
4
Instantons in quantum mechanics

Instantons are solutions of the classical equations of motion with a finite
Euclidean action. Such field configurations are not taken into account in
perturbation theory. Instantons are characterized by a topological charge
which may result in a conserved quantum number and never show up
in perturbation theory. In Minkowski space, instantons are associated
with tunneling processes between vacua labeled by a distinct topological
charge.
Instantons first appear in Yang–Mills theory [BPS75], although this

kind of classical solution was known long before in statistical phys-
ics [Lan67].
In this chapter we consider instantons in quantum mechanics as an

illustration of path-integral calculations. We follow the original paper by
Polyakov [Pol77] except for technical details.

4.1 Double-well potential

Let us consider a one-dimensional quantum-mechanical system with the
double-well potential

V (x) =
λ

4

(
x2 − µ2

λ

)2
= − 1

2
µ2x2 +

1
4
λx4 +

µ4

4λ
. (4.1)

This is nothing but an anharmonic oscillator with the opposite sign for the
coefficient of the quadratic term,∗ which usually appears with a positive

∗ It is often called the mass term. This terminology comes from quantum field theory,
where the potential (4.1) is considered in the context of a spontaneous breaking of
the reflection symmetry x → −x. In our quantum-mechanical problem, defined by
the Euclidean action (4.3), the mass of the nonrelativistic particle is absorbed in τ
which has, therefore, the dimension of [length]2. This has already been explained in
Sect. 1.6.
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66 4 Instantons in quantum mechanics

− µ√
λ

+ µ√
λ

V (x)

x

✻

✲

Fig. 4.1. The double-well potential (4.1). The short vertical lines represent the
position of the minima (4.4). The dashed lines correspond to the energy E0 of
the lowest state in a single well, i.e. to that in the limit λ→ 0.

coefficient ω2/2. We have introduced

µ2 = −ω2 (4.2)

in order to work with real numbered values. The constant term is added
for later convenience. The potential (4.1) as a function x is depicted in
Fig. 4.1.
The (Euclidean) action is defined by

S[x] =
∫
dτ
[
1
2
ẋ2(τ) + V (x(τ))

]
(4.3)

with V (x) given by Eq. (4.1). The plus sign between the kinetic and
potential energies is because we are in Euclidean space.
It follows from Eqs. (4.1) and (4.3) that the parameter µ has the dimen-

sion of [length]−2 or, in other words, the dimensions of x and τ are [µ]−1/2

and [µ]−1, respectively. Analogously, the dimension of the constant λ is
[µ]3.
For λ! µ3, the potential (4.1) has superficially two degenerate vacua

x±0 = ± µ√
λ
, (4.4)

the positions of which coincide with the minima of the potential in Fig. 4.1.
The degeneracy between the two minima is preserved at all orders of

perturbation theory, where an expansion near one of the minima of the
potential (either the left- or right-hand one) is carried out:

x(τ) = ± µ√
λ
+ χ(τ) (4.5)

with χ(τ)! µ/
√
λ. The correlator at asymptotically large τ is

〈 x(0) x(τ)〉 → µ2

λ
+ · · · . (4.6)
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4.1 Double-well potential 67

Its nonvanishing value means that a particle is localized at one of the two
vacua.
The next terms of the perturbative expansion in λ do not spoil this

result since the potential (4.1) becomes

V = µ2χ2 ∓
√
λµχ3 +

λ

4
χ4 (4.7)

after the shift (4.5), and has a positive sign for the quadratic term. There-
fore, a perturbation theory constructed around the vacuum x±0 is a normal
one, and the particle lives perturbatively in one of the two vacua.
However, we know from quantum mechanics that (nonperturbatively)

〈x(0) x(τ)〉 =
∑
n

|xn0|2 e−(En−E0)τ (4.8)

at imaginary time τ = it, where En is the energy of the nth eigenstate of
the Hamiltonian and xn0 is the proper matrix element. Therefore,

〈x(0) x(τ)〉 ∼ e−∆E τ (4.9)

for large τ , where

∆E = µ

√
48
π

√
2
√
2µ3

3λ
exp

(
−2
√
2µ3

3λ

)
(4.10)

is the energy splitting between the two lowest states (symmetric and an-
tisymmetric) for λ! µ3, which vanishes exponentially as λ→ 0.
The appearance of imaginary time in Eq. (4.8) is because under a bar-

rier particles live in imaginary time. We may say that imaginary time is
an appropriate language for describing tunneling through a barrier.
Since the RHS of Eq. (4.9) vanishes as τ →∞, the reflection symmetry

x → −x, which is broken in perturbation theory, is restored nonpertur-
batively as τ →∞.
Problem 4.1 Derive Eq. (4.10) modulo a constant factor within standard quan-
tum mechanics.

Solution Let us use the semiclassical formula [LL74] (Problem 3 in §50)

∆E =
√
2µ
π

e−
+a
−a

dx
√

2[V (x)−E0] , (4.11)

where ±a are the classical turning points, which are determined by
V (±a) = E0 , (4.12)

and

E0 =
√
2µ (4.13)
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68 4 Instantons in quantum mechanics

is the lowest energy for the oscillator potential (4.7) as λ→ 0. Denoting

h =

√
λ√
2µ3

, z =

√
λ

µ
x , (4.14)

the integral in the exponent on the RHS of Eq. (4.11) can be calculated using
an expansion in h which gives

1
2h2

1−h∫
−1+h

dz
√
(1− z2)2 − 4h2 =

2
3h2

+ lnh+O(1) . (4.15)

Substituting into Eq. (4.11), one recovers Eq. (4.10) modulo a constant factor.

4.2 The instanton solution

In the path-integral approach, the correlator (4.8) is given by

〈 x(0) x(τ)〉 =

∫
Dx e−S[x] x(0)x(τ)∫

Dx e−S[x]
(4.16)

with no restrictions on the integration over x. This is a quantum-mechan-
ical analog of the path integrals defined in Sect. 2.1.
At small λ, the path integral (4.16) can be evaluated using the saddle-

point method. The reason for this is that for x given by Eq. (4.4) (i.e. the
minima of the action (4.3)), the Gaussian fluctuations around (4.4) are
not essential as λ→ 0. This is most easily seen by making the shift (4.5)
and noting that χ(τ) is O(1) at the saddle points according to Eq. (4.7),
the RHS of which is quadratic in χ(τ) as λ→ 0.
Performing the saddle-point evaluation of the path integral (4.16), one

obtains

〈 x(0) x(τ)〉 =
µ2

λ
+ · · · . (4.17)

Note that x(0) and x(τ) in the integrand can be substituted using the
saddle-point values after which the integral over Gaussian fluctuations
cancels with the same integral in the denominator. In other words, we
have reproduced the fact that each of the trivial minima (4.4) results in
Eq. (4.6).
Minima of the action (4.3) can also be obtained from the classical equa-

tion of motion
−ẍ− µ2x+ λx3 = 0 . (4.18)

The trivial minima (4.4) obviously satisfy this equation.

https://doi.org/10.1017/9781009402095.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402095.005
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− µ√
λ

+ µ√
λ

τ

τ0

x

✻

✲

Fig. 4.2. Graphical representation of the one-kink solution (4.19) as a function
of τ .

However, another solution of the classical equation of motion (4.18)
exists:

xinst(τ − τ0) =
µ√
λ
tanh

µ (τ − τ0)√
2

, (4.19)

which is associated with another (local) minimum of the classical action.
This solution is called an instanton or a pseudoparticle. The arbitrary
constant τ0 in Eq. (4.19) is the position of the center of the instanton.
The solution (4.19) is also known as a kink in this quantum-mechanical

problem. It interpolates between the two minima (4.4) when τ changes
from −∞ to +∞ as depicted in Fig. 4.2. Also shown in this figure is the
double-well potential, V (x), from Fig. 4.1.
An analogous solution which interpolates between µ/

√
λ at τ = −∞

and −µ/
√
λ at τ = +∞ is called an anti-instanton. It differs from

Eq. (4.19) by an overall minus sign:

xainst(τ − τ0) = − µ√
λ
tanh

µ (τ − τ0)√
2

, (4.20)

and is obviously also a solution of the classical equation (4.18).

Problem 4.2 Find all solutions of Eq. (4.18) with the boundary conditions
x(−∞) = −µ/

√
λ and x(+∞) = µ/

√
λ.

Solution Equation (4.18) looks like Newton’s equation for a classical particle,
with unit mass, in the upside-down potential −V (x) (its shape can be obtained
from that depicted in Fig. 4.1 by reflecting with respect to the horizontal axis
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70 4 Instantons in quantum mechanics

V = 0). The first integral of motion is the energy

E =
1
2
ẋ2 − λ

4

(
x2 − µ2

λ

)2
(4.21)

which is obviously conserved owing to Eq. (4.18).
Equation (4.21) can easily be solved for the velocity

ẋ =
√
2[E + V (x)], (4.22)

where we have chosen the positive sign according to the boundary condition. It
also says that E = 0 in order for the particle to stay at x = µ/

√
λ for τ → ∞,

since this point is associated with the maximum of −V (x). Therefore, we find

ẋ =

√
λ

2

(
µ2

λ
− x2
)
, (4.23)

which after integration results in Eq. (4.19) with τ0 being the integration con-
stant. It is evident that the solution is unique.

For the instanton (or anti-instanton) minimum, one finds, substituting
in Eq. (4.3),

S [xinst] =
2
√
2µ3

3λ
, (4.24)

which differs only by sign from the exponent in Eq. (4.10) for the energy
splitting ∆E.

4.3 Instanton contribution to path integral

The contribution of the instanton configuration looks as if it is suppressed
in the path integral by a factor of exp (−S [xinst]), but, in fact, this ex-
ponential is multiplied by τ since the instanton has a zero mode. This
factor of τ appears after an integration over the collective coordinate τ0
– the instanton center. The explicit result for the one-kink contribution
to the correlator (4.16) may be written as [Pol77]

〈x(0) x(τ)〉 =
µ2

λ

1− Cτ

√
2
√
2µ3

3λ
exp

(
−2
√
2µ3

3λ

) , (4.25)

where C is a (dimensional) constant.

Problem 4.3 Derive Eq. (4.25) using the Faddeev–Popov method to deal with
the collective coordinate τ0.

Solution Let us approximate the path integrals in the numerator and denomi-
nator of Eq. (4.16) for small λ by the sum of the contributions from the trivial
minima (4.4) and the one-kink minima (4.19) and (4.20). Since the one-kink
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4.3 Instanton contribution to path integral 71

contribution is suppressed by exp (−S[xinst]), we can expand the denominator
to give

〈x(0)x(τ)〉 =
µ2

λ
+ e−S[xinst]

∫
Dx(τ)

[
x(0)x(τ) − µ2

λ

]
e−(S[x]−S[xinst])∫

Dχ(τ) e− dτ( 1
2 χ̇

2+µ2χ2)
,

(4.26)
where the path integral in the numerator is over fluctuations around the instan-
ton solution (4.19). The normalizing factor in the denominator is associated with
averaging over the Gaussian fluctuations around the trivial minima (4.4), the po-
tential energy of which is described by the quadratic term in Eq. (4.7). There
are two such trivial minima (x+ and x−) and two one-kink minima (instanton
and anti-instanton) so these factors of 2 cancel.
Keeping the quadratic term in the expansion around the instanton:

x(τ) = xinst(τ − τ0) + χ(τ − τ0) , (4.27)

one obtains

S[x]− S[xinst] =
1
2

∫
dτ
(
χ̇2 − µ2χ2 + 3λx2instχ

2
)
. (4.28)

The fluctuations around the instanton are Gaussian except for one mode,
which is associated with a translation of the instanton center, τ0. This zero
mode is given by

χ0(τ) ∝ ẋinst(τ) . (4.29)

This is obvious because(
− d2

dτ2
− µ2 + 3λx2inst

)
ẋinst = 0 (4.30)

as a result of differentiating Eq. (4.18) with respect to τ0.
To deal with the zero mode, let us insert

1 =

+∞∫
−∞

dτ δ(u[x]− τ) (4.31)

into the path integral in the numerator on the RHS of Eq. (4.26). Here u[x] is
determined by the equation

+∞∫
−∞

dτ y(τ − u[x])x(τ) = 0 (4.32)

with

y(τ) =
ẋ(τ)[∫ +∞

−∞
dt ẋ2(t)

]1/2 (4.33)

which is the normalized derivative of x(τ).
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72 4 Instantons in quantum mechanics

Under the translation,

τ → τ ′ = τ − τ0 , (4.34)

one obtains

x(τ) → x(τ ′) = x(τ − τ0) . (4.35)

This leaves the measure and the action in the path integral (4.26) invariant,
while

u[x] → u[x] + τ0 . (4.36)

Therefore, the integration over the instanton center, τ0, in the numerator of
Eq. (4.26) factorizes and we find∫
Dx(τ)

(
x(0)x(τ) − µ2

λ

)
e−(S[x]−S[xinst])

=

+∞∫
−∞

dτ0

[
xinst(−τ0)xinst(τ − τ0)−

µ2

λ

]

×
∫
Dχ(τ) δ(u[xinst(τ) + χ(τ)]) e−

1
2 dτ(χ̇2−µ2χ2+3λx2

instχ
2). (4.37)

We have substituted the integration over the zero mode χ0 by integration over
the collective coordinate τ0. The remaining path integral is finite since the
integration runs over directions which are orthogonal to the zero mode.
The integral over τ0 is equal to

+∞∫
−∞

dτ0

[
xinst(−τ0)xinst(τ − τ0)−

µ2

λ

]
= −2µ

2

λ
τ (4.38)

as λ→ 0. This is because

xinst(τ − τ0) =
µ√
λ
sign (τ − τ0) (4.39)

as λ→ 0.
Expanding the delta-function in χ:

δ(u[x]) =

∣∣∣∣∣∣
+∞∫

−∞

dτ ẏinst(τ)xinst(τ)

∣∣∣∣∣∣ δ
 +∞∫

−∞

dτ yinst(τ)χ(τ)

 , (4.40)

and noting that

+∞∫
−∞

dτ ẋ2inst(τ) =
2
√
2µ3

3λ
, (4.41)
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4.3 Instanton contribution to path integral 73

we obtain∫
Dχ(τ) δ(u[xinst(τ) + χ(τ)]) e−

1
2 dτ(χ̇2−µ2χ2+3λx2

instχ
2)

=

√
2
√
2µ3

3λ

∫
Dχ(τ) δ

 +∞∫
−∞

dτ yinst(τ)χ(τ)

 e−
1
2 dτ(χ̇2−µ2χ2+3λx2

instχ
2).

(4.42)

Note the appearance of the factor of
√
S[xinst].

We have thus obtained Eq. (4.25) with

C = 2

∫
Dχ(τ) δ

(∫ +∞

−∞
dτ yinst(τ)χ(τ)

)
e−

1
2 dτ(χ̇2−µ2χ2+3λx2

instχ
2)∫

Dχ(τ) e− dτ( 1
2 χ̇

2+µ2χ2)
.

(4.43)

Problem 4.4 Calculate the ratio of determinants in Eq. (4.43).

Solution Let us introduce the notation

z =
µτ√
2
, D =

d

dz
. (4.44)

Noting that

λx2inst(τ) = µ2
(
1− 1

cosh2 z

)
, (4.45)

we can rewrite the ratio of determinants as

B−2 =
4π
µ2
det′
[
−D2 + 4− 6/ cosh2 z

]
det [−D2 + 4]

. (4.46)

The notation det′ means that the zero eigenvalue is excluded. An extra factor
of 2π comes from the normalization of the Gaussian integral in the denominator
which involves one further integral.
The RHS of Eq. (4.46) can be calculated using the limiting procedure

det′
[
−D2 + 4− 6/ cosh2 z

]
det [−D2 + 4]

= lim
ω→2

det
[
−D2 + ω2 − 6/ cosh2 z

]
(ω2 − 4) det [−D2 + ω2]

. (4.47)

To compute the ratio of the Fredholm determinants

Rω[v] ≡
det
[
−D2 + ω2 + v(z)

]
det [−D2 + ω2]

(4.48)

for the potential

v(z) = − 6
cosh2 z

, (4.49)
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74 4 Instantons in quantum mechanics

let us note that

∂

∂ω2
lnRω[v] = Tr

[
1

−D2 + ω2 + v(z)

]
− Tr
[

1
−D2 + ω2

]

=

+∞∫
−∞

dz
[
Rω(z, z; v)−

1
2ω

]
, (4.50)

where the diagonal resolvent Rω(z, z; v) is defined by Eq. (1.123) with G = 1
and V ≡ v. The term 1/2ω on the RHS, which equals the diagonal resolvent in
the free case when v = 0 (see Eq. (1.38)), comes from the free determinant in
the denominator on the RHS of Eq. (4.48).
A crucial observation is that the diagonal resolvent for the potential (4.49) is

given by the simple formula

Rω(z, z; v) =
1
2ω
− v(z)
4ω(ω2 − 1) +

v2(z)
8ω(ω2 − 1)(ω2 − 4) , (4.51)

which can easily be verified by substituting into the Gel’fand–Dikii equa-
tion (1.127) with G = 1. The reason for this is that the potential (4.49) is
integrable and possesses two bound states (see, for example, §23 of [LL74]).
Calculating the integral over z on the RHS of Eq. (4.50), using the formulas

+∞∫
−∞

dz
cosh2 z

= 2 ,

+∞∫
−∞

dz
cosh4 z

=
4
3
, (4.52)

we obtain

∂

∂ω2
lnRω [v] =

1
ω

(
1

ω2 − 1 +
2

ω2 − 4

)
, (4.53)

which is easily integrated over ω to give

det
[
−D2 + ω2 − 6/ cosh2 z

]
det [−D2 + ω2]

=
(ω − 2)(ω − 1)
(ω + 2)(ω + 1)

. (4.54)

The integration constant has been determined by requiring that

lim
ω→∞

Rω[v] = 1 . (4.55)

Substituting into Eq. (4.47), we obtain

C = 2B =

√
48
π
µ (4.56)

which coincides with the constant in Eq. (4.10).
For other methods of calculating the ratio of determinants in the one-instanton

contribution, see the original papers [Lan67, Pol77], the reviews [Col77, VZN82]
or Chapter 4 of the book [Pol87].
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R
+µ/

√
λ

−µ/
√
λ

✲✛

Fig. 4.3. The many-kink configuration xM-kink(τ) which is combined from the
solution (4.19).

4.4 Symmetry restoration by instantons

At τ ∼ 1/∆E, many kinks become essential. A many-kink “solution” can
be approximately constructed from several single kinks and antikinks,
which are separated along the τ -axis by the some distance R $ 1/µ,
since the interaction between kinks would be ∼ exp (−µR). Such a con-
figuration is depicted in Fig. 4.3 for the case when the number of kinks
is equal to the number of antikinks. An analogous configuration with the
number of kinks being one more greater than the number of antikinks
connects the −µ/

√
λ and µ/

√
λ vacua.

It is not an exact solution of Eq. (4.18) since the kink and the antikink
attract and have a tendency to annihilate. However, it is an approximate
solution as λ→ 0.
Analytically, the M -kink configuration can be represented as

xM-kink(τ) =
µ√
λ

M∏
i=1

sign(τ − τi) , (4.57)

where τi are the centers of the instantons (or anti-instantons), from which
the M -kink configuration is built out, and

τ1 ≤ τ2 ≤ · · · ≤ τM . (4.58)

Equation (4.57) assumes that the kinks do not interact and are infinitely
thin as λ → 0. The action of the configuration (4.57) is therefore given
by

S[xM-kink] =
2
√
2µ3

3λ
M , (4.59)

i.e. it equals M times the action for the one-kink case.
Summing over many-kink configurations, one finds [Pol77]

〈x(0) x(τ)〉 =
µ2

λ
e−τ∆E , (4.60)

where ∆E is given by Eq. (4.10). The x → −x symmetry is now re-
stored as τ →∞. This restoration is produced by instantons = classical
trajectories with a finite (Euclidean) action.
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· · ·

Fig. 4.4. Graphical representation of a periodic potential.

Problem 4.5 Obtain the exponentiation of the one-kink contribution (4.25)
after summing over the M -kink configurations (4.57) in the dilute gas approxi-
mation when the interaction between kinks is disregarded.

Solution The calculation of the contribution of theM -kink configuration (4.57)
to the path integral is quite analogous to that for the one-kink case which is de-
scribed in Problem 4.3. One finds

〈 x(0)x(τ) 〉 =
µ2

λ

∞∑
M=0

(−∆E)M
τ∫

0

dτ1

τ1∫
0

dτ2 · · ·
τM−1∫
0

dτM , (4.61)

which reproduces Eq. (4.60) by noting that the ordered integral is equal to
τ∫

0

dτ1

τ1∫
0

dτ2 · · ·
τM−1∫
0

dτM =
τM

M !
. (4.62)

This calculation is very similar to that in statistical mechanics for the expo-
nentiation of a single-particle contribution to the partition function in the case
of an ideal gas.

4.5 Topological charge and θ-vacua

Let us consider a periodic potential whose period equals 1, which is de-
picted in Fig. 4.4. It can be viewed as being defined on a circle S1 of unit
length. The boundary conditions are

x(1) = x(0) in perturbation theory ,

x(1) = x(0) + n for n-instanton solution .

 (4.63)

The multi-instanton solution always exists because of the topological
formula∗

π1(S1) = Z , (4.64)

where πk(M) is the kth homotopy group with elements that are classes of
continuous maps of the k-sphere Sk onto M . Equation (4.64) describes
the fact that an (integer) winding number n ∈ Z is associated with the
mapping S1 → S1, which counts how many times the target is covered.

∗ See, for example, the book [DNF86] (§17.5 of Part II).
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We see the difference between theM -kink configuration for the double-
well potential and the multi-instanton solution for the periodic potential.
The former was not an exact solution of the classical field equation (4.18).
Only a single instanton or anti-instanton was a solution that connects
the two vacua. This is why we need a periodic potential for the multi-
instanton solution to exist owing to the topological argument.
The value of n in the boundary condition (4.63) is called the topological

charge of the instantons, while n < 0 is associated with anti-instantons.
The vacuum states are labeled by n: |n〉. The n-instanton configuration
connects the |m〉 and 〈m+n| states. Therefore, instantons are associated
in Minkowski space with the process of tunneling between topologically
distinct vacua∗ rather than with real particles. For this reason, they are
sometimes called pseudoparticles in Euclidean space.
It is convenient to consider another representation of vacuum states

|θ〉 =
∞∑

n=−∞
eiθn |n〉 , (4.65)

which are called the θ-vacua. The θ-vacua are orthogonal

〈θ
∣∣ θ′〉 =

∞∑
m=−∞

∞∑
n=−∞

ei(θn−θ′m) 〈m | n〉 = δ2π
(
θ − θ′
)
, (4.66)

where δ2π is a periodic delta-function with period 2π. Here we have used
the orthogonality of the n-states:

〈m | n〉 = δmn . (4.67)

The θ-vacuum partition function is given by

Z(θ) =
∫
Dx e−S[x]+iθ

∫ 1
0 dτ ẋ(τ). (4.68)

Here in the exponent θ is multiplied by the topological charge
1∫
0

dτ ẋ(τ) = x(1)− x(0) (4.69)

∗ The Minkowski-space interpretation of instantons is attributed to V.N. Gribov (un-
published). It is based on the fact that when the particle is localized in one of the
two wells its momentum is indefinite and can sometimes be very large so that the
proper energy is above the barrier between the two wells. Such a particle jumps from
the given well to the other one. The characteristic time of this process is small in the
typical units given by µ. In other words, this process is instantaneous, which explains
the term “instanton” as introduced by ’t Hooft. The exponential suppression with
λ of the one-instanton contribution (4.25) represents quantitatively the fact that the
probability of having large momentum is small.
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which never appears in perturbation theory. Therefore, the partition
function (4.68) can be alternatively represented as

Z(θ) =
∑
n

∫
x(1)=x(0)+n

Dx e−S[x]+iθn . (4.70)

The second term in the exponent in Eq. (4.68) is known as the θ-term.
The parameter θ plays the role of a new fundamental constant that does
not show up in perturbation theory. The amplitude of physical processes
generated by instantons may depend on θ.

Remark on description of instantons

A description of instantons in the first-quantized language can only be
given in quantum mechanics (where the first and second quantizations
do not differ essentially). The path-integral representation (4.16) is more
in the spirit of second quantization, which is discussed in Chapter 2,
where x(τ) plays the role of a field that depends on the one-dimensional
coordinate τ .

Remark on instantons in Yang–Mills theory

In the Yang–Mills theory, instantons are conveniently described by a (Eu-
clidean) path integral over fields. The saddle-point equation, which de-
scribes instantons in the SU(2) Yang–Mills theory, is given by [BPS75]

F a
µν(x) = F̃ a

µν(x) , (4.71)

for which nontrivial solutions exist owing to the fact that the mapping
of the asymptotic boundary S3 of four-dimensional Euclidean space onto
SU(2) is nontrivial:

π3 (SU(2)) = Z . (4.72)

Correspondingly, the topological charge is given by∗

n =
g2

16π2

∫
d4x

3∑
a=1

F a
µν(x)F̃

a
µν(x) , (4.73)

which equals one-half of the nonconservation of the axial charge given by
the Minkowski-space integral of the chiral anomaly (3.63). This expression
is also known in topology as the Pontryagin index or the second Chern
class. See, for example, the lectures/reviews [Col77, VZN82, SS98] and
the book [Shi94] for an introduction to instantons in Yang–Mills theory.

∗ Concerning the coefficient, see the footnote on p. 59.
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Reference guide

The operator formalism in quantum field theory is described in the canon-
ical books [AB69, BS76, BD65] which were written in the 1950s or at the
beginning of the 1960s. Modern textbooks on this subject include those
by Brown [Bro92] and Weinberg [Wei98].
Feynman disentangling is contained in the original paper [Fey51], the

appendices of which are especially relevant. A classic book on path inte-
grals in quantum mechanics is that by Feynman and Hibbs [FH65]. The
path-integral approach to the very closely related problem of Brownian
motion is discussed in the books [Kac59, Sch81, Wie86, Roe94]. Many in-
formation on path integrals can be found in the book by Kleinert [Kle95].
An introduction to path integrals in quantum mechanics and quantum

field theory can be found in many books. I shall list some of those that I
have on my bookshelf: [Ber86, Pop91, FS80, IZ80, Ram89, Sak85, Riv88].
The ordering is according to the appearance of the first edition. The book
by Berezin [Ber86], which is mathematically more rigorous, contains an
excellent description of operations with Grassmann variables.
An introduction to path integrals in statistical mechanics can be found

in the books [Kac59, Fey72, Pop91, Wie86, ID91, Roe94]. The well-
written book by Parisi [Par88] describes a modern view of the relation be-
tween statistical mechanics and quantum field theory. A very good, while
slightly more advanced, book where contemporary problems of quantum
field theory and statistical mechanics are discussed using the unified lan-
guage of Euclidean path integrals is that by Polyakov [Pol87].
The derivation of quantum anomalies from the noninvariance of the

measure in the path integral is contained in the original papers [Ver78,
Fuj79, Fuj80] (see also the review [Mor86]). It can also be found in Chap-
ter 22 of the book by Weinberg [Wei98].
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Instantons in the Yang–Mills theory were discovered by Belavin,
Polyakov, Schwartz and Tyupkin [BPS75]. The role of instantons in quan-
tum mechanics is clarified in the original paper by Polyakov [Pol77]. Their
description is given in the books by Sakita [Sak85] and Polyakov [Pol87].
The review articles [Col77, VZN82, SS98] are also useful for an introduc-
tion to the subject. The original papers on instantons in quantum field
theory are collected in the book edited by Shifman [Shi94].
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