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This study presents direct numerical simulation results of two-layer Rayleigh–Bénard
convection, investigating the previously unexplored Rayleigh–Weber parameter space
106 ≤ Ra ≤ 108 and 102 ≤ We ≤ 103. Global properties, such as the Nusselt and Reynolds
numbers, are compared against the extended Grossmann–Lohse theory for two fluid layers,
confirming a weak Weber number dependence for all global quantities and considerably
larger Reynolds numbers in the lighter fluid. Statistics of the flow reveal that the interface
fluctuates more intensely for larger Weber and smaller Rayleigh numbers, something
also reflected in the increased temperature root mean square values next to the interface.
The dynamics of the deformed two-fluid interface is further investigated using spectral
analysis. Temporal and spatial spectrum distributions reveal a capillary wave range at small
Weber and large Rayleigh numbers, and a secondary energy peak at smaller Rayleigh
numbers. Furthermore, the maxima of the space–time spectra lie in an intermediate
dispersion regime, between the theoretical predictions for capillary and gravity-capillary
waves, showing that the gravitational energy of the interfacial waves is strongly altered by
temperature gradients.
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1. Introduction

The thermally driven flow inside a fluid layer heated from below and cooled from above,
known as Rayleigh–Bénard convection, is a widely studied physical problem due to
its similarities with a range of real-life applications and physical phenomena. Despite
its apparent simplicity, this type of convection exhibits rich physics in terms of both
large-scale characteristics (e.g. Nusselt number and large-scale circulation; see the review
by Ahlers, Grossmann & Lohse 2009) and small-scale turbulence dynamics (e.g. spectra
and structure functions; see Lohse & Xia 2010). Even in its simplest form, the complexity
of the flow increases rapidly with the Rayleigh number, with progressively thinner
boundary layers and smaller thermal plumes. Consequently, resolving these smaller
structures in numerical simulations imposes overwhelming resolution requirements
(Shishkina et al. 2010). Moreover, when additional complexities are included in the
configuration, such as solid particles suspended in the fluid phase (Demou et al. 2022) or
two fluid layers (Liu et al. 2022), the numerical solution becomes even more challenging.

Focusing on thermal convection between two fluid layers, the need to study this specific
problem stems from the fact that, regardless of the application, there is always some
dissolved gas in every liquid. Therefore, it is almost inevitable that a gaseous phase will
be formed in any realistic natural convection flow. This is also evident in experiments
on natural convection in liquids, where a long degassing procedure should be followed
to prevent the formation of the gaseous phase: (i) the liquid phase is heated close to
boiling point, (ii) a pump sucks the released gas, and (iii) the treated liquid must be
kept isolated to prevent any gases from dissolving back into the liquid. The proposed
study aims to facilitate the transition from the ideal problem to a more realistic set-up
by considering the gaseous phase in a two-layer configuration. From an application point
of view, physical phenomena such as the convection in the Earth’s mantle (Busse 1981), or
engineering applications such as the heat transfer inside magnetic confinement systems in
fusion reactors (Wilczynski & Hughes 2019), are more accurately modelled as a two-layer
convection, where the two fluid layers are dynamically coupled.

Before introducing the two-layer Rayleigh–Bénard convection, it is vital to understand
some key characteristics of the classical Rayleigh–Bénard convection in a single fluid.
This problem is determined by three control parameters: the Rayleigh number (Ra),
the Prandtl number (Pr), and the aspect ratio (Γ ) of the cavity within which the
thermal convection takes place. The dependence of all physical features (including flow
regime, flow structures and heat transfer) on only three control parameters is partly
due to adopting the Oberbeck–Boussinesq approximation (Oberbeck 1879; Boussinesq
1903), which, in brief, assumes constant fluid properties except for the density in the
gravitational term, which varies linearly with the temperature. Within this physical setting,
the Grossmann–Lohse theory (Grossmann & Lohse 2000; Stevens et al. 2013) provides
scaling laws for the Reynolds number (Re) and Nusselt number (Nu) with respect to the
control parameters, assuming different exponent values in different Ra–Pr regimes. This
theory is based on the existence of a coherent large-scale convection roll, something that
is not necessarily true in the two-layer configuration where each layer develops its own
confined convection rolls, which can be qualitatively very different.

Moving on to the two-layer Rayleigh–Bénard configuration, new control parameters
should be considered, even within the limits of applicability of the Oberbeck–Boussinesq
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Ra and We effects on multiphase thermal convection

approximation. First, each layer is composed of a different fluid with constant
thermophysical properties. Hence the ratios of density, viscosity, conductivity, thermal
expansion and heat capacity also become governing parameters. In addition, since the
two layers are separated by a deformable interface featuring surface tension, the Weber
number (We) should also be considered. Furthermore, the Froude number (Fr) is included
to differentiate between the relative effects of gravity in the two fluids. This set of control
parameters is translated into an enhanced flow complexity with many different regimes
depending on the combination of these parameters (Liu et al. 2021).

While experimental studies of two-layer Rayleigh–Bénard convection have been
conducted for a few decades now (Zeren & Reynolds 1972; Degen, Colovas & Andereck
1998; Xie & Xia 2013), direct numerical simulations (DNS) studies appeared in the
literature only recently. In a series of publications, Yoshida and co-workers utilized
DNS to study two-layer Rayleigh–Bénard convection in a two-dimensional spherical shell
geometry (Yoshida & Hamano 2016; Yoshida et al. 2017; Yoshida 2019). By considering
large viscosity differences between the two fluids, these authors focused on characterizing
the large-scale flow structures in each fluid, and the dynamic coupling of these structures
through the interface. Most recently, Liu et al. conducted DNS in two-dimensional
(Liu et al. 2021) and three-dimensional (Liu et al. 2022) rectangular cavities. In their
two-dimensional study, these authors considered a wide range of Weber numbers and
density ratios, identifying two qualitatively different mechanisms of interface breakup
based on these two parameters. In their three-dimensional study, they focused on the
effects of the relative thickness of each layer and the thermal conductivity ratio, suggesting
a model to predict the interface temperature and the global heat transfer within the explored
parameter space. Finally, Scapin, Demou and Brandt (2023) moved even further and
included evaporation along the two-fluid interface, extending the model proposed in (Liu
et al. 2022) to account for non-Oberbeck–Boussinesq effects and evaporation.

Even though the aforementioned works contributed to the understanding of several
aspects of two-layer Rayleigh–Bénard convection, important open questions still need to be
addressed. First, the influence of the Rayleigh and Weber numbers on the movement of the
interface remains elusive. While Liu et al. (2021) thoroughly described the scenarios under
which the interface breaks for different Weber numbers and density ratios, the interface
oscillation modes well before breakup were not characterized. Additionally, further insight
into the temperature distribution and variations of quantities, such as the thermal boundary
layer thickness and the interface temperature, is necessary for a deeper understanding
of the heat transfer near the interface. More specifically, the extent to which the top
and bottom thermal boundary layers are affected by the asymmetrical two-layer structure
considered here, is one of the issues addressed in the present study.

Building on the studies of Liu et al. (2021, 2022), the present study aims to provide
further insight into the physical characteristics of two-layer Rayleigh–Bénard convection
in the turbulent regime. More specifically, a large section of the previously unexplored
Rayleigh–Weber parameter space is investigated. The Nusselt and Reynolds numbers,
along with the interface temperature, are compared against scaling laws based on the
extended Grossmann–Lohse theory for thermal convection in two stratified fluid layers.
Moreover, a closer inspection of the vertical distribution of mean and root mean square
(r.m.s.) values of the temperature and velocity fields reveals the influence of the interface
deformation. The dynamics of this deformation is further analysed through spectral
analysis in space and time.

The remainder of this paper is structured as follows. Section 2 presents the mathematical
and numerical framework used in this study, including a description of the set-up under
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investigation. This is followed by the presentation of the results in § 3. More specifically,
the flow organization, global properties, two-phase statistics and spectral characteristics of
the two-fluid surface waves are thoroughly analysed and discussed. The study concludes
with a summary of the key findings in § 4.

2. Mathematical framework and numerical method

2.1. Governing equations
The presence of two immiscible fluids in the domain can be described using the so-called
one-fluid formulation. Fluids (1) and (2) are assumed to occupy volumes Ω1(t) and Ω2(t),
respectively, which are ideally separated by a time-evolving interface of zero thickness,
S(t) = Ω1(t) ∩ Ω2(t). The volume fraction field of fluid (1), C(x, t), is consequently
defined as

C(x, t) =
{

1 if x ∈ Ω1(t),
0 if x ∈ Ω2(t).

(2.1)

This indicator function is then used to define the value of any thermophysical property
X̂(x, t) inside the entire domain:

X̂(x, t) = C(x, t) X̂1 + (1 − C(x, t)) X̂2, (2.2)

where X̂1 and X̂2 are the constant values of the corresponding properties for each fluid.
Throughout the paper, subscripts 1 and 2 are used to differentiate between quantities that
refer to only one of the fluids. Quantities that bear no such subscript apply to both fluids, in
the spirit of (2.2). Furthermore, in (2.2) and hereafter, dimensional quantities are denoted
with a hat (·̂) to differentiate from the dimensionless quantities.

Using this notation, the governing equations in dimensionless form can be written as

∂C
∂t

+ ∇ · (Cu) = 0, (2.3)

∇ · u = 0, (2.4)

∂u
∂t

+ ∇ · (uu) = − 1
ρ

∇P +
√

Pr
Ra

1
ρ

∇ · [μ(∇u + (∇u)T)]

+ 1
ρ We

κS δ(x − xS) nS

− nz

[
1

Fr2 − Θ

ρ
(C + ΛρΛα(1 − C))

]
, (2.5)

∂Θ

∂t
+ ∇ · (Θu) = 1

ρcp
√

Pr Ra
∇ · (ζ ∇Θ). (2.6)

The dimensionless groups emerging are the Rayleigh number Ra = ĝα̂1 �Θ̂ L̂3
ref /(ν̂1κ̂1),

the Prandtl number Pr = ν̂1/κ̂1, the Weber number We = ρ̂1Û2
ref L̂ref /σ̂ , and the Froude

number Fr = Ûref /(ĝL̂ref )
1/2 = (α̂1 �Θ̂)1/2. Here, ĝ is the acceleration of gravity, acting

along the negative z-direction, α̂ is the thermal expansion coefficient, �Θ̂ is the
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temperature difference between the heated (Θ̂h) and cooled (Θ̂c) walls, and L̂ref is the
height of the cavity. Moreover, ν̂ denotes the kinematic viscosity, μ̂ the dynamic viscosity,
ρ̂ the density, κ̂ the thermal diffusivity, ĉp the specific heat, ζ̂ the thermal conduction
coefficient, and σ̂ the surface tension coefficient. All the thermophysical properties are
non-dimensionalized using the corresponding values of fluid (1). The property ratios
are denoted as ΛX = X̂2/X̂1 for property X̂, e.g. Λρ = ρ̂2/ρ̂1 is the density ratio. The
free-fall velocity was adopted as the velocity scale Ûref = (ĝα̂1 �Θ̂ L̂ref )

1/2. Temperature
is non-dimensionalised as Θ = (Θ̂ − Θ̂ref )/�Θ̂ , where Θ̂ref is the reference temperature
inside the domain, defined as Θ̂ref = (Θ̂h + Θ̂c)/2. The pressure scale is taken as P̂ref =
ρ̂1Û2

ref . Vectors nS and nz are unit vectors that are directed normal to the fluid interface
and along the z-direction, respectively. Completing this description, δ(x − xS) is a delta
function centred on the two-fluid interface, and κS is the local curvature of the interface.

A note is added here regarding the formulation of the gravity term in (2.5). In
dimensional form, the gravity term is −ρ̂(Θ̂) ĝnz, with the density field being a function
of the temperature alone. Considering the Oberbeck–Boussinesq approximation, this term
becomes

− [ρ̂1(Θ̂) C + ρ̂2(Θ̂) (1 − C)]ĝnz

= −[ρ̂1(1 − α1(Θ̂ − Θ̂ref )) C + ρ̂2(1 − α2(Θ̂ − Θ̂ref )) (1 − C)]ĝnz. (2.7)

For brevity, the constant density values ρ̂1(Θ̂ref ) and ρ̂2(Θ̂ref ) are simply denoted as ρ̂1 and
ρ̂2. When this term is non-dimensionalized with the appropriate scales, the form shown
in (2.5) is recovered. Finally, as required by the Oberbeck–Boussinesq approximation, the
temperature dependence of the density in all other terms in the governing equations is
neglected, i.e. ρ̂ = ρ̂1C + ρ̂2(1 − C).

2.2. Definitions of key output parameters
The key output parameters in the present study result from the analysis of the space-
and time-averaged fields. To represent these quantities, the bracket notation 〈φ〉a,b,... is
adopted, expressing the averaging of a variable φ with respect to variables a, b, . . .. More
specifically, the mean and r.m.s. values of a variable φ are denoted as 〈φ〉t and φrms, where
φrms = (〈φ2〉t − 〈φ〉2

t )
1/2.

Following this notation, the time-varying, area-averaged Nusselt numbers along the
bottom (Nubot(t)) and top (Nutop(t)) walls are defined as

Nubot(t) = −
(

ζ1
∂〈Θ〉x,y

∂z

)
z=0

, Nutop(t) = −
(

ζ2
∂〈Θ〉x,y

∂z

)
z=1

, (2.8a,b)

where it is assumed that the bottom and top walls of the domain are located at z = 0
and z = 1, respectively. For simplicity, the time- and area-averaged Nusselt numbers are
simply denoted as Nubot = 〈Nubot(t)〉t and Nutop = 〈Nutop(t)〉t for the bottom and top
walls, respectively. Assuming statistical equilibrium and adequate statistical sample size,
the two values of the Nusselt number converge to the same value, Nubot = Nutop = Nu.

Another important output parameter is the Reynolds number, defined as Re =
L̂ref Û0/ν̂ref . In the present study, the maximum r.m.s. values of the vertical velocity ŵrms in
the denser fluid and in the lighter fluid were chosen as the characteristic velocity amplitude
Û0, similarly to the relevant single-fluid studies of Calzavarini et al. (2005) and van der
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Poel, Stevens & Lohse (2013). With this choice, the Reynolds numbers at the bottom
and top of the cavity characterize the turbulence induced by the large-scale circulation
structures that stir the denser and lighter fluids, respectively.

For classical Rayleigh–Bénard convection in a single fluid within the Oberbeck–
Boussinesq approximation, the mean fields are symmetric around the centre of the cavity.
In the presence of two fluids, this symmetry breaks due to the difference in density,
which causes the stratification of the two fluids, i.e. a two-layer structure appears. Each
layer develops its own large-scale circulation structures, which interact mechanically
and thermally through the interface that separates the two layers. Consequently, thermal
boundary layers are formed not only next to the solid walls, but also on either side of the
two-fluid deformable interface. In the bulk of each fluid layer and away from the solid or
fluid boundaries, the convection-induced mixing prevents large temperature gradients.

Assuming that the two fluids have equal volumes, with fluid (1) being the heavier fluid
at the bottom layer, the temperature drop next to each solid or fluid surface is defined as

Δ1,s = 〈Θ〉x,y,t|z=0 − 〈Θ〉x,y,t|z=0.25, Δ1,f = 〈Θ〉x,y,t|z=0.25 − 〈Θ〉x,y,t|z=0.5, (2.9a)

Δ2,f = 〈Θ〉x,y,t|z=0.5 − 〈Θ〉x,y,t|z=0.75 Δ2,s = 〈Θ〉x,y,t|z=0.75 − 〈Θ〉x,y,t|z=1, (2.9b)

where subscripts 1, 2 identify the fluid, and subscripts s, f refer to the respective solid
or fluid surface. The traditional definition of the thermal boundary layer thickness is the
distance from the surface where the line tangent to the temperature distribution on the
surface meets the bulk temperature. Using the adopted notation, the thermal boundary
layer thickness in the solid and fluid surfaces is calculated as

hθ
1,s = Δ1,s

− ∂〈Θ〉x,y,t

∂z

∣∣∣∣
z=0

hθ
1,f = Δ1,f

− ∂〈Θ〉x,y,t

∂z

∣∣∣∣
z=0.5

, (2.10a)

hθ
2,f = Δ2,f

− ∂〈Θ〉x,y,t

∂z

∣∣∣∣
z=0.5

hθ
2,s = Δ2,s

− ∂〈Θ〉x,y,t

∂z

∣∣∣∣
z=1

. (2.10b)

The thermal boundary layer thicknesses and the corresponding temperature drops next to
each solid and fluid surface are represented schematically in figure 1.

2.3. Numerical method
The GPU-accelerated code FluTAS, openly available at https://github.com/Multiphysics-
Flow-Solvers/FluTAS.git, is used for the solution of the governing equations (2.3)–(2.6)
following the procedure detailed in Costa (2018) and Crialesi-Esposito et al. (2023). In
short, FluTAS couples a pressure-correction method to solve the momentum equation,
and the algebraic volume-of-fluid method MTHINC (Ii et al. 2012) to capture the
dynamics of the two-fluid interface. The governing equations are discretized in time with a
second-order Adams–Bashforth method, and in space with standard second-order central
schemes, except for the convective term of the energy equation discretized using the
WENO5 scheme (Jiang & Shu 1996). A time-splitting procedure (Dodd & Ferrante 2014)
is applied to the Poisson equation for the pressure, facilitating efficient solutions using the
cuFFT library (Costa et al. 2021). A validation of the numerical method for relevant test
cases can be found in Crialesi-Esposito et al. (2023). The simulations were carried out on
two different GPU clusters, consuming approximately 40 million core hours in total: (i) on
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A

B C

ED

F

G H

I J

K

z

〈Θ
〉 x,

y,
t

Figure 1. A schematic representation of the key quantities that can be defined from the temperature field.
The temperature drops next to each solid (z = 0 and z = 1) and fluid (z = 0.5) surface are represented as
Δ1,s = AB, Δ1,f = EF, Δ2,f = FG and Δ2,s = JK. The respective thermal boundary layer thicknesses are
represented as hθ

1,s = BC, hθ
1,f = DE, hθ

2,f = GH and hθ
2,s = IJ.

MARCONI100, managed by CINECA and equipped with V100-16 GB cards, each case
was run on 32 GPUs; and (ii) on Berzelius, managed by NSC and equipped with A100-40
GB cards, each case was run on 8 GPUs.

2.4. Case description
The three-dimensional geometry under consideration is shown in figure 2 and is equivalent
to what is used in Liu et al. (2022). Thermal convection is developed between two
infinitely long horizontal solid surfaces, heated from below and cooled from above at a
constant temperature. The x- and y-directions are considered periodic, and the aspect ratio
between the horizontal and vertical dimensions of the cavity is Γ = 2. The dimensionless
parameters adopted are shown in table 1. The density, viscosity and thermal conductivity
ratios between the two fluids are set to 0.1, while the rest of the property ratios are set to 1.
Consequently, the kinematic viscosity ν and thermal diffusivity κ ratios between the two
fluids are also set to 1. The mismatch in densities is the reason behind the arrangement
of the fluids in a two-layer configuration. This choice of parameters differentiates the
present study from Liu et al. (2021), since the focus here is turned to the Rayleigh–Weber
parameter space. A total of six cases were simulated, covering 106 ≤ Ra ≤ 108 and
102 ≤ We ≤ 103.

Preliminary simulations revealed that a uniform grid Nx × Ny × Nz = 1024 × 1024 ×
512 is adequate to provide grid-independent results for the cases with Ra = 108, and
this was also adopted for all other cases. The solution was advanced in time using a
dynamically adjusted time step, respecting the appropriate time step restrictions (Kang,
Fedkiw & Liu 2000). All cases were initialized with stagnant and nearly isothermal
conditions in the presence of random temperature fluctuations of 1 % intensity to trigger a
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L/2

L/2

Fluid (2)

Fluid (1)

2L
2L

z

x
y

g

Figure 2. Schematic representation of the three-dimensional geometry used in the present study. The two fluid
layers are enclosed by a bottom-heated surface (depicted in red) and a top-cooled surface (in blue), while
periodic boundary conditions are assumed along the vertical boundaries of the domain.

Λρ Λμ Λα Λcp Λζ Pr Fr Ra We

0.1 0.1 1 1 0.1 1 1 {106, 107, 108} {102, 103}
Table 1. Dimensionless parameters adopted for the study of two-layer Rayleigh–Bénard convection.

convective flow. Each simulation underwent an initial transient period before developing
a statistically stationary solution, at which point the statistical sampling commenced.
Afterwards, sufficient time was allowed to reach large enough sample sizes so that the
statistics for each case converged.

3. Results

3.1. Flow organization
In this subsection, a qualitative description of the main features of the two-layer
Rayleigh–Bénard convection is presented through a series of different flow visualizations.
First, figure 3 presents snapshots of the temperature volumetric rendering, including the
isosurface representing the location of the two-fluid interface. The activity of the thermal
plumes is depicted clearly, especially at the top half of the cavity, where hotter plumes
rise from the interface along with colder plumes descending from the top cooled wall.
The plume activity typically feeds the large-scale circulation structures that sweep the
boundary layers at their periphery. The bottom half of the cavity appears to be less active,
with thicker thermal structures that occupy a significant portion of the available volume.
As observed in single-phase thermal convection, the thermal structures become finer as the
Rayleigh number increases, intensifying the thermal transport from the boundary layers to
the large-scale circulation. On the contrary, based on the various snapshots in figure 3, the
Weber number does not appear to have any obvious effect on the temperature field.

Focusing on the two-fluid interface as depicted in figure 3, its deformation is mostly
visible for the Ra = 106 cases. For larger Rayleigh numbers, this deformation becomes less
pronounced. More specifically, the r.m.s. values of the interface elevation ηrms reduce by
69 % from Ra = 106 to Ra = 108 considering Weber number 100, and by 66 % considering
Weber number 1000. The effects of the Weber number on the interface deformation are
more clearly depicted in figure 4, where cases with larger Weber numbers exhibit a more
noticeable deformation. As concerns the velocity fields, we note that the appearance of
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Ra = 106

We = 100
Ra = 106

We = 1000

Ra = 107

We = 1000

Ra = 107

We = 100

Ra = 108

We = 100

Ra = 108

We = 1000

(e) ( f )

(b)(a)

(d )(c)

Figure 3. Snapshots of volume representations of the temperature field (semi-transparent coloured
isosurfaces) and the interface (light brown surface at approximately mid-height) for the six different DNS
cases. Red denotes a higher temperature compared to blue.

progressively smaller structures as the Rayleigh number increases well correlates with the
ejected thermal plumes. This observation is more evident in the top half of the cavity, as the
bottom half exhibits smaller temperature differences. The more qualitative observations
discussed in this subsection will be verified in the quantitative statistical analysis presented
in the following subsections.

3.2. Global properties
The analysis of global properties focuses on the interface temperature (ΘΓ ) and the
Nusselt and Reynolds numbers, which represent, in non-dimensional form, heat transfer
and turbulence intensity, respectively. In this subsection, results extracted from the present
DNS are compared against recently developed scaling laws with respect to the Rayleigh
and Weber numbers. We note here that Liu et al. (2022) have argued that the proposed
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Ra = 107, We = 100 Ra = 107, We = 1000

Ra = 108, We = 100 Ra = 108, We = 1000
(e) ( f )

(b)(a)

(d )(c)

Figure 4. Snapshots of x–z planar representations of the temperature field, including streamlines (black lines
with arrows) and the interface (white dashed line) for the six different DNS cases. Red denotes a higher
temperature compared to blue.

scaling laws can hold for different Rayleigh numbers. Nonetheless, this hypothesis
has not been assessed so far. The scaling laws for ΘΓ , Nu and Re are based on the
Grossmann–Lohse (GL) theory, which consists of two nonlinear equations, originating
from the relations for the kinetic and thermal energy dissipation rates. For a multiphase
problem, this set of equations is written for both layers separately (Liu et al. 2022):

(Nuj − 1) Raj Pr−2
j =

c1 Re2
j

g

(√
Rec

Rej

) + c2 Re3
j , (3.1a)

(Nuj − 1) = c3 Re1/2
j Pr1/2

j

√√√√f

[
2c0 Nuj√

Rej
g

(√
Rec

Rej

)]

+ c4 Prj Rej f

[
2c0 Nuj√

Rej
g

(√
Rec

Rej

)]
, (3.1b)

where indices j = 1, 2 denote the corresponding parameters in the heavier and lighter
fluids, respectively. The coefficients ci, with i = 0, . . . , 4, are the prefactors that are chosen
as ci = 0.922, 8.05, 1.38, 0.487, 0.0252, as suggested in Stevens et al. (2013), together
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with Rec = (2c0)
2. The crossover functions g and f in (3.1) are given by g(x) = (1 +

xn)1/n and f (x) = xn(1 + xn)1/n with n = 4 (Grossmann & Lohse 2000, 2001; Stevens
et al. 2013). The Prandtl number in (3.1) is computed as Pr = μ̂jĉp,j/ζ̂j, while the Rayleigh
numbers of each phase, Raj, read

Ra1 = C3
tot(1/2 − ΘΓ ) Ra, (3.2a)

Ra2 = (1 − Ctot)
3(1/2 + ΘΓ ) Ra ΛμΛζ/(Λ

2
ρΛcpΛα), (3.2b)

where Ctot is the overall volume fraction of phase 1. Note that in Liu et al. (2022), the
properties ratios Λμ, Λρ , Λcp and Λα are omitted in (3.2) since they are considered equal
to 1, but are kept here for completeness. Therefore, the Nusselt numbers are defined as

Nu1 = Q̂1Ctotl̂z
ζ̂1(1/2 − ΘΓ )�Θ̂

, (3.3a)

Nu2 = Q̂2(1 − Ctot)l̂z
ζ̂2(1/2 + ΘΓ )�Θ̂

, (3.3b)

where the heat fluxes Q̂1, Q̂2 at the bottom and top walls are considered equal once a
statistical equilibrium is reached, i.e. 〈Q̂1〉t = 〈Q̂2〉t. Equations (3.1) are applied to each
layer separately, coupled to (3.2) and (3.3). The solution of this system of equations
provides the values of ΘΓ , Nuj and Rej. Since the GL theory is implicit in Nuj and Rej,
an iterative procedure is required. Once Nuj, Rej and ΘΓ are known, the global Nusselt
number can be obtained readily from Nuj at one of the interface sides. Taking as reference
the top wall and using the relation for Nu2 in (3.3), the global Nu reads

Nu = Q̂2 l̂z
ζ̂2 �Θ̂

= Nu2
1/2 + ΘΓ

1 − Ctot
. (3.4)

Similarly, we can define two global Reynolds numbers for the top (Retop) and bottom
(Rebot) halves of the cavity. These quantities can be related to the turbulence in each phase,
with Rebot = Re1 (ν̂1/ν̂ref )/Ctot and Retop = Re2c(ν̂2/ν̂ref )/(1 − Ctot). Note that in the
present set-up, ν̂1 = ν̂2 = ν̂ref and Ctot = 0.5, therefore Rebot = 2 Re1 and Retop = 2 Re2.

The Nusselt and Reynolds numbers predictions are shown in figure 5, exhibiting
excellent agreement against the corresponding scaling laws. This confirms the observation
from Liu et al. (2022) that the weak dependence on the Weber number is expected to hold
as long as the interface does not break up and two separated layers can be clearly identified.
Furthermore, the Reynolds number is approximately two times higher in the lighter fluid
compared to the denser fluid, for all the Weber and Rayleigh numbers explored. This
indicates significantly higher turbulence levels in the top half of the cavity.

Furthermore, as an alternative to (3.1), which requires an iterative solution, an
approximation of ΘΓ can be obtained explicitly. This approach has been proposed in Liu
et al. (2022) for multiphase thermal convection, and in Scapin et al. (2023) for evaporating
Rayleigh–Bénard convection. The main idea is to employ a simplified scaling of the form
Nuj = Aj Ra

γj
j Pr

mj
j and to assume that the Rayleigh and Prandtl numbers of both phases

are sufficiently similar to fall inside the same scaling regime of the GL theory, so that
A1 = A2 = A, γ1 = γ2 = γ and m1 = m2 = m. Then, by using (3.3) to express the Nuj
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(b)(a)

Figure 5. (a) Nusselt number and (b) Reynolds number predictions as functions of the Rayleigh number, for
different Weber numbers. The GL theory predictions are calculated from (3.1)–(3.3).

and (3.2) to express the Raj, the following approximate relation for ΘΓ emerges:

ΘΓ = −1
2

+
⎛
⎝1 +

(
1 − Ctot

Ctot

)(1−3γ )/(1+γ )
(

Λ2
ρΛcpΛα

Λμ

)γ /(1+γ )

Λ
(1−γ )/(1+γ )
ζ

⎞
⎠

−1

.

(3.5)
Note that the Prandtl number dependence is typically omitted since the corresponding
scaling exponent becomes 0 < m � 1 for Pr > 0.5 (Grossmann & Lohse 2000, 2001;
Stevens et al. 2013). In contrast to the implicit relations of the GL theory, (3.5) depends
only on the various property ratios Λ and the chosen scaling exponent γ . Figure 6 shows
the interface temperature obtained from the DNS, compared against the predictions of
the GL theory (3.1)–(3.3) and the predictions of the simplified scaling (3.5). The results
of the simplified scaling assume the typical scaling exponent range 1/4 ≤ γ ≤ 1/3. As
observed in figure 6, the DNS results from the low Weber number cases follow the GL
theory closely. The higher Weber number cases deviate from the GL theory as the lower
surface tension induces a stronger interface deformation, which influences the resulting
scaling. Noteworthy is the fact that the simplified scaling provides a reliable estimation
of ΘΓ for the different values of the Rayleigh number considered in the present study,
with a maximum deviation of less than 2 % from the GL theory. Furthermore, despite its
apparent simplicity, the simplified scaling directly highlights some important features of
the equilibrium interface temperature ΘΓ . First, we highlight that the weak dependence
of ΘΓ on the Rayleigh number (absent in (3.5)) is confirmed by the DNS results, since
the value of ΘΓ decreases by less than 3 % as Ra increases from 106 to 108. Second,
(3.5) enables us to quantify the role of each thermophysical property in modulating ΘΓ ,
because each property ratio Λ has its own scaling exponent. In particular, the density and
thermal conductivity ratios have the largest exponents, representing the dominant sources
of influence on the interface temperature ΘΓ .

We conclude this subsection by examining the thicknesses of the scaled thermal
boundary layers at different locations in the cavity, which are shown in figure 7. The
single-phase scaling of Ra−1/4 is used, as this scaling was proven to agree reasonably
well with the interface temperature predictions in figure 6. Due to the presence of two
fluid layers, the effective Rayleigh numbers Ra1,2 defined in (3.2) are used to scale
the thermal boundary layer thickness at the bottom and top halves of the cavity. The
effective Rayleigh numbers consider the height and the temperature difference of the
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ΘΓ

Figure 6. Average interface temperature ΘΓ as a function of the Rayleigh number, for different Weber
numbers. The GL theory predictions are calculated from (3.1)–(3.3), while the predictions of the simplified
scaling are obtained from (3.5). The green region represents possible ΘΓ values for scalings 1/4 < γ < 1/3,
as per the simplified scaling.
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Figure 7. Scaled thermal boundary layer thickness at (a) the solid walls and (b) the interface. The scalings
used are Ra−1/4

1 at the bottom and Ra−1/4
2 at the top halves of the cavity, where Ra1,2 are defined in (3.2).

corresponding fluid layer, and for the parameters of the present study, can be simplified as
Ra1 = Ra (0.5 − ΘΓ )/8 at the bottom layer, and Ra2 = Ra (ΘΓ + 0.5)/8 at the top layer.
As shown in figure 7, this scaling is successful in collapsing the thicknesses of the thermal
boundary layers that form on both the solid surfaces and the fluid interface. Note that this
is true despite the variation of the Weber number, which, however, does not have a clear
impact on the scaled thermal boundary layer thicknesses. As shown in figure 6, the Weber
number has a minor influence on the interface temperature, which is not clearly noticeable
when examining the thermal boundary layer thicknesses in figure 7. Indeed, the value of
the interface temperature, ΘΓ appears in the definitions of both hθ

1,2 (2.10) and Ra1,2 (3.2).

3.3. Two-phase statistics
The vertical distributions of the average and r.m.s. phase indicator functions are shown
in figures 8(a,b), respectively, with a focus on the region adjacent to the interface. As
the Rayleigh number increases, the transition from one fluid to the other at z = 0.5
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Figure 8. Vertical distributions of (a) average and (b) r.m.s. values of the indicator function for different
values of the Rayleigh and Weber numbers.

becomes sharper, as shown by the average distribution of the indicator function. This
indicates the reduced interface deformation as the Rayleigh number increases. The
same effect can be deduced from the r.m.s. values of the indicator function, where the
fluctuations are shown to extend to a progressively smaller region as the Rayleigh number
increases. This observation can be linked to the size of the thermal plumes that cause
the interface deformation. In fact, with increasing Rayleigh number, the thermal plumes
become progressively smaller (Zhou & Xia 2010), while the flow in the bulk becomes
increasingly more homogeneous (Zhou, Sun & Xia 2008). Therefore, the stronger interface
deformations at low Rayleigh numbers result from the larger thermal plumes in the cavity.
Furthermore, increasing the Weber number leads to smoother profiles in the average
distribution in figure 8(a), and larger fluctuating regions in figure 8(b). These trends are
due to the decreased surface tension, leading to larger interface deformation. The interface
deformation will be analysed further and characterized in § 3.4.

The vertical profiles of the temperature field statistics are depicted in figure 9. The
data in the figure suggest several considerations. First, the average temperature field in
figure 9(a) reveals an increasingly sharper temperature profile as the Rayleigh number
increases. Specifically, at the bottom and top walls of the cavity, the temperature gradients
become larger (in absolute value) with increasing Rayleigh number, in accordance with the
Ra−1/4 scaling of the thermal boundary layers in figure 7. The same characteristic is also
observed in the temperature distribution next to the interface. In the bulk of the bottom
half (approximately z = 0.2–0.4) and the top half (approximately z = 0.6–0.8), a nearly
uniform temperature profile is observed, with a very weak dependence on the Rayleigh
number. The temperature values in these regions are approximately 0.42 at the bottom
half and −0.05 at the top half, approximately constant in all the cases. This significant
asymmetry is mainly attributed to the different thermal conductivities on each side of
the interface. Since the thermal conductivity of the denser fluid is an order of magnitude
larger than that of the lighter fluid, the bulk temperature at the bottom half is much closer
to the temperature at the bottom heated wall than that of the top half of the cavity. A final
observation from figure 9(a) is that the average temperature distributions show negligible
sensitivity to the Weber number.

The vertical distribution of the temperature r.m.s. fields is depicted in figure 9(b). The
most distinct feature is the significantly smaller r.m.s. values at the bottom of the cavity
compared to the top, hinting at a weaker turbulent state in the denser fluid, in line with
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Figure 9. Vertical distribution of (a) average and (b) r.m.s. values of the temperature field, for different
values of the Rayleigh and Weber numbers. The line styles are the same as in figure 8.

the observations made from the instantaneous fields in § 3.1 and the Reynolds number
predictions discussed in § 3.2. At the top of the cavity, two maxima are observed: a smaller
one next to the top wall, and a larger one next to the two-phase interface, reinforced
by the interface oscillation. For both peaks, the maximum values become smaller, and
their location moves closer to the boundaries as the Rayleigh number increases. The same
behaviour of the temperature r.m.s. field was observed in other single-phase studies, such
as du Puits et al. (2007) for the turbulent convection in a cylindrical cell, and Demou &
Grigoriadis (2019) in a cuboid cavity. Furthermore, increasing the Weber number leads to
a noticeable increase in the temperature r.m.s. maximum values next to the interface. More
specifically, the Weber number effects are stronger as the Rayleigh number increases. On
the other hand, not surprisingly, the temperature r.m.s. values next to the top wall remain
relatively unaffected with increasing Weber numbers.

Moving on to the statistics of the velocity field, we recall that since 〈u〉x,y,t = 〈v〉x,y,t =
〈w〉x,y,t = 0, the velocity r.m.s. reduces to urms =

√
〈u2〉x,y,t, vrms =

√
〈v2〉x,y,t and wrms =√

〈w2〉x,y,t, which corresponds to the square root of the single-phase kinetic energy per unit
mass. Therefore, the velocity r.m.s. values are associated with the average kinetic energy
per unit mass of the large-scale vortical structures in each fluid layer. Figures 10(a,b)
show the vertical distributions of the vertical and horizontal components of the velocity
r.m.s. field, respectively. As already mentioned, the turbulence at the bottom fluid layer
is weaker compared to the top fluid layer, something that is clearly depicted in the r.m.s.
profiles. Still, the rotation of the large-scale vortical structures is adequate in retaining
relatively large velocity r.m.s. values in the denser fluid, in comparison to the temperature
r.m.s. values in figure 9(b).

Focusing on the vertical velocity r.m.s. component, shown in figure 10(a), the different
profiles exhibit a concave shape in each fluid layer, with a maximum at z = 0.25 and
z = 0.75, i.e. in the middle of the two layers. The curvature at the maxima decreases
with increasing Rayleigh number, indicating a change in the circulation of the large-scale
vortical structures. The actual maximum values behave non-monotonically, with larger
maxima for the Ra = 107 case. Moreover, the effects of the Weber number are more
visible in the lighter fluid. They are much more pronounced for the lower Rayleigh number
cases, as can be expected considering the stronger interface deformation in these cases.
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Figure 10. Vertical distribution of (a) the vertical and (b) the horizontal components of the velocity
r.m.s. field, for different values of the Rayleigh and Weber numbers. The line styles are the same as in figure 8.

More specifically, the maximum vertical velocity r.m.s. component in the lighter fluid for
Ra = 106 increases noticeably with increasing Weber number, while there is no significant
shift in the higher Rayleigh number cases. On the other hand, the horizontal velocity
r.m.s. components, shown in figure 10(b), exhibit a similar shape to the temperature r.m.s.
profiles in figure 9(b), with two maxima in each layer; one next to the solid wall, and
one next to the two-fluid interface. The difference compared to the temperature profiles
is that the maximum velocity r.m.s. values are approximately symmetric in each layer. As
concerns variations of interface deformability, we observe trends similar to those observed
for the vertical velocity r.m.s. distribution, with a more pronounced effect of the Weber
number for smaller Rayleigh numbers.

3.4. Surface displacement
The dynamics of a mechanically perturbed interface is thoroughly discussed in the
literature, usually referred to as wave-turbulence (Falcon & Mordant 2022). By applying
a statistically stationary large-scale perturbation (through either wind or mechanical
excitation), the interface deforms into waves, whose elevation η(x, y, t) may vary
significantly in time and space. Energy is redistributed towards small (dissipative) scales
through nonlinear interactions, leading to a cascade process that is described thoroughly in
the literature (Zakharov & Filonenko 1967; Nazarenko 2011). Larger waves are generated
through gravity forces, while smaller ones are governed by capillarity. The dispersion
relation for the linear (small-amplitude) gravity-capillary waves reads (see Lamb 1993)

ω̂2 =
(

ρ̂1 − ρ̂2

ρ̂1 + ρ̂2
ĝ + σ̂

ρ̂1 + ρ̂2
k̂2
)

k̂, (3.6)

where ω̂ = 2πf̂ is the angular frequency (corresponding to time period T̂f = 1/f̂ ), and
k̂ = 2π/λ̂ is the wavenumber, corresponding to wavelength λ̂. The first term on the
right-hand side of (3.6) represents the contribution due to the gravity forces, while the
second is the modulation due to capillary stresses. These two contributions are equal at
the capillary wavenumber k̂c =

√
ĝ(ρ̂1 − ρ̂2)/σ̂ , which, using (3.6), gives the capillary

frequency f̂c = ĝ3/4(ρ̂1 − ρ̂2)
3/4(ρ̂1 + ρ̂2)

−1/2σ̂−1/4/(
√

2π). The crossover scale is the
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Ŝω

Ŝω
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Figure 11. Temporal spectrum of the wave elevation η(x, y, t). In each plot, we show the spectrum Ŝω (black
lines), the −4 power law for gravity waves (red dashed lines), and the −17/6 power law for capillary waves
(blue dash-dotted lines), for (a–c) all cases at We = 100, and (d–f ) all cases at We = 1000. The x-axes are
normalized by the capillary frequency ω̂c = 2πf̂c.

capillary wavelength λ̂c = 2π
√

σ̂/((ρ̂1 − ρ̂2)ĝ): waves longer than this are driven by
gravity, while smaller waves are driven by capillarity. For both the capillary (λ̂ > λ̂c)
and gravity (λ̂ < λ̂c) regimes, theoretical predictions are available for spectra computed
in both time, Ŝω = 〈|η̃(x, y, ω)|2〉x,y and space Ŝk = 〈|η̃(kx, ky, t)|2〉t, with (·̃) being the
Fourier transform. For gravity waves, Zakharov & Filonenko (1966) found that Ŝω ∼ ω̂−4

and Ŝk ∼ k̂−5/2, while for capillary waves, the scaling laws Ŝω ∼ ω̂−17/6 and Ŝk ∼ k̂−15/4

were obtained by Zakharov & Filonenko (1967).
The dispersion relation (3.6) is obtained by solving the linearized system composed

of the Euler equations (in Fourier space) for an incompressible, irrotational and inviscid
velocity field, and the equation for the interface elevation dynamics. However, the present
system is quite different, with gravity effects not only producing waves at the interface (as
in the aforementioned references) but also affecting the velocity field through buoyancy
due to the dependency of density on the temperature. In fact, the full system of equations
for the present configuration should comprise the Navier–Stokes equations, including not
only viscosity but, more importantly, the effect of density variations that lead to the
production of vorticity by the baroclinic torque, making (3.6) indicative only for the
present study. Furthermore, the linearization employed to obtain (3.6) assumes that the
nonlinearities of the problem provide only weak contributions. If nonlinearities become
stronger, then the dispersion relation widens (Aubourg & Mordant 2016) and eventually
deviates from the theoretical prediction in (3.6) (Herbert, Mordant & Falcon 2010).
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Figure 12. Spatial spectrum of the wave elevation η̂(x, y, t). In each plot, we show the spectrum Ŝk (black
lines), the −5/2 power law for gravity waves (red dashed lines), and the −15/4 power law for capillary waves
(blue dash-dotted lines), for (a–c) all cases at We = 100, and (d–f ) all cases at We = 1000.

Given this short overview, we move on to examine the results of the present simulations.
Figure 11 shows the temporal spectrum Ŝω of the wave elevation for each case, together
with the scaling exponent predicted for gravity and capillary waves. When surface tension
forces are higher, i.e. low We (figures 11a–c), we observe that the capillary regimes
(ω̂ > ω̂c) can be observed over an extended range of frequencies, especially for the highest
Rayleigh numbers under investigation here (see figures 11b,c). For the larger Weber
number (figures 11d–f ), we observe a region with a flatter spectrum around ω̂ ∼ ω̂c,
with a secondary peak and a scaling behaviour close to the capillary regime, ω̂−17/6.
The secondary peak becomes less pronounced with increasing Rayleigh number, while
no capillary scaling can be observed at large wavenumbers. While it is difficult to explain
the origin of the secondary peak, this is likely not connected to gravity waves. In fact,
by increasing the Weber number, we do not find any consistent trend, with either the
capillary or gravity power laws. This is indeed counter-intuitive, because increasing the
Weber number should lead to the formation of larger waves, as the lower surface tension
forces cannot withstand the local velocity fluctuations. Such waves should, in principle,
behave as gravity waves, as ω̂ < ω̂c, but this is not observed in the spectra.

A similar behaviour is also observed consistently in the spatial spectrum, shown in
figure 12. Again, at low We and high Ra (figures 12b,c), the spatial spectra show a clean
capillary wave range, which is observed only partially at low Ra (figure 12a), and not
observed at high We ((figures 12d–f ) except from the highest Rayleigh number. As shown
in the temporal analysis, the spatial spectra also do not display a clean gravity waves
range. In contrast, the secondary peak is clearly observed here for both Weber number
values considered, although it is less visible at higher Rayleigh numbers. As evidenced, a
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Figure 13. Space–time spectrum Êη(k, ω) of the wave elevation η̂(x, y, t). In each plot, we show the spectrum
contour, and the theoretical dispersion relation for capillary waves ω̂2

c = [σ̂/(ĝ(ρ̂1 + ρ̂2))]k̂3 is shown with a
black dashed line, while the gravity-capillary dispersion relation from (3.6) is shown with a red dashed curve.
Vertical and horizontal dotted black lines mark the capillary angular frequency and wavenumber. Black crosses
indicate the maximum of Êη for each angular frequency. The configuration of the plots follows figures 11 and
12, i.e. (a–c) all cases at We = 100, and (d–f ) all cases at We = 1000. Increasing Rayleigh numbers are shown
from left to right: (a,d) Ra = 106, (b,e) Ra = 107, and (c, f ) Ra = 108.

pronounced secondary peak is associated with the disruption of the theoretical power-law
behaviour of the gravity and capillary regimes.

Next, we discuss the existence of the secondary peak. First, it is worth recalling that
this is observed for frequencies (and wavenumbers) larger than the capillary scale. Similar
deviations from the theoretical power laws are not unusual in wave turbulence (e.g. see
Berhanu & Falcon 2013; Zonta, Soldati & Onorato 2015; Aubourg & Mordant 2016),
and are typically attributed to dissipative effects or strong nonlinearities. In the present
study, the most striking result is that the secondary peak in the spectrum attenuates at
high Rayleigh number and low Weber number (a less pronounced peak appears in the
spectrum), when a neater capillary wave regime can be observed. This observation can be
linked to the interface fluctuations expressed through the r.m.s. values of the indicator
function in figure 8(b), revealing smaller r.m.s. values at higher Rayleigh numbers.
Considering as well the smaller values of the temperature r.m.s. distribution at higher
Rayleigh numbers exhibited in figure 9(b) in combination with a less deformable interface
at lower Weber numbers, the influence of nonlinear effects on the interface dynamics
weakens.

To further investigate the interface dynamics, we display in figure 13 the space–time
spectrum Eη(k, ω) for all flows under investigation, and compare those with the dispersion
relation for capillary and gravity-capillary waves. In all cases, we observe that neither the
capillary nor the gravity-capillary dispersion relations provide good predictions for the
maxima of the spectra, which could be expected in the current system. Nevertheless, most
of the measured maxima lie between the two theoretical dispersion relations, revealing an
intermediate regime created most likely by the combination of nonlinear effects due to
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buoyancy and viscous effects at small scales. For all the studied cases, we note a widening
of the dispersion relation, meaning that nonlinearities are a critical aspect of these flows.
Such widening may also affect some of the maxima, which therefore lie outside the
theoretical dispersion relation for the capillary and gravity-capillary laws. Furthermore,
there is a clear range of low frequencies where the footprints of the forcing can be observed
(see Aubourg & Mordant 2016). On the other hand, it is important to notice that as Ra
increases, nonlinearities seem to decrease, and the maxima converge towards a line. This
suggests that the energy transport mechanism at high Rayleigh and low Weber numbers is
characterized by reduced nonlinearities, which may help to predict the effective interface
area across which heat/mass is transferred.

4. Conclusions

This study provided a thorough analysis of how the Rayleigh and Weber numbers affect
various quantities in two-layer Rayleigh–Bénard convection. For the adopted set of
parameters, the Nusselt and Reynolds numbers, along with the interface temperature, were
found to closely follow the Grossmann–Lohse scaling laws, with very little dependence on
the Weber number. The same is true for the thermal boundary layers on both the solid
boundaries and the two-fluid interface, which were found to scale with Ra−1/4 to a good
approximation. Further investigation of the temperature field revealed two pronounced
r.m.s. maxima in the top half of the cavity, the largest one located close to the two-fluid
interface. As the Rayleigh number increases, the maxima move closer to the boundaries
while their absolute values decrease. Moreover, increasing the Weber number increases the
maximum values, more noticeably for the higher Rayleigh number cases. The r.m.s. fields
of the horizontal velocity components exhibited similar profiles, albeit with approximately
equal values in the two maxima locations. In contrast to the temperature fields, the Weber
number effects on the velocity fields were found to be stronger for the lower Rayleigh
number cases.

Significant effort was dedicated to presenting a comprehensive characterization of the
two-fluid interface deformation. The simulation snapshots revealed stronger interface
deformation for larger Weber numbers and smaller Rayleigh numbers, which was also
confirmed by the mean and r.m.s. values of the indicator function. In addition, spectral
analysis is used to characterize the interface dynamics. We observe that for large Rayleigh
numbers and small Weber numbers, the interface deformation is smaller, and the scaling
laws for capillary wave turbulence can be retrieved. At smaller Rayleigh numbers and
larger Weber numbers, the large-scale circulation, in conjunction with the weaker surface
forces, strongly deforms the interface. This is confirmed through the space–time spectrum,
showing a non-negligible effect of large-scale forcing and nonlinearities that ultimately
widen the dispersion relation. Nevertheless, the spectra become narrower when increasing
the Rayleigh number, suggesting that in realistic applications at high Rayleigh numbers,
the capillary scaling may help to predict the total interface through which heat and mass
are exchanged.

An immediate extension of this work would be the consideration of realistic water–air
parameters, including evaporation and non-Oberbeck–Boussinesq effects. The theoretical
work by Scapin et al. (2023) suggested an analytical model for such flows, the predictions
of which can be confirmed by three-dimensional DNS for different Rayleigh numbers.
Such a study can provide invaluable insight into the heat transfer mechanism and interface
dynamics, with relevant applications in atmospheric convection (Schumacher & Pauluis
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2010) and spent-fuel pools of nuclear power plants (Hay & Papalexandris 2020), among
others.
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