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Abstract

In this paper we prove an analogue of the separable version of Nachbin's characterization of injective
Banach spaces in the setting of Banach lattices. The mappings involved are continuous Riesz
homomorphisms defined on ideals of separable Banach lattices which can be extended to Riesz
homomorphisms on the whole Banach lattice. We discuss applications to simultaneous extension
operators and to extension of continuous mappings between certain topological spaces.

1980 Mathematics subject classification (Amer. Math. Soc): 46 A 40.

Introduction

In connection with extension theorems of the Hahn-Banach type, Nachbin came
across a property which is nowadays called the a-interpolation property. A little
later, Cohen [6] proved the following result.

THEOREM A. C(Y) is a Riesz space with the a-interpolation property if and only if
for every two separable Banach spaces Bx D B2 and every operator from B2 into
C{Y), there exists a norm preserving extension from Bx into C(Y).

A somewhat similar result was obtained by Lindenstrauss in [10]. Though not
obvious, it is a fact that the word 'operator' in Cohen's theorem can be replaced
by 'positive operator' and 'extension' by 'positive extension' if one changes
'Banach spaces' to 'Banach lattices'. For Riesz homomorphisms it is natural to
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36 Gerard Buskes [2)

investigate the situation in which B2 is a special type of sublattice of Bv Indeed
in [5] we proved the following result.

THEOREM B. For every two separable Banach lattices Bl D B2 such that B2 is
majorizing in Bx and for every continuous Riesz homomorphism from B2 into C(Y)
there exists a Riesz homomorphic (not necessarily norm preserving) extension if and
only ifC(Y) has the a-interpolation property and Y is totally disconnected.

In this paper, we will prove yet another extension theorem concerning spaces
with the a-interpolation property of which the nature will be very different from
the above Theorems A and B.

THEOREM C. For every two separable Banach lattices Bx 3 B2 such that B2 is an
ideal in Bl and every continuous Riesz homomorphism from B2 into C(Y) there
exists a Riesz homomorphic extension from B1 into C(Y) if and only if C(Y) has
the a-interpolation property.

Contrary to Theorems A and B, it seems that Theorem C is not rooted in the
line of Hahn-Banach theorems. Indeed, our approach has its origins in Tietze's
extension theorem rather than in the Hahn-Banach theorem. It is therefore not
surprising that Theorem C has applications to topological problems.

It is for its topological consquences and results about simultaneous extension
operators that we singled out Theorem C from a rather lengthy report [2].

I. Simultaneous extension operators

In this section Y will always be a compact F-space (see [7]). Cb(X) for a
topological space X, denotes the space of all bounded continuous functions on X.
For a subset A' of Y we define the restriction operator Rx: C(Y) -* Cb(X) by
Rx(f) = f\x f o r ^ / G C(Y). We will call a bounded linear operator T:
Cb(X) -* C(Y) an extensor if it is a Riesz homomorphism and Rx° T = Idc (Jf).
Also, if H is a Riesz subspace of Ch(X), a bounded linear operator T: H -* C(Y)
is called an extensor if it is a Riesz homomorphism and RX°T= ldH. The
definition of an F-space merely states that for every cozero-set U c Y, the
restriction operator Rv is surjective and if H c Cb(U) is not finite dimensional
this is not very helpful in finding an extensor T: H -» C(Y). The following can
easily be derived, for instance from Theorem 21.13 in [14].
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PROPOSITION 1. The following are equivalent.
(1) For every cozero-set U c Y, there exists an extensor Cb(U) -* C(Y) which

sends lv to l y .
(2) There exists a retraction Y -» U for every cozero-set U in Y.

From certain points of view Proposition 1 is not very satisfactory. For instance,
what F-spaces do have property (2) of Proposition 1? It easily follows that Y has
to be totally disconnected. Basic disconnectedness is a sufficient condition, but
not a necessary condition. (Negrepontis in [12] shows that /?N \ N satisfies (2) of
Proposition 1.) We will show that, as long as one only considers extensors from
separable Riesz subspaces of Cb(U) for cozero-sets U c Y, the picture becomes
more transparent. The technique which we will use is essentially due to Arens [1]
and is based on the following theorem (see [1]).

THEOREM 2. Let A be a closed subset of a fully normal space X. Let f be
continuous on A with values in a convex subset K of a locally convex linear
topological space that is a complete metric space in the induced topology. Then f can
be extended to a continuous map on X with all values still in K.

Theorem 2 will be the heart of our proof of the next theorem.

THEOREM 3. Let U be a cozero-set in Y and let H be a separable Riesz subspace
ofCb(U). Then there exists an extensor T: H -» C(Y) with \\T\\ < 1.

PROOF. The proof is divided into two steps.

Step 1. There exists a positive simultaneous extension operator:
Every element of H can uniquely be extended to an element of C(U). Thus, we

may assume that H is a Riesz subspace of C(U). Denote dU = U\U and define
i: 91/-» (H]W)* by i{x\f) = f{x) for all x e W and all / e H. (H is the
closure of H in the uniform norm.) Diagramatically we have

n

Consider K = {h e ( # | 3 J / ) * + | \\h\\ < 1} with the w*-topology. Remark that A"
is convex and metrizable by the standard arguments (see Theorem 3.16 in [13]),
compact by Alaoglu's theorem and thus metrically complete by 24C.3 in [16]. i is
continuous and i(W) c K. Thus, Theorem 2 yields the existence of a continuous
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map a: Y\U -» K extending i. For / e H, we define

f(y) =

Then / is a continuous function on Y and f\jj = f. Furthermore, T: H -* C(Y)
defined by / - > / ( / e / / ) is linear and, because a(Y\ U) c K, positive as well.
Obviously, ||f|| < 1. We may assume that f:H-> C(Y).

Step 2. There exists an extensor:
Remark that H X H is separable and metrizable under the product topology.

Define A = {(/, g) \f, g e H and / A g = 0}. A is separable as well. Choose a
countable dense subset A = {(/„, gn) \n e N} of A. Define i = ( / J n e N } U
( g J n e N ) . Remark that for all / and g from H with / A g = 0 and all e > 0,
there exist / and g in A with | |/ — / | |^ < e, \\g — g\\v < e and / Ag = 0. Define

V = {>> <= 71 there exists «, w e N with (Tfn)(y) A (rgm)(>>) ^ 0} where f
is as constructed in step 1. V is an open Fa and F n U — 0. Therefore, by 14iV4
in [7], there exists a continuous function 0 < F < l r with F(V) = {0} and
F(U) = {1}. We define T: H -> C(Y) by T(f) = FT(f) ( / e ^ ) . We will show
that T is a Riesz homomorphism. Therefore, suppose / A g = 0 and E > 0.
Choose / and g from 4̂ with \\f - f\\u < e and \\g — g\\jj < e and / A g = 0.
Surely T(f) A T(g) = 0 and

/ ) + T(f)) A(r( g -g) + T(g))\\Y

<\\T(f-f)AT(g-g)\\Y + \\T(g-g)AT(f)\\Y

+ \\T(f-f)AT(g)\\Y<3e.

Thus, T{f) A T(g) = 0.

We wish to remark that the proof of step 1 is similar to the proof of Theorem
5.2 in Arens' paper [1]. The same technique was used in [2] for a slightly different
setting. The following corollary is immediate.

COROLLARY 4. For a compact space Z the following are equivalent.
(1) Z is an F-space.
(2) For every cozero-set U in Z and every separable Riesz subspace H of Cb(U)

there exists an extensor H —> C(Z).
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Getting a bit closer in nature to Proposition 1, we state the following.

PROPOSITION 5. Each of the conditions (1) and (2) in Corollary 4 is equivalent to
(3) For every cozero-set U in Z, every compact metrizable space X and every

continuous map T: U -* X, there exist an open subset W of Z containing U and a
continuous map T: W -» X which extends T.

PROOF. (3) => (1): Apply Urysohn's lemma.
(2) =» (3): By the fact that Z is an F-space, we can extend T: U -* X to T:

U -* X (indeed, U = fiU). We may assume that T(U) = X. Therefore, we can
embed C(X) into C(U) and by (2) there exists an extensor T: C(X) -» C(Z).
Denoting W = { z G Z | there exists / e C(X) such that T{f){z) ¥= 0} it is easy
to see that there exist a continuous map f: W -» X and a continuous function p:
W-* R + such that T(f)(z) = p ( z ) ( / ° f ) ( z ) if z <= JF and (7/ ) (z) = 0 other-
wise, for all / e C( X). (In fact a more general representation theorem for Riesz
homomorphisms will be proved in Section 2, Theorem 9.) Remark that V = { z e

Xz) > i } is a cozero-set, that U c V and that f | Fextends T.

Even closer to Proposition 1 is the following.

PROPOSITION 6. For a compact space Z the following are equivalent.
(1) Z is a totally disconnected F-space.
(2) For every cozero-set U in Z and every separable Riesz subspace H of Cb(U)

which contains \ v , there exists an extensor H -* C(Z) which sends \ u to l z .
(3) For every cozero-set U in Z and every compact metrizable space X and every

continuous map T: U -» X, there exists an extension f: Z -> X.

PROOF. (1) => (2): It is clear from Proposition 5 that (given U and H) an
extensor H -* C(Z) does exist. Let T: H -» C(Z) be an extensor with ||r|| < 1.
Let A = {z G Z\T(lv)(z) > £} and S = (z e Z m i y X O < i}- Then Z n 5
= 0 because Z is an F-space and because Z is totally disconnected there exists
an open-and-closed set W with A <z W and B c Z \ W. Let z0 e J7. Define

It follows that T^ly)^ = rCly),^ and e = ^ ( ly) > | l z . Furthermore, 7\ is a
Riesz homomorphism. Finally, define f ( / ) = e'lTx(f) ( / e 7/). f is an ex-
tensor and r(l(/) = l z .

(2) => (3): Proceeds as the lines of (2) =» (3) of Proposition 5, but is easier.
(3) => (1): That Z is an F-space follows from Proposition 5. To prove that Z is

totally disconnected, let A and B be disjoint closed sets in Z. Choose cozero-sets
Uv U2 with Ul n U2 = 0 , ^ c f/j and 5 c t/2. It is not hard to see (use
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Corollary 1.61 and Proposition 1.64 of [15]) that continuous surjections L^ -> [0,1]
and U2 -* [2,3] do exist. The map t/j U U2 -> [0,1] U [2,3] which is thus given
can be extended to a continuous map r: Z -* [0,1] U [2,3]. It follows that
T ' ^ O , 1] and T - 1 [ 2 , 3] are open-and-closed sets containing A and B respectively.

Concluding Section I we point to the relation between Proposition 6 and
Proposition 1. We may or may not be able to extend id: U -» U to a continuous
map Y -* U for every compact totally disconnected F-space Y and every cozero-set
U in Y. However, every continuous map U -* X for a compact metrizable space
(under the same conditions for Y and U) does extend to a continuous map
Y -» X. The method which we have been using here is restricted to the separable
case. It seems not unlikely, however, that extensors from bigger subspaces of
Cb(U) exist if C(Y) has the a-interpolation property for a > uQ. At the same
time, i.e. under the same conditions, it may not be impossible to relax the
countability condition on U.

2. Extension of C(Y)-valued Riesz homomorphisms

In this section we will prove Theorem C which was mentioned in the introduc-
tion. We introduce some notation. For two Banach lattices E and F we say that
(E, F) has property (ul) if for every ideal I a E and every continuous Riesz
homomorphism I -* F there exists a Riesz homomorphic extension E -* F.
Though only defined for Banach lattices here, we remark that by introducing the
right topologies on the Riesz spaces E and Fone can define a property (ul) very
generally. Though we intend to return to this subject later, we do not need such
generality in this paper. We do need the following theorem from [4], which we
state for the reader's convenience.

THEOREM 7. Suppose Y is a compact Hausdorff space. Then the following are
equivalent.

(1) Y is an F-space.
(2) For every disjoint, countable and order bounded subset A c C(Y) + there

exists an element g e C(Y)+ such that (g — a) A a = 0 for all a e A.

Let c denote the space of all convergent sequences. We have the following
lemma.

LEMMA 8. / / Y is a compact Hausdorff space and (c,C(Y)) has property (ul)
then Y is an F-space.
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PROOF. It suffices to prove by Theorem 7 that for every disjoint order bounded
set {/„ | n G N} c C(Y)+ there exists g e C(Y)+ such that (g - /„) A /„ = 0 for
all n e N. Therefore, let {/„ |n e N} be an order bounded disjoint subset of
C(Y)+. Define in the obvious way a Riesz homomorphism <#>: c0 -> C(Y) such
that </>(l{n}) = /„ for all n e. N. The order boundedness of {/„ | n e N} and the
fact that (c,C(Y)) has property ( « / ) imply that there is a Riesz homomorphism
$ : c -» C(Y) such that $ | C Q = <J>. It follows that (O(1 N ) - / „ ) A / n = 0 for all
n e N .

Actually the converse of Lemma 8 is also true as we will show later. Further
relevant remarks concerning c in the problem of extending Riesz homomorphisms
can be found in [3]. The following theorem in one form or another may be
well-known. For the sake of convenience and later reference we will prove it in
the following rather general form. Note that 0Z[7] for an ideal 7 c C(X) refers
to the set {x e X\f(x) = 0 for a l l / e 7}.

THEOREM 9. Suppose X is realcompact and Y is any completely regular space.
Assume / c C(X) is an ideal and $: I -* C(Y) is continuous with respect to the
compact-open topologies on C(X) and C(Y). Then there exist an open subset U of
Y and continuous mappings T: U -* X\ n Z[I] and w: U -* (0, oo) such that for
allfel,

'0 ify£ U,

Furthermore, if U is compact then T(U) is compact as well. In particular if Y is
compact, then r(U) is compact.

For its proof we need the following easy lemma of which we leave the proof to
the reader.

LEMMA 10. Suppose X is realcompact and I c C(X) is an ideal. For a nonzero
Riesz homomorphism <j> the following are equivalent.

(1) </> is a continuous Riesz homomorphism with respect to the compact-open
topology on C(X).

(2) There exist a unique x e Xand X G R such that <j> = X8X, where 8x(f) = f(x)
for all/G C(X).

PROOF OF THEOREM 9. Assume / c C(X) is an ideal and <f>: / -» C(Y) is
continuous with respect to the compact-open topologies on C(X) and C(Y).
Define U = {y G Y\ there exists / G / such that "H/XjO * 0}. U is an open
subset of Y and for every y e U there exist unique x = r(y) e X\ D Z[7] and
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u{y) £ R+ such that Sy°4> = a(y)8x because of Lemma 10. We prove that T is
continuous. Therefore, suppose U' c X is open and y0 £ T'1{U'). We can find
/ G / + such that /(T(y0)) = 1 and f\U,c = 0 by using Urysohn's lemma and the
fact that / is an ideal. Define g = <>(/). Then g(y0) = <t>(f)(y0) =
«(>'o)/(T(>'o)) = wOo) * 0 a n d giT-'ct/y = 0. It follows that r-\U') is open,
because the set { y £ Y \ g(y) > 0} is open in 7, contains y0 and is contained in
T"1(f/')- The continuity of « follows easily from the continuity of T. Suppose
furthermore that U is compact. Define for each / £ C(y), />(/) = sup e C / | / ( j ) | .
By the continuity of <f> that we assumed, there exists a seminorm ^ on C(Z) such
that for all / £ / , p ° <#>(/) < ?(/)• More precisely, there exist a compact set B
and C £ R such that p ° <H/) < C||/ | |B for all / £ / . We claim that r(U) c 5.
If not, choose x e Ac n T(U). Choose / £ I+ such that / (x) = f(r(y)) = 1 and
f(A) = {0}. It follows that 1 < 0.

Our first result about extension of Riesz homomorphisms has now met all
necessary preparations.

THEOREM 11. Suppose X is compact and metrizable and Y is a compact F-space.
Then (C(X),C(Y)) has property («/).

PROOF. Suppose / c C(X) is an ideal and <>:/-> C(Y) is a norm continuous
Riesz homomorphism. According to Theorem 9 there exist an open subset U of Y
and continuous mappings w: U -» (0, oo) and T: U -* X\C\Z[I] such that for
all / £ /

'0 ifyGU,

Actually, as U = {y £ Y \ there exists an / £ / such that <H/X>0 * 0} and / is
separable, it follows from the continuity of <£ that U is an open Fa. Also,
u(U) c (0, ||4>||]. Therefore, for every f <=. C(X), the function / : y -+
u(y)f(r(y)) is a bounded continuous function on U. Also, the map / - » / is a
Riesz homomorphism of C(X) into Cb(U). The image i / of C(X) under this map
is therefore a Riesz subspace of Cb(U) and it is separable by 16.4 of [16]. Choose,
by Theorem 3, an extensor T: H -» C(Y) with ||r|| < 1. It follows that O:
/ -» T(f) is a Riesz homomorphism such that O|7 = <> and ||$|| = ||<f>||.

We have now proved, using Lemma 8, the following characterization of
F-spaces.

THEOREM 12. For a compact Hausdorff space Y the following are equivalent.
(1) Y is an F-space.
(2) (C(X), C(Y)) has property («/) for all compact metrizable spaces X.
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(3) (c,C(Y)) has property (ul). Moreover, Riesz homomorphic extensions that
exist by means of this theorem may be chosen norm preserving.

If, instead of C(X) with X compact and metrizable, we wish to consider
separable Banach lattices in general (as we promised in the introduction) the
proofs do not change significantly. However, there is one important difference
with Theorem 12. Possibly the norm of Riesz homomorphic extensions differs
from the given Riesz homomorphisms. Looking at Theorem A or its positive
analogue, we see that we have come so far in asking more and more structure to
be preserved, that finally some friction, in this case between the lattice structure
and the normed (partially ordered) structure, starts to appear. By the way, exactly
the same phenomenon occurs if one considers majorizing Riesz subspaces instead
of ideals (see Theorem B in the introduction and [5]).

THEOREM 13. For a compact Hausdorff space Y the following are equivalent.
(1) Y is an F-space.
(2) (E, C(Y)) has property (ul) for all separable Banach lattices E.

PROOF. Suppose £ is a separable Banach lattice, Y is a compact f-space and
/ c E is an ideal. The norm on E is denoted by || ||. Suppose <#>: / -» C(Y) is a
continuous Riesz homomorphism. Let g e £ + . By uniform completeness of E
there exists a compact Hausdorff space X such that the ideal generated by g,(g),
is Riesz isomorphic to C(X). Let T: C(X) -> (g) be a Riesz isomorphism.
Define J = T'\I n (g)) c C(X) and </>: J -> C(Y) by 4>(f) = <t>(T(f)). Then
/ is an ideal in C(X) and \j/ is a Riesz homomorphism. We are going to prove
that >// can be extended to a Riesz homomorphism C(X) -> C(Y). Because this
does not follow from Theorem 11, we will have to repeat some former arguments.
By Theorem 10.3 in [8] there exists C e R+ such that for all / e C(X) we have
\\T(f)\\ < Cll/lloo- I I follows that ip is continuous as a map from J with || \\x to
C(Y) with its supremum norm. So there exist an open Fa-set Uc Y and
continuous mappings w: U -> R+ and T: Y -> X such that for all / e / ,

0 ifytU.

For any / e C(X), / : y -» u(y)f(r(y))(y e U) is an element of Cb(U) and the
map ^ : / - > / ( / G C(X)) is a Riesz homomorphism. We denote for all / e
C(X), \\f\\E = | | r ( / ) | | and \mf)\L = sup{|*(/X«)| I" e U}. It readily fol-
lows that * : (C(X), || ||£) -» (Cb(U), \\ \\x) is continuous. Using Theorem 3, one
can now find a Riesz homomorphism S: C(X) -* C(Y) (namely by composing
^ with an extensor) which is continuous with respect to || ||£ and such that
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/ -* S(T~1(f)) ( / G (g)) is a continuous (with respect to || ||) Riesz homomorphic
extension (g) -• C(Y) of <t>\jn(gy The rest of the proof follows by choosing a
special element g e £ + , namely a quasi-interior point, and some easy density
arguments. Remark furthermore that (2) => (1) follows from Theorem 12.

3 . Concluding remarks and a summary

It turns out that spaces of the form C(Y) with the a-interpolation property, or
equivalently spaces of the form C(Y) where Y is an .F-space, behave extremely
nicely as far as it concerns all kinds of C( Y)-valued mappings. To place the
extension properties that we derived in this paper in their proper surroundings,
we next give a summary of C{Y) in this respect. Proofs, insofar not in this paper,
can be found in [2], [5] and (for part of (1) <=> (6) of Theorem 15) [6].

THEOREM 14. For a compact Hausdorff space the following are equivalent.
(1) Y is totally disconnected and an F-space.
(2) For every cozero-set U c Y and every separable Riesz subspace H of Cb (U)

there exists an extensor H -* C(Y) and if H contains \ v then the extensor can be
chosen to send \ v to l y .

(3) For every compact metrizable space X, every Riesz subspace H of C( X) and
every continuous Riesz homomorphism <j>: H -* C(Y) there exists a norm preserv-
ing Riesz homomorphic extension C(X) -> C(Y).

(4) For every cozero-set U in Y, every compact metric space X and every
continuous map r. U -* X there exists a continuous extension Y -* X.

(5) For every two metrizable compact spaces X and Z and every pair of continuous
mappings f: X -» Z and g: Y -* Z there exists a continuous map h: Y -» X with
f ° h = g.

(6) For every compact metrizable space X and every majorizing Riesz subspace H
of C(X) and every Riesz homomorphism H -* C(Y) there exists a Riesz homomor-
phic extension C(X) -» C(Y).

(7) For every pair of separable Banach lattices Bx D B2 such that B2 is majorizing
in Bl and for every Riesz homomorphism B2 -» C(Y) there exists a Riesz homomor-
phic {not necessarily norm preserving) extension C(X) -» C(Y).

THEOREM 15. For a compact Hausdorff space Y the following are equivalent.
(1) Y is an F-space.
(2) For every cozero-set U in Y and every separable Riesz subspace H of Cb(JJ)

there exists an extensor H —> C(Y).
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(3) For every cozero-set U c Y and every compact metrizable space X and every
continuous map U —* X there exists a continuous extension to a neighbourhood W of
U.

(4) For every compact metrizable space X and every ideal H of C(X) and every
continuous Riesz homomorphism H -* C(Y) there exists a Riesz homomorphic
norm preserving extension C(X) -> C(Y).

(5) For every compact metrizable space X, every Riesz subspace H of C( X) and
every positive operator H -» C(Y) there exists a norm preserving positive extension
C(X) -* C(Y). (Dodds, Schep andBuskes).

(6) For every pair of separable Banach lattices Bx 3 B2 and every {positive)
operator B2 -* C(Y) there exists a norm preserving (positive) extension Bx ->
C(Y). (Cohen, Dodds, Schep and Buskes).

(7) For every pair of separable Banach lattices Bx z> B2 such that B2 is an ideal in
Bx and for every continuous Riesz homomorphism B2 -* C(Y) there exists a Riesz
homomorphic extension Bx -» C(Y).

It may be clear from these theorems that Riesz homomorphisms behave rather
differently with respect to extension than just positive linear maps or linear maps.
If one goes beyond the initial spaces that we considered here (separable ones), this
becomes even more clear. For instance, assuming the continuum hypothesis,
Lindenstrauss in [10] was able to make positive remarks for extending C(Y)-
valued linear operators defined on subspaces of I00, all the way up to I00 (in a
norm preserving way). However, to conclude this paper, we remark that [2]
contains an example of an F-space Y such that (I00, C(Y)) does not have property
(td).
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