

proposed

D0
ii

D0 ≈
(

1 +
(

γii β ud

urms

)2 )−1/2

, (2.10)

where β is defined with Lagrangian and Eulerian statistics and γ22 = 2γ11 = 2.
The proposed model form of (2.8) is very similar to (2.10), suggesting the space of

candidate functions appropriate for this problem is narrow. As the adopted problem set-up
(i.e. one-way coupled, dilute particle limit, negligible inertial effects) is a simplification,
even such an approximate model should offer substantial predictive value.

3. Numerical set-up

Direct numerical simulation (DNS) of forced incompressible HIT in a triply periodic
box of edge length Lbox provides the data for this test. Solved with continuity are the
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Figure 1. Instantaneous unnormalized velocity autocorrelations (a) and normalized energy spectra
E(kL11)/u2

rmsL11 (b) for the cases in a 2π3 box, with filtered forcing preventing energy growth in the largest
modes. Note that urms = 1 for all cases.

incompressible Navier–Stokes momentum equations with a linear forcing term. They are
written as

∂ui

∂t
+ ∂uiuj

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
+ Aũi, (3.1)

where A is a controller that maintains the turbulent kinetic energy, k ≡ uiui/2, at a
prescribed level, ρ is the fluid density and ν is the kinematic viscosity. This approach
is similar to Bassenne et al. (2016), but with a high-pass filtered velocity described in
spectral space as ̂̃ui = G(|k|)ûi, where |k| is the wavenumber magnitude and

G(|k|) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, |k| ≤ 2,

1
2

− 1
2

cos(π(|k| − 2)), 2 < |k| ≤ 3,

1, |k| > 3.

(3.2)

In figure 1, plotted instantaneous energy spectra show decay at the largest scales for all
considered Re. The values of Lk, L11, L22 and L33 are all less than Lbox/2 by construction
due to the filtered energy injection. As such, the simulations are not influenced by the
cubic box shape or orientation, unlike the standard linear forcing method, as in Rosales &
Meneveau (2005).

To quantify eddy diffusivity, the MFM formulation of Mani & Park (2021) is used
with code adapted from Pouransari, Mortazavi & Mani (2016) for solving the governing
equations on a staggered N3 grid with finite volume operators and a Runge–Kutta
time-advancement scheme. The MFM measures the response of the scalar field to an
imposed macroscopic forcing by solving an additional equation for a scalar field with
molecular diffusivity Dm. Following the procedure of Shirian & Mani (2022) for finding
D0, we decompose the scalar field as C = C + c and add a macroscopic source term, s, to
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Lbox, N3 2π, 643 2π, 1283 2π, 2563 4π, 1283 8π, 2563

Reλ 14.4 21.9 35.1 14.4 14.4
u∗

11/urms 1.36 1.23 1.13 1.36 1.36
u∗

22/urms 0.67 0.62 0.57 0.67 0.67

Table 1. Summary of measured values relevant for the computation of D0
11 and D0

22.

the scalar equation so that c is governed by

∂c
∂t

+ ∇ · ((u + ud)c) = Dm∇2c − (u + ud) · ∇C + s(x, t). (3.3)

Following the method of moments, the forcing maintains ∂C/∂xi = 1 (Mani & Park
2021). Setting i = 1 allows measurement of the axial diffusivity in the direction of drift
and i = 2, 3 allows quantification of transverse diffusivity in directions perpendicular to
drift. Table 1 summarizes parameters swept to measure eddy diffusivity in the x1 and x2
directions.

In all cases, ν = Dm and urms = √
2k/3 = 1. The underlying field being HIT means

the root-mean-square value for each of the three velocity components is this urms.
Once the velocity and scalar fields are fully developed, D0

ii = −uic is post-processed
from the turbulent scalar flux for a time of O(200–500)τk. Confidence intervals are
calculated using the standard error of each mean statistic by constructing decorrelated
samples of appropriate length compared with τk (Shirian, Horwitz & Mani 2023). For
each simulation, Δ/η = Δ/λB � 2.1, where Δ is the grid spacing, η ≡ ν3/4ε−1/4 is
the Kolmogorov length scale, λB is the Batchelor scale and ε is the energy dissipation
rate. We also report Reλ ≡ √

15u4
rms/εν. This resolution, which can also be reported

as kmaxη � 1.5, where kmax is the maximum resolved flow wavenumber, is sufficient to
resolve the low-order statistics studied herein and in line with canonical guidelines (Pope
2000), studies of flow energetics (Kaneda et al. 2003; Bassenne et al. 2016) and other
works studying particle diffusivity (Squires & Eaton 1991; Mazzitelli & Lohse 2004; Jung,
Yeo & Lee 2008).

3.1. Comparison of MFM with Lagrangian formulae
We show equivalence in the MFM and Lagrangian definitions of eddy diffusivity. The
MFM measures D0 by calculating the correlation of simulated scalar and velocity fields.
The Eulerian–Lagrangian method (ELM), in contrast, simulates scalar particles in a
background flow to calculate (2.1). Following Falkovich, Gawędzki & Vergassola (2001),
the inertialess scalar particles are governed by dX = (u(t) + ud) dt + √

2Dm dW . Here,
W (t) is a zero-mean, unity-variance Weiner process that allows this Langevin equation to
correspond to the advection–diffusion equation solved by MFM.

To assess this equivalence, both methods measure eddy diffusivity from the same HIT
case of Lbox = 2π and Reλ = 14.4 from table 1 with ud = 0. In addition to the Eulerian
DNS, MFM requires solution of (3.3) on O(105) mesh points. The ELM requires the
same flow-field DNS, along with Lagrangian trajectory simulations for O(106) particles.
Interpolation of velocity to particle locations uses modified Akima piecewise cubic
Hermite functions.
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Figure 2. Mean estimates of D0 for the Reλ = 14.4 case using MFM and ELM with 95 % confidence
intervals showing convergence to the final estimate from each method (– –).

For the candidate turbulent flow, figure 2 compares the measured estimate of the mean
value of the eddy diffusivity as a function of the number of ensembles considered. Each
independent ensemble is of length ≈ 10τk, collected from a fully developed DNS. The
mean estimate from both methods is approximately the same for this realization, but the
confidence intervals are quite dissimilar in their size. The MFM provides more confident
mean estimates for this application and is more scalable for simulations, as Eulerian fields
are easier to distribute and solve with parallel computing than Lagrangian particles. An
additional advantage of MFM not utilized here is that MFM can find higher non-local
moments of the diffusivity kernel beyond the local-limit leading-order moment (Mani &
Park 2021).

4. Results and discussion

Equation (2.8) is fitted to the mean diffusivity data from the cases of table 1 as a function
of ud. An iterative method is used to determine α11 and α22 and the forthcoming section
will show that the value of αii is largely invariant to the tested Reynolds numbers.

In figure 3, D0
11 and D0

22 values are plotted for the Reλ = 14.4 cases as a function of drift.
The eddy diffusivity decay trends for the two directions differ for three values of Lbox. At
low drift velocities, the model accurately describes the data; however, at high drift, the
2π3 box data diverge from the analytic scaling. For a fixed box size, the computational
value of D0

ii asymptotes to a non-zero value in the limit of large drift velocity, in violation
of the analytical derivation presented earlier. This effect can be explained: in a finite
periodic domain, a large drift velocity, ud > Lbox/τk, subjects a scalar particle to see the
same turbulence field in a characteristic advection time. Therefore, the autocorrelation
becomes non-zero and the diffusivity value saturates. Figure 3 shows that increasing the
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0.15
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0.35
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0.45
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8π

Model

D0
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2π

D0
11, 

4π

D0
11, 

8π

Model

(b)(a)

(d )(c)

Figure 3. Convergence of D0
11 and D0

22 with respect to box size for Reλ = 14.4. Dashed lines represent (2.8)
for α11 = 3.9 (a,b) and α22 = 1.9 (c,d). Certain MFM data are shown with representative 95 % confidence
intervals, which consider only the statistical error and exclude finite box-size error; arrows indicate convergence
with increasing box size. Panels (a,c) show standard axes, while panels (b,d) show log–log axes. The data and
Appendix B suggest criteria for which the box size of 2π is sufficient.

computational domain size ameliorates this effect and improves data convergence to the
model prediction for the highest drift velocities studied. This effect, however, has minimal
effect on parameter choice: for further details, see Appendix B.

We now examine the effect of Re. In figure 4, D0
11 and D0

22 at three Reλ values for
ud/urms < 5 are shown and the data collapse when normalized by u∗

ii/urms. There is good
agreement between the computational data and model predictions over the drift velocities
and Reynolds numbers explored for α11 ≈ 4 and α22 ≈ 2, based on the values from
figure 3. Since α22 = 2 is used in the literature and Appendix C suggests that α11 ≤ 4,
we adopt the closest integer approximations of α11 = 4 and α22 = 2 for figure 4 and the
remainder of this work. This observed agreement is better and has narrower scatter about
the model prediction than presented in Squires & Eaton (1991), where α11 = α22 = 2. This
may be due to the long simulation time and Eulerian MFM method for quantification of
D0

ii.
Absent drift, Shirian & Mani (2022) used MFM to similarly show that scale-dependent

eddy diffusivity, normalized by urms and an eddy length scale, was largely invariant
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Figure 4. The MFM-measured D0
11 and D0

22 as a function of ud/u∗
ii for different flow Reynolds numbers

for Lbox = 2π. The dashed lines represent the analytical curve given by (2.8) for α11 = 4 (top) and α22 = 2
(bottom). Certain MFM data are shown with representative 95 % confidence intervals, which consider only the
statistical error and exclude finite box-size error. Panel (a) shows standard axes, while panel (b) shows log–log
axes.

to Re. When considering uic, this should not be surprising, as taking an average of a
multi-scale field that decays rapidly in magnitude at large wavenumbers ensures that the
large-scale content dominates. Bos, Touil & Bertoglio (2005), for example, show that even
at Reλ = 28, a relatively sharp scaling exponent means the large-wavenumber content of
the passive scalar flux is far smaller in magnitude than that at the near-integral scales.
As Re increases, figure 1 shows us that Lii decreases: so D0

ii decreases with Re, ceteris
paribus. This comment concerns the Reλ cases simulated here, but § 4.1 will discuss
more general, higher Reynolds number conclusions. However, an increase in Re, properly
normalized, should not greatly affect small-wavenumber quantities, which dominate the
normalized measure of eddy diffusivity.

The value of α22 = 2 corresponds to the transverse diffusivity results of Csanady (1963)
and matches the overall scaling of Wang & Stock (1993), but the value of α11 = 4 has not
previously been reported. Squires & Eaton (1991) noted that their computational data and
measurements of glass beads by Wells & Stock (1983) differed from the predictions of
(2.10). We plot the corresponding data from Squires & Eaton (1991) for D0

11 in figure 5 (cf.
figure 11b of that work), and their version of (2.10), inferring β = 1.1 from their plot. If
α11 = 4 from this work is used, we better predict their presented data.

Squires & Eaton (1991) hypothesized that discrepancies between their data and
Csanady’s model might be due to assumptions about the form of velocity autocorrelation
and a differing values of Lagrangian and spatial measures. The eddy length scale control
and consistent use of Eulerian correlations mean the data in figures 3 and 4 are not affected
by these considerations.

We can plot D0
11 markers from figure 4 and observe that they fall along the same curve

as the previous data, showing the lower scatter of MFM data about the model prediction.
To build additional confidence, we can also plot computational bubble dispersion data
from figure 2 of Mazzitelli & Lohse (2004) on the same axes of figure 5. For this one-way
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Figure 5. The present model compared with: (a) data from this work with parameter choices from table 1;
from Wells & Stock (1983) and Squires & Eaton (1991) with β = 1.1; from He et al. (2005) with β = 1.0; and
from Mazzitelli & Lohse (2004) with β = 0.71 with annotation for a particle motion case with and without
lift. (b) Bounds at infinite Re specified by Yudine (1959).

coupled bubble data, we approximate the D0 value at zero drift to compute u∗
11/urms = 1.4.

Most of the data come from bubble simulations where the particles experience a lift force.
At the highest drift velocity, however, two values of diffusivity are provided, for which the
lower value comes from a simulation where lift was neglected in the bubble dynamics. The
data of figure 11(b) of He et al. (2005) are also included as another non-inertial point of
comparison at Reλ = 42.4. The markers of figure 5 come from a wide range of Re values,
Reλ = [14 − 62], and yet all five datasets are better described by the model with α11 = 4
for the examined range of swept drift velocities.

The choices of Reynolds numbers are broadly indicative of scenarios of Reλ = [38–60]
that have been examined in the literature for target oceanic contexts (Shim et al. 2020).
Specifically, for particle dispersion, Elghobashi & Truesdell (1992) found that their
simulations of low-inertia particle mean-square displacement at even Reλ ≤ 18 agreed
with corresponding experiments at Reλ ≈ 48.5.

So the value of α11 = 4 is supported by data, but it also satisfies Csanady’s arguments,
namely that it corresponds to an autocorrelation that supports Taylor’s frozen flow
hypothesis. More fundamentally, Yudine (1959) calculated bounds for the value of the
axial eddy viscosity as a function of drift based on the Kolmogorov–Obukhov structure
function description of homogeneous turbulence. For the second-order structure function
required, the refined Kolmogorov hypothesis does not significantly alter the conclusions
(Pope 2000). These bounds are pictured in figure 5 for a u∗

11 imputed from that work and it
is clear that α11 = 4 is close to the envelope of realizable curves, which represent the limit
state of infinite Re turbulence. The value α11 ≈ 1 closely describes the corresponding
lower bound. As the transverse structure function differs from the axial one by only a
multiplicative constant, the bounding exponents are the same for the transverse diffusivity,
so α22 = 2 also satisfies theoretical constraints of Yudine (1959).
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4.1. Generalizing to higher Re
Since the theoretical bounds are in the infinite Re limit, the model in this work should be
only a weak function of Re, as is suggested by figures 4 and 5.

To use (2.8) directly, a straightforward correlation of u∗
ii with urms would be useful.

In the definition of uii, given by (2.9), D0 could be written in terms of the k and
ε of the underlying turbulence; Shirian & Mani (2022) attempted to establish such a
correlation and showed D0 = Dcu4

rms/ε, where Dc is an order-unity constant. Furthermore,
Sreenivasan (1998) and Kaneda et al. (2003) offer evidence towards an ultimate regime of
ε = εcu3

rms/L11, where εc is also a constant, allowing the establishment of

u∗
11

urms
= urmsL11

D0 ≈ εc

Dc
. (4.1)

For Reλ = 67, Shirian & Mani (2022) report Dc = 0.77 and we can estimate εc ≈ 0.8–0.86
(Sreenivasan 1998), which means (4.1) can be evaluated to ≈ 1.04–1.12, in comparison
with the value of 1.13 obtained from the highest Reλ realized in this work. Beyond this
empirical study of convergence, we can alternatively use equation (8) of Sawford, Yeung
& Hackl (2008) as a model for the Lagrangian integral time scale to confirm a limiting
case exists. Combining this expression with the correlation of Kaneda et al. (2003), we
can write

u∗
11

urms
= urmsL11

D0 ≈
εc

u4
rms

ε

u2
rms

√
ν

ε

(
4.77 +

(
Reλ
12.6

)4/3 )3/4 = 0.258εcReλ(
4.77 +

(
Reλ
12.6

)4/3 )3/4 .

(4.2)

As Reλ increases, this expression approaches ≈ 3.25εc, bolstering support for our
parameter reaching a constant value; for Reλ = 1201, εc ≈ 0.41 such that (4.2) evaluates
to ≈ 1.33 (Kaneda et al. 2003). So while our data in table 1 and figure 5 suggest this ratio
is an O(1) constant, further investigations are needed to establish its convergence vis-à-vis
that of εc with Re.

5. Conclusions

We propose an algebraic model for capturing the effect of drift velocity on the turbulent
dispersion of passive scalars. This model, presented in (2.8), captures the asymptotic
limits of zero and infinite drift velocities exactly and the single free parameter of αii
captures the effects of intermediate drift velocities. By measuring α11 ≈ 4 and α22 ≈ 2
from the data and predicting eddy diffusivity across the span of drift velocities, this
work performs a priori modelling without assuming a form for the underlying velocity
structure. In so doing, we have shown a correspondence between MFM, an efficient
Eulerian method for determining eddy diffusivity and other similar transport operators,
and the classical Lagrangian definition. In particular, we show that MFM offers superior
statistical convergence and computational properties for the efficient calculation of eddy
diffusivity.

In the model form, D0 and u∗ capture the Re dependence, and can be measured
independent of drift. As the αii that best describes the two directions are different, the
transition between the limiting asymptotic behaviours appears to occur more rapidly in
the transverse directions than in the axial direction, even accounting for the differences in
eddy size.
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There is cause to hope these results, which show improvements from previous models,
can be applied to a wider range of situations than expected. As St and φ increase, the
velocity field seen by a particle no longer resembles the undisturbed Eulerian field and the
fluid and particles become two-way coupled. Regarding the first parameter, Reeks (1977)
and others have shown that an increase in Stokes number may increase diffusivity, but
theory and evidence from simulations suggest this effect is relatively small for St < 0.1
(Jung et al. 2008). For example, Wang & Stock (1993) directly consider St /= 0 and find
diffusivity relations independent of St outside of measurements at ud = 0, viz. equations
((2.26)–(2.27)). With finite particle loading, Mathai et al. (2018) found axial diffusivity
exceeded transverse diffusivity at φ as high as 5 × 10−4. Some of the particles of Wells &
Stock (1983) had dynamics significant enough to affect the reported flow and Mazzitelli
& Lohse (2004) simulated microbubbles with added mass, lift and drag, but they are still
acceptably described by the model in figure 5. It may, therefore, be fair to conclude that the
basic effects of anisotropic decreases in diffusivity with increasing drift obscure the effects
of other complex nonlinear interactions. For transverse diffusivity, Loth (2023) shows that
data with a range of negligible to finite Stokes numbers, such as from Groszmann, Fallon
& Rogers (1999), can still be described by the Csanady (1963) and α22 models, albeit with
deviations of the order of those seen in figure 5. For such cases, revisiting calculations to
determine D0

ii and Lii in the presence of inertial particles might improve data collapse.
The predictive nature of this model, enabled by MFM, can be applied to other

domains. The inverse problem can also be examined, in which dispersion measurements
of natural particles or bubbles with known constant drift velocity can be used to diagnose
turbulence parameters of the underlying flow. While this work’s computational box set-up
is conventionally used for Reynolds-averaged equation closure, this model can provide
subgrid-scale closures in the large-eddy simulation context, as computational cells far
from a wall should represent HIT.
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Appendix A. Calculation of Lii

Assuming finite box size Lbox, (2.3) can be written as

L11 = 1
2u2

rms

∫ Lbox/2

−Lbox/2
〈u1(x1, x2, x3, t)u1(x1 + r, x2, x3, t)〉 dr, (A1)

L11 = Lbox

2u2
rms

〈u1(x1, x2, x3, t)u1
x1〉 = Lbox

2u2
rms

〈(u1
x1)2〉, (A2)

where •xi denotes an average over xi. Then, L22 and L33 are given by

L22 = Lbox

2u2
rms

〈(u1
x2)2〉, L33 = Lbox

2u2
rms

〈(u1
x3)2〉. (A3a,b)
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Appendix B. Examination of box-size effects

Increasing box size is largely equivalent to forcing the velocity field at larger wavenumbers
for a fixed Lbox, but without the penalty of reduced turbulence intensity and Reynolds
number. To verify that box-size effects do not affect our model fitting, we modify the
criterion proposed by Ireland, Bragg & Collins (2016) to quantify box-size convergence
for particle statistics. This is equivalent to the metric used within the main body of this
work, but we apply it now in the study of Eulerian fields. In the notation used in this work,
finite box-size effects become significant when

ud � Lboxurms

Lk
→ ud

urms
� Lbox

2L11
. (B1)

Amongst all cases considered in this work, L11 is the largest, and therefore the metric
the most restrictive, for the Reλ = 14.4 case, for which drift velocity must be less than
≈ 5urms. Indeed, in figure 3, for ud ≈ 5urms, that there is some saturation of the diffusivity.
We can estimate the asymptotic diffusivity value at such high drift velocities in a finite
domain by evaluating the model at ufinite ≈ Lbox/τk. For such cases, increasing Lbox from
2π to 4π and 8π improved results, as the criterion of (B1) doubles and quadruples.

Effectively discriminating a value of α11 in (2.8), however, needs reliable results for at
least

ud

u∗
11

� 1 → ud

urms
� u∗

11
urms

, (B2)

leading to the choice of

Lbox

2L11
>

u∗
11

urms
→ Lbox > 2L11

u∗
11

urms
. (B3)

Again, this criterion is most restrictive for the Reλ = 14.4 case in a 2π3 box, for which
the right-hand side ≈ 2π/4. Assuming � implies at least a ×3 difference, this means
periodic box effects should not be a significant source of error in fitting the model. The
largest drift velocities for each Reλ value in figure 4, however, do clearly show signs of this
periodic box-size effects and data collapse requires larger boxes at high drift velocities.

As a final note, Ireland et al. (2016) also examines higher-order particle statistics as a
function of Stokes number; for the regime of negligible to low Stokes number we study
here, Appendix A suggests the influence of errors from periodic box calculations should
be low for the studies we compare with in figure 5.

Appendix C. Optimality of the choice of α11

For ud � urms, equation (14) from Yudine (1959) gives the upper limit for the diffusivity
as

D0
11

D0 = 1 − 0.2
(

0.8
ud

u∗
11

)4

≈ 1 − 0.08
(

ud

u∗
11

)4

. (C1)

The Maclaurin series of (2.8) is

D0
11

D0 = 1 − 1
α11

(
ud

u∗
11

)α11

+ α11 + 1
2α2

11

(
ud

u∗
11

)2α11

+ O
( (

ud

u∗
11

)3α11
)

. (C2)

The optimal choice of α11 for (C2) that matches the leading-order polynomial power of
(C1) and guarantees realizability is α11 = 4.
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