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Abstract

The use of topology optimization in the design of fluid dynamics systems is still in its infancy.
With the decreasing cost of additive manufacture, the application of topology optimization in
the design of structural components has begun to increase. This paper provides a method for
using topology optimization to reduce the power dissipation of fluid dynamics systems, with
the novelty of it being the first application of stochastic mechanisms in the design of 3D fluid-
solid geometrical interfaces. The optimization algorithm uses the continuous adjoint method
for sensitivity analysis and is optimized against an objective function for fluid power dissipa-
tion. The paper details the methodology behind a vanilla gradient descent approach before
introducing stochastic behavior through a minibatch-based system. Both algorithms are
then applied to a novel case study for an internal combustion engine’s piston cooling gallery
before the performance of each algorithm’s resulting geometry is analyzed and compared. The
vanilla gradient descent algorithm achieves an 8.9% improvement in pressure loss through the
case study, and this is surpassed by the stochastic descent algorithm which achieved a 9.9%
improvement, however this improvement came with a large time cost. Both approaches pro-
duced similarly unintuitive geometry solutions to successfully improve the performance of the
cooling gallery.

The application of algorithmic methods in the design of fluid—solid components aims to real-
ize more complex and efficient designs, for internal flow components, that minimize undesir-
able energy losses. The algorithm should solve a problem in which a fluid-solid geometrical
interface is optimized while one or more governing equation for fluid flow is solved
(Alexandersen and Andreasen, 2020).

Topology optimization is an optimization method that has been commonly applied to
reduce the weight of structural components, without compromising mechanical strength
(Bendsoe and Sigmund, 2004). It is a mathematical method that spatially optimizes the dis-
tribution of material within a defined domain, for a given set of boundary conditions and
constraints (Rosinha et al, 2015). The method acts to reduce a predefined cost function,
aiming to find the minima of this objective. Topology optimization has been shown to be
beneficial for solving multiphysics problems in which different phenomena interact, due
to its ability to realize complex and unintuitive solutions (Gersborg-Hansen, 2003). This
ability makes it a competitive approach to employ in the design of fluid-solid components,
as the best way to design these is often poorly understood due to difficulty in visualizing the
sensitivities of different designs. The importance of tools that aid the design of fluid-solid
interacting surfaces is easy to understand, as even the simplest incompressible case will spon-
taneously give rise to a large variety of complex coherent structures and phenomena
(Pierrehumbert, 2022).

Additive manufacturing technology is now reaching a point in which it is a viable solution
to produce durable complex metal geometries, with motorsport manufacturers utilizing this
technology to produce highly stressed components such as additive manufactured exhausts,
or even laser metal fused piston heads as done in 2020 by MAHLE GmbH for Porsche
(MAHLE, 2020). The development of a robust and accurate design process for optimizing
fluid dynamic systems could allow for even greater efficiencies to be reached by these additive
manufactured components, with little or no cost to the timeline of projects. Engineers using
such computational methods as a tool could even speed up the development timeline of pro-
ducts, as optimum design concepts can quickly be defined without relying on a product being
passed between design and simulation iterations.

The topology optimization approach was first introduced in 1988 for stiffness design of
mechanical structures (Bendsee and Kikuchi, 1988). It took 15 years for the approach to be
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applied to fluid dynamics problems, for a 2D Stokes flow-based
minimization problem (Borrvall and Petersson, 2002). The errors
incurred by Stokes flow were rectified with a 2D Navier-Stokes
based lubrication approximation approach, however, this method
would naturally face a road block for application to 3D problems
(Gersborg-Hansen, 2003).

To optimize 3D fluid-solid interfaces, the fundamental math-
ematical methods driving research are the level-set method (Duan
et al., 2008) and the adjoint method (Othmer et al, 2007). The
level-set method is widely used in structural optimization as it
gives autonomous and flexible handling of topological changes
(Wang et al., 2003). The main drawback of the level-set method
is that all sensitivities are located at the interface, and thus, all
design changes must propagate from this interface, meaning
that no internal structures or holes can form automatically
(Alexandersen and Andreasen, 2020), this limitation can be over-
come by the adjoint method.

The adjoint method was used to bridge the gap to more
refined results (Othmer et al., 2007). The adjoint method works
to compute the sensitivities of a defined cost function depending
on the porosity value of each cell, with the sensitivities allowing
the optimizer to rank which cells have the largest influence on
the cost function (Othmer et al., 2007). This method allows the
geometry changes to be described by a parametrized surface,
which has a lower computational cost compared with volume
mesh methods. This parametrized surface is effectively an
immersed boundary produced due to the porosity variations
from cell to cell.

The adjoint method that forms the fundament of the algo-
rithm developed in this work is based on a fictitious porous
media approach. In a fictitious porous media approach, the
design domain is treated as a porous medium with each cell’s
porosity being varied to be solid or to be fluid-like to determine
the geometry of the domain. Each cell in the domain gets
assigned an individual porosity value, which is modeled by
Darcy’s law. Olesen et al. (2005) first developed this method
to optimize 2D designs with coarse meshes, however, their
method struggled with finding the true global minimum of
these problems.

A useful application of topology optimization is to optimize cool-
ing passages, as increased flow efficiency will produce improved
cooling due to a steeper temperature gradient. This problem has
been approached by Kim and Son who applied it in the design
of a U-bend turbine serpentine cooling passage (Kim and Son,
2019). Their optimization produced a reduction in pressure loss;
however, the process took a significant period of time to run,
6 h, and produced results that required a large degree of post-
processing to remove inappropriate features and smooth rough
surfaces. The requirement of significant post-processing indicates
a failure to find the global minima.

This paper will apply a topology optimization algorithm to
the design of a piston cooling gallery. A piston cooling gallery
is a good test for the algorithm as it represents the expected
use of the method to improve fluid dynamics systems with
one inlet and one outlet. The algorithm is applicable to any
fluid channel in which there is only one fluid and there are
inlet and outlet boundary conditions. This piston cooling gal-
lery also introduces some more complex flow interactions
through the zones of fluid impingement derived from the
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fluid parting around either side of the gallery, and areas of sep-
aration at the inlet and outlet. This will demonstrate the algo-
rithms applicability to solve problems with complex fluid
interactions.

By improving the cooling of a piston, an internal combustion
engine is able to run at a higher thermal load without piston
temperature being so high as to reduce engine durability
(Deng et al., 2018), be that through expansion-generated ring
scuffing or the onset of surface ignition. With piston cooling gal-
leries being the primary cooling strategy for high loaded pistons
(Thiel et al., 2007), a small increase in cooling efficiency could
produce a sizable difference in total possible engine power
output.

It was noted that a frequent issue with research into the topology
optimization of fluid systems was the failure of the optimizer to
find the global minima of the problem. This is due to the majority
of these algorithms relying on a vanilla gradient descent-based
optimization process (Alexandersen and Andreasen, 2020),
which is widely known to be prone to convergence inefficiencies.
Taking recommendation from the further developed field of
structural topology optimization, gradient-free optimization
methods are not a solution to this problem due to large inefficien-
cies for problems with many variables, such as topology optimiza-
tion, however, gradient-based random-process methods may be
beneficial (Sigmund, 2011).

The stochastic version of gradient descent (Robbins and
Monro, 1951) has become a fundament for optimizing deep
neural networks (Lu, 2022), and offers the potential to benefit
the topology optimization of fluid systems by avoiding bad
local minima or saddle points in the objective function
(Kleinberg et al., 2018) at decreased computational cost (De
et al., 2019). The application of stochastic mechanism into
topology optimization simply refers to the introduction of ran-
domness into the form-finding algorithm. Stochastic optimiza-
tion has achieved some attention for structural optimization
(De et al., 2019) but none for fluid-solid interface optimization,
in which one can argue that it is more beneficial, as fluid-based
topology optimization problems are likely to lead to functions
with many sharp local minima due to the complexity of the
interaction between the two states of matter. One way of achiev-
ing stochastic gradient descent is to recompute gradients for
similar topology examples before each parameter update, avoid-
ing vanilla gradient descent’s tendency to converge to the nearest
local minimum and instead jump to new and potentially better
local minima (Ruder, 2017).

Proving the applicability of stochastic descent for fluid
dynamic topology optimization could unlock a path to improved
optimization performance of fluid-solid interaction surfaces. The
performance of stochastic descent can be fairly evaluated by com-
paring it to a vanilla gradient descent optimization method for a
case with the same boundary conditions. Aside from the optimi-
zation method, the performance difference will be demonstrated
while keeping the underlying methodology between algorithms
the same.

The design optimization presented in this study will be developed
using the continuous adjoint method, as this method is able to
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Fig. 1. Topology optimization algorithm process, from the initial domain to the final CAD output.

provide insightful design improvements with low computational
cost (Othmer, 2008).

The general idea of an optimization problem is to minimize a
cost function while subject to different constraints. Optimization
of fluid dynamics problems is challenging as each geometry
change produces continuously changing variables that interact
with each other in complicated ways. The optimization algo-
rithm explored in this work follows the process presented in
Figure 1.

The adjoint method solves fluid dynamics optimization prob-
lems through using only two applications of finite volume
numerics per iteration, to solve the system of partial differential
equations for the 3D domain, called the primal and the adjoint
equations. These determine which areas of the domain should
be solid in order to minimize a cost function (/). Thus, it requires
relatively low computational cost due to calling on only two solv-
ing operations.

The adjoint method is commonly expressed as a minimization
problem involving the flow variables velocity (v) and pressure ( p),
and a design variable alpha (o), which are constrained by the
incompressible steady state Navier-Stokes equation (Othmer
et al., 2007), depicted in Eq. (1).

Minimize | = J(v, p, @),
Such that (vV)v 4+ Vp — V(2vD(v)) + av = 0,
Vv =0,

6]

where v is the kinematic viscosity, the sum of molecular and tur-
bulent viscosity, and D(v) is the strain rate tensor represented by
D(v) = 0.5(Vv + (Vv)T). The Navier-Stokes constraints are
referred to as the primal equations and these are solved by a
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Semi-Implicit Method for Pressure Linked Equations (SIMPLE)
algorithm (Patankar, 1980). The primal equations use a k-epsilon
viscous model for turbulent modeling (Launder and Spalding,
1974).

During optimization, the design domain is treated as a
porous medium, and the design variable o determines cells in
the domain that should be fluid-like (low porosity values) or
solid (high porosity values) depending on sensitivities. This
porosity field controls the geometry and is added as a sink
term o-v to the Navier-Stokes equations using Darcy’s law
(Darcy, 1856).

This is a constrained optimization problem, which can be
tackled by introducing adjoint velocity (1) and adjoint pressure
(q) as Lagrange multipliers to a Lagrangian relaxation function
L (Othmer et al., 2007).

Minimize:

L=] +j (u, g9)RAQ). 2)
Q

In Eq. (2), Q represents the flow domain and R is the incom-
pressible steady state Navier-Stokes equations and continuity
equation, as in Eq. (1). To get the desired sensitivity for the
Lagrange relaxation with respect to the design variables, the
total variation of L is introduced, with the adjoint velocity and
pressure being chosen in such a way that the variation of L in
respect to velocity and pressure becomes negligible.

This is done through:

SL = 8L + 8,L + S,L,

8,L+ 8,L = 0. 3)
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These combine to give an expression for the sensitivity of the
cell i as below, where V; is the volume of cell i:

oL
—— = u;Vi. 4)
Ba,-
To derive adjoint equations, put Eq. (2) into Eq. (3):
5, (J +j (u, q)RdQ) 5, (] + j (u q)RdQ> —0.
Q Q

For the adjoint equation calculations, turbulence is assumed to
be frozen in order to allow for the primal turbulent viscosity to be
re-used for the adjoint diffusion term (Othmer et al., 2007). This
is a commonly used approximation, called Taylor’s hypothesis
(Taylor, 1938), that introduces a small source of error in the opti-
mization problem that holds for situations where relative turbu-
lence intensity is small, such as ducted flows.

Further expansion of Eq. (5) produces:

O] + 6] + J ul(8vV)v + Vp — V(2vD(6v))]dQ
Q

- J qVévdQ + I uVépdQ = 0. (6)
Q Q

After splitting the cost function J into boundary I" and domain
Q parts (Lindberg, 2015):

J= j Jrdl' +J' JodQ.
r Q

Equation (6) can be reformulated into:

]r) j ( 3]9)
+ SpdI'+ Vu+ opdQ)
j r (W ap P Q ! ap P

+ j (n(uv) + u(vn) + 2vnD<n + E)]r>) Svdl’ — j 2vnD(6v)udI’
r r

+j (—Vuv —vu — <2vD(u) +Vgq+ ];)) svdQ = 0.
0

To resolve this equation, each function to be integrated has to
be equal to 0 individually for any dv and dp value. The parts of the
equation that are integrated across the domain Q give the follow-
ing adjoint equations.

The adjoint momentum equation, with the sink term included
as with the primal equation:

— 2D(u)v = —Vq + V(2vD(x)) — kl

The adjoint pressure equation:

o

Vu = .
u o
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Table 1. Primal BCs for the inlet, outlet, and wall for ducted flow problems.

Inlet Outlet Wall

v Defined value Zero gradient No-slip condition
depending on boundary
scenario condition

p Zero gradient p=0 Zero gradient
boundary boundary
condition condition

The adjoint boundary conditions for velocity and pressure:
j <n(uv) ~+ u(vn) + 2vnD(u) — qn + h)évdF
r

— j 2vnD(év)udl’ = 0,
r
j <un + ]F)épdr = 0.
r op

Boundary conditions (BCs) for the primal equations are imple-
mented as presented in Table 1.

Fluid power dissipation represents the power consumption experi-
enced by the flow of a fluid through an orifice as a function of the
pressure drop and the flow rate. Power dissipation includes the
effect of velocity, rather than the option of focusing solely on pres-
sure reduction. It is computed as the net inward flux of total pres-
sure through the device boundaries. The cost function, and
therefore the objective, of our optimizer is:

I=—j(p+ow%mdp
r

For this cost function, the volumetric contribution Jo = 0. The
adjoint velocity boundary conditions therefore reduce to (Othmer
et al., 2007):

ur =0,

¥

U, =

V}’!a
The outlet adjoint boundary conditions with dJr/dv,, fulfilled

become:

at wall,
atinlet.

1
uv + u,v, + v(nVyu, — Evz —v,=q,

UVy — V¥Vt + V(T’lV)ut =0.

Initially, a steepest gradient descent algorithm (Cauchy, 1847) is
implemented to update the porosity, the design variable «, using
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the calculated sensitivities. The steepest descent is a gradient-based
algorithm which can be used to update porosity as shown:
oL

Bai -

Qpp1 = Oy — a, — u;v;Vid.

For the implementation of the steepest descent algorithm,
commonly called vanilla gradient descent, § is the step-length
(lambda) and V; is the cell volume. Modifications to & will employ
an underrelaxation factor (), to ensure each steps solution is not
too different from the last, improving stability.

Ayl = an(l - 'Y) + Ymin (max((a,, - uiViVia)’ 0): amax)y

where @y, represents the maximum porosity value for each cell.

The descent algorithm is then adapted to introduce a stochastic
mechanism to compare gradient descent of a fluid topology prob-
lem with a custom stochastic gradient descent method. The stochas-
tic mechanism of the optimization takes inspiration from He et al.’s
work in which they penalize the sensitivity of each element with a
random coefficient (He et al., 2020). For each element i:

aG=a;-¢, ¢ EI[1.0—-w 1.0+ v,

where o is the penalty coefficient, which is randomly chosen for
each element before the form-finding process is carried out.

This method is adapted by applying elementwise random
penalties to the porosity field o before the sensitivities are calcu-
lated, however, the penalty is scaled down to a hundredth in order
to promote convergence. At each iteration of the loop, 10
instances of penalized porosity fields are created, to produce a
minibatch of size 10 that is computed against the objective func-
tion, with the porosity field of the smallest cost being progressed
to the next stage. The advantage is that this method will evaluate
many different non-optimal geometries allowing it to study more
local minima compared with vanilla gradient descent. The effect
of this stochastic adaption on the performance of the resulting

Fig. 2. Starting domain of cooling passage within piston.

https://doi.org/10.1017/50890060422000257 Published online by Cambridge University Press

topology will be compared in the hopes that this method guides
the algorithm away from false minima.

Case study

The topology optimization algorithm was applied to the novel
case study of an internal combustion engine’s piston cooling gal-
lery. This case study is of interest as although it only has one inlet
and one outlet, which is the most common use case for topology
optimization of fluid systems, the torus region in which flow is
split to either side of the gallery induces dynamic flow interac-
tions, such as a large amount of flow impingement at the outlet,
and separation zones near the inlet and outlet, which is a flow
problem that has not yet been tackled in the literature.

By optimizing the cooling channel of a piston, a greater quan-
tity of cooling medium can be passed through the piston, improv-
ing heat transfer. A small increase in fluid flow would be a step
toward realizing internal combustion engine designs that can
achieve higher thermal efficiencies, as this allows for an increase
in engine operating temperature without piston failure. For high-
performance engines, such as the Porsche 911 GT2 RS from
MAHLE’s study (MAHLE, 2020), reduced piston temperature
will reduce the onset threshold of knock and pre-ignition,
which allows greater performance to be achieved.

Optimization setup

A piston cooling gallery represents a relatively simple yet interest-
ing case for investigation into the efficacy of the approach. The
passage consists of one inlet and one outlet, linked by a torus
shaped cooling path, meaning that the fluid can flow in two direc-
tions, clockwise or anticlockwise, from inlet to outlet. This flow
path is of interest as it leads to a large amount of flow impinge-
ment at the outlet, which is a challenge to efficiency. The geom-
etry created to represent a simple piston cooling channel can be
seen in Figure 2, and this acted as the domain for the
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Fig. 3. Mesh convergence study for objective function.

optimization, meaning that any optimized design could not
exceed these defined boundaries, and all changes must be internal.

The cooling passage to be simulated has circular inlets and
outlets of 10 mm with the torus passage being 12 mm in dia-
meter. The domain included a small chamfer between the inlet
and outlet passages and the torus.

The optimizer was run using an inlet velocity of 15 m/s which
represents a Reynolds number of 300,000 for 10 W oil at 100°C
(SAE, 1999). The inlet velocity was chosen to simulate a 911
GT2 RS engine with a 77.5mm engine stroke running at
6000 rpm (Porsche, 2020), to replicate the boundary conditions
MAHLE’s additive piston would be under.

The domain was discretized using a mesh element size of
0.25 mm. This meant that the optimizer was faced with a domain
of 321,724 cell zones. Figure 3 presents a mesh convergence study
that indicated a mesh resolution of 0.25mm offered an

Fig. 4. Initial domain (left) and vanilla gradient descent optimized geometry (right).
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equilibrium between good result quality and computational cost.
The time increase from elements of 0.25 to 0.1 mm was 7-fold.

As required by the optimizer, the flow is assumed to be incom-
pressible and isothermal. Frozen turbulence was assumed for the
adjoint equations, with the primal equations using a k-epsilon
turbulence model whilst calculating the Navier-Stokes equations.
The simulation’s objective function converged after 220 iterations
which took 500 s to run on a 4.4 GHz processor.

Optimized geometry

For ease of comparison, Figure 4 presents the initial domain and
the optimized geometry side by side. Although the optimizer had
limited domain space to alter, significant design changes were
realized.
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Fig. 5. Optimized geometry, internal section to exit interface.

An obvious geometry change to improve the performance of the
gallery would be to have a feature that directs the flow 90° from the
inlet, around the torus, and 90° again to the outlet. This transition
geometry was produced for the inlet, as shown in the optimized
geometry in Figure 4, however, it was not produced for the outlet.
The optimizer did fulfill the expectation that a separating geometry
at the inlet would reduce power dissipation, however, the outputted
geometry could benefit from a smoother and more arcuate shape
which could be added in post-processing.

The most unexpected geometry changed occurred toward the
outlet, this being the algorithms implementation of large but
thin internal vanes that lead toward the outlet, as displayed in
the semi-transparent view of the geometry shown in Figure 6.
Figure 5 shows the outlet and the base of the internal section

https://doi.org/10.1017/50890060422000257 Published online by Cambridge University Press

from the outside and Figure 7 shows a side on view of the internal
section. This addition goes against general convention that intro-
ducing geometry that reduces the cross-sectional area of a tube
will decrease and obstruct fluid flow, however, the algorithm
has found this geometry to reduce power dissipation. This geom-
etry appears to direct flow toward the outlet, reducing fluid flow
impingement at the outlet, and this flow direction change will
have overcome the negative effect associated with decreased pas-
sage cross-sectional area in order for the solver to have minimized
the optimizer’s objective function.

The overhead view of the topology, Figure 6, presents a lack of
symmetry of the internal vanes. This gives evidence to the gradi-
ent descent-based optimizer having failed to find the true global
minimum for the problem.

Fig. 6. Semi-transparent view of optimized geometry with
internal section.
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Fig. 7. Semi-transparent side view of optimized geometry.

The optimization algorithm was adapted to incorporate a stochas-
tic mechanism as described in the methodology section. These
changes were made in order to explore the applicability of sto-
chastic gradient descent to improve the algorithm’s ability to
avoid false minima for the objective function compared with
the vanilla gradient descent method.

Figure 8 presents a comparison of the two approaches ability
to reduce the cost function for the piston cooling case study.
The plot compares gradient descent to stochastic gradient descent
highlighting that stochastic gradient descent achieved a lower
objective function and therefore should lead to the best perform-
ing geometry. Due to the addition of the minibatch system to the
stochastic method, the time cost of the stochastic gradient descent
algorithm increased to 4500s, which is a significant 9-fold
increase.

Figure 9 presents the geometry produced by the stochastic gra-
dient descent. Compared with the vanilla gradient descent’s

Fox Furrokh and Nic Zhang

topology output, the most notable differences are the introduction
of a separating geometry at the outlet, increased symmetry and
shorter vanes leading toward the outlet. The addition of the
flow directing geometry at outlet and the improved symmetry
hint at the discovery of an improved minima, but performance
analysis will give quantitative evidence for this claim.

The performance of the vanilla gradient descent and stochastic
gradient descent was analyzed and compared with the starting
domain. This was done through commercial CFD package
ANSYS Fluent.

The boundary conditions for these simulations were chosen to
represent 10 W 40 oil, which is a commonly used artificial engine
oil with a density of 865 kg/m’ and a viscosity of 0.0143 kg/ms at
100°C (SAE, 1999). The inlet velocity was 15 m/s representing a
Reynolds number of 300,000 as used in the optimization. The

Comparison of algorithm efficacy to reduce objective function
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i
1
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2.50E-01

Gradient Descent (GD)
Stochastic Gradient Descent (SGD) ==
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Fig. 8. Comparison of objective function between stochastic and vanilla gradient descent.

https://doi.org/10.1017/50890060422000257 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060422000257

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 9

Fig. 9. Stochastic gradient descent geometry.

SIMPLE method was used for the solution, as used in the optimi-
zation, along with a k-epsilon viscous model, with wall enhance-
ment, as used in the optimization. The oil was assumed
incompressible. The effect of crankcase pressure on the efficiency
of the piston cooling channel was ignored during simulation.

The velocity streamlines for the starting domain and the opti-
mized geometry can be seen through Figures 10-12.

It is clear that the two optimized geometries have reduced flow
impingment over the starting domain. The gradient descent dis-
plays less impingment at inlet but more toward the outlet com-
pared with the stochastic result. The geometry change at the
inlet has resulted in improved fluid velocity throughout the sto-
chastic and vanilla gradient descent topologies. Both optimized
geometries exhibit fluid particle pathlines that take a larger radius
route around the torus curve, compared with the original domain,
which represents more efficient flow, with less energy being lost
due to sharp direction changes.

Table 2 presents the resulting area weighted average pressure
drop from inlet to outlet. The pressure drop through the cooling
passage was 8.9% less in the optimized geometry compared with
the initial domain. This is a sizeable performance improvement,
especially given the constraints the starting domain would have
put on design options, as it has been shown that piston cooling
velocity has a linear relation to the average heat transfer coeffi-
cient at the bottom of a piston (Najafabadi et al, 2014). The

Veloci
Streamline 1

F 2.000e+01

r 1.500e+01
[ 1.000e+01

- 5.000e+00

I 0.000e+00

[m s”-1]
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A1
/

stochastic approach generated a further improvement of 1.1%
on the vanilla gradient descent geometry which coincides with
the improvement it saw in its objective function. A performance
increase greater than 1% can be considered a useful step to
improving efficiency and reducing emissions, for example Luff
et al. found that just a 3°C drop in piston temperature decreases
CO output by 1% (Luff et al., 2012).

Figure 13 compares the outlet velocities for both geometries,
showing an increase in outlet velocity. The stochastic method
can be seen to have produced a more uniform outlet distribution,
accountable to a more effective exit vane structure. The reduced
pressure loss and increased velocity mean that the optimized
geometry will more efficiently allow for the passage of fluid,
and thus improve the cooling capability of the piston head.

The most unusual feature of minima that the algorithm found
was the internal vanes that lead toward the outlet, Figure 14 com-
pares the stochastic and vanilla gradient descent topologies and
the effect these sections have on the flow path.

The streamline plots show that the stochastic gradient descent
topology has further reduced flow impingement at the outlet,
which is the main driver in performance improvement. The
shorter vane has produced a more coherent flow structure reduc-
ing inefficiencies and thus proving the algorithm has better
avoided false minima. For both geometries, the primary sensitivity
reducing aspect of this unusual vaned section appears to be to

Fig. 10. Velocity streamlines for the initial starting domain.
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Fig. 11. Velocity streamlines for the vanilla gradient descent topology.

Veloci

Streamline 1
2.000e+01

0.000e+00
[m s*-1]

Fig. 12. Velocity streamlines for the stochastic gradient descent topology.

lead the flow by a larger radius toward the outlet and reduce the
impingement with the opposing side of the torus.

Further discussion

The resultant geometries produced by both algorithms exhibit
creative and unintuitive solutions. The application of either
methodology could be employed by engineers in the early stages
of product development and, by combining machine and human,
produce a better product than could be created by each counter-
part alone. The internal fins are testament to this, as it goes
against intuition to design a geometry, with the goal of improving
ducted flow efficiency, that decreases the products cross-sectional
area. The algorithm has proven merit to exploring an unusual

Table 2. Pressure drop through initial domain and optimized geometries.

Pressure drop (Pa)

Starting domain 64,788.3
Vanilla gradient descent topology 59,014.6
Stochastic gradient descent topology 58,371.2
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design, with the internal fins proving to be a useful mechanism
to improve flow transition into the outlet.

The addition of this specific stochastic mechanism to the
optimization problem improved results, however this came at
a significant time cost. With the optimization of a fluid-solid
interface representing a nonconvex problem, the application
of vanilla gradient descent is very prone to missing global
minima. Although there is a time penalty associated with this
stochastic method, it represents a straightforward addition to
increase the probability of the algorithm finding the global
minima. From the case study, it is clear that the stochastic
method tended closer to the global minima due to improved
performance. Both approaches have produced a geometry that
is closer to optimum than the base case however neither have
truly found the global minima due to both displaying an
amount of asymmetry, as the true global minima would be
fully symmetric due to the starting domain being fully sym-
metric. To further quantify the capability of the stochastic algo-
rithm, further work should compare the algorithm with a
design that is known to be optimum, or close to optimum,
given the same boundary conditions.

The time cost increase associated with the stochastic mecha-
nism are largely due to the minibatch addition; it is possible
that reducing the relaxation on the random penalties could lead
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Fig. 13. Outlet velocity contour for initial domain (left), vanilla gradient descent geometry (center), and stochastic gradient descent geometry (right).
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Fig. 14. Outlet internal vane geometry streamlines for the vanilla gradient descent method (top) and the stochastic gradient descent method (bottom).

to faster convergence, however, this should be handled in an
adaptive way, increasing relaxation with iterations. Compared
with the vanilla gradient descent method, the stochastic additions
greatly reduce the agility of the tool to produce fast design
improvements, however the increased time has led to quantifiable
improvements in results. A lot of post-processing would be
required if the designer were to make either algorithm’s resulting
geometry manufacturable, for example, the internal vanes would
need shortening and thickening to meet minimum wall thickness
requirements, and radii on several geometry transitions would
likely need to be increased. This is a drawback to the algorithm,
as the changes required for manufacture are likely to reduce the
performance of the design, and this represents a necessary recom-
mendation for further algorithm adaptations. Further work into
the best approach to manufacture topology optimized fluid sys-
tems could look at using the optimizer to define an envelope of
variation for different regions of the geometry, as some areas of
the geometry will have reduced sensitivity regarding the cost func-
tion and thus could be changed to aid manufacture.
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Conclusion

We have introduced a novel stochastic gradient descent optimiza-
tion method to the optimization of fluid dynamics systems. The
case study has shown the benefits derived from both the vanilla
and stochastic gradient descent algorithms for improving designs.
From the starting domain, we achieve a 10% reduction in pressure
loss through the stochastic method, which is a useful step toward
improved efficiency of an internal combustion engine. A post-
processed version of the geometry produced by the optimizer
could easily be added to the pistons MAHLE has produced
through additive manufacture, furthering the performance of
this product, representing a clear example of the use of the opti-
mizer in the real world.

This work has highlighted the effectiveness of applying sto-
chastic methods to the nonconvex problem of fluid-solid surface
optimization, presenting a method that should act as a platform
for further research to develop on. The creative results presented
in the case study have demonstrated the power of this approach as
a tool in the engineer’s toolbox. There is a clear position for the
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algorithm in the development process of new products, and it has
shown to be able to improve the performance of a piston’s cooling
channel through design changes that are less obvious.

Data is available on request from the authors.
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