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Abstract

The quotient bounded and the universally bounded elements in a calibrated locally convex algebra are
defined and studied. In the case of a generalized fl*-algebra>(, they are shown to form respectively b*
and B*-algebras, both dense in A. An internal spatial characterization of generalized B*-algebras is
obtained. The concepts are illustrated with the help of examples of algebras of measurable functions
and of continuous linear operators on a locally convex space.

1980 Mathematics subject classification (Amer. Math. Soc): primary 46 H 05; secondary 46 L 20.

Introduction

Giles, Joseph, Koehler and Sims (1975) have discussed numerical ranges of
quotient bounded operators on a calibrated locally convex space. The purpose of
this paper is to put their work in the general framework of locally convex
algebras. Given a calibrated locally convex algebra (A, P), we introduce the sets
BP and QP of elements of A called respectively P-universally bounded and
P-quotient bounded. A synthesis of the numerical range theories for locally
m-convex algebras due to Giles and Koehler (1973) and for locally convex
algebras due to Wood (1977) leads us to the main result of the paper, namely, if
(A, P) is a calibrated complete hypocontinuous locally convex GB*-algebra, then
QP is a b*-algebra under a natural topology injected continuously as a dense
*subalgebra of A; and conversely this characterizes GB*-algebras. A similar result
holds with BP as a 2?*-algebra. This also generalizes a theorem of Giles and
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[2] Quotient bounded elements 103

Koehler (1973, Theorem 6). Finally the ideas of the paper are illustrated with the
help of a few examples.

For numerical ranges in Banach algebras, we refer to Bonsall and Duncan
(1977), for generalized 5*-algebras, we refer to Allan (1967) and Dixon (1980).
For 6*-algebras, we refer to Apostol (1979) and Giles and Koehler (1973).

2. Preliminaries: quotient bounded elements

(2.1) DEFINITION. Let A be a locally convex algebra (always assumed with
identity 1). Let P(A) denote the collection of all calibrations P on A that
determine the topology t of A. Let P = (pa) be in P(A). An element a G A is
called left P-quotient bounded if for each a, there exists a real constant Ma a

depending on a and a such t\\a\pa{ax) < Ma apa(x) holds for all JC G A. Further,
it is called left P-universally bounded if the Ma a for all a have an upper bound
depending only on a (written Ma).

Let BP be the set of all left P-universally bounded elements, and QP be the set
of all left P-quotient bounded elements. The following summarizes the basic
properties of these sets. We omit the proof which is a straightforward adaptation
of Giles and others (1975).

(2.2) P R O P O S I T I O N . Let (A, t)be a locally convex algebra and let P = ( / ? a | a G A )
beinP(A).

(a) The set BP is a subalgebra of QP containing 1, and QP is a subalgebra of A.
(b) For each a E QP, a G A, let

qa{a) = sup{pa(ax)\pa(x)< 1}

= inf {Maa\pa(ax) < MaaPa(x) for all x G A}.

For each a G BP, let

p(a) = sup<7a(a) = inf{Ma\pa(ax) < Mapa{x) for all x &A andforalla).
a

(b i) (Bp, p) is a unital normed algebra and

pa(ax) «£ p(a)pa(x) for all a E A, a G BP,x G A.

(b2) Each qa is a submultiplicative seminorm on QP such that qa(\) — 1 and
pa(ax) < qa(a)pa(x) (x G A) for all a E A, a E QP. Further, the family (qa)
defines a Hausdorff locally m-convex (Imc) topology tP on A such that the identity
maps (BP, p) -»(QP, tP) -> (A, t) are continuous.
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(c) If A is complete, then each of{BP, p) and (QP, tP) is also complete.
(d) Let A be complete. Let SP = {a G BP\p(a) < 1}. Then SP is in <$>, the

collection of all B C A such that B is absolutely convex, 1 G B, B2 C B and B is
closed and bounded.

Much of the work in Giles and others (1975) can be carried over to this setting,
the details of which we omit. Also to fix the notations, we recall the following
from Wood (1977, Section 3) and Dixon (1970, Section 2) or Allan (1967, Section

2).

(2.3) DEFINITION. Let £ be a locally convex space with a calibration P = (pa \ a
G A). Let G be the collection of all bounded subsets of E of the form B = B{M }

= {x G E\pa(x) ^ Ma) where {Ma | a G A} is any family of positive real num-
bers. On the dual E' of E, consider the dual calibration P' = [qB \B E. G) where
qB(f) — sup{|/(x) 11 x G B) fo r / G E'. Then P' determines the strong topology
/? on £ ' . For each a G A, let

ira = {(x, f) G E X E'\pa(x) = f(x) = 1, \f(y) \<pa(y) for all 7 G E).

Let T: E -> E be continuous and linear. For each a G A, define W*(T) —
{f{Tx) I (x, / ) G *•„}, WP\T) = U a e A W^T). Let T: E' - E' be the adjoint of
T. Let WfrT) = WP\(T'). Then WP(T) = WP\T) U Wj;{T) is called the spatial
numerical range of T {with respect to P).

Let A be a locally convex algebra with a calibration P. Let a G A. Then the
numerical range of a is defined to be W{a) = WP(Ta) where Tax = ax (x E A).

(2.4) DEFINITION. Let A be a locally convex algebra with a continuous
involution denoted by *. An element a G A is called bounded if for some X =5*= 0,
{(X']a)"\n = 1,2,...} is bounded. The algebra A is called symmetric if for each
x G A, (1 + JC*X)-' exists and is bounded. Let %* = {B G % \ B* = B). Then A
is called a locally convex GB*-algebra if

(i) A is symmetric,
(ii) the collection <$* has greatest member Bo, called the unit ball of A, and
(iii) the *subalgebra A(B0) = {Xx | \ G C, x £ Bo} is a Banach algebra with

the Minkowski functional || • || Bo of Bo in A(B0) as the norm.

A locally convex algebra A is called hypocontinuous if for every bounded set B
and every neighborhood U, there is a neighborhood F such that BV c U and
F5 C £/.
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By Wood (1977, Theorem 8.15), if A is a complete hypocontinuous locally
convex Gfi*-algebra, then there exists a calibration P in P(A) such that A =
H(A, P) + iH(A, P) where H(A, P) = {a<=A\ W{a) C R}, the Hermitian ele-
ments of A. We call such a P a GB*-calibration on A.

3. Main results

(3.1) THEOREM. Let {A, t) be a complete hypocontinuous locally convex GB*-alge-
bra with a GB*-calibration P — (pa). Then the following hold.

(1) QP is a *subalgebra of A and is a b*-algebra with b*-calibration {qa}.
(2) BP is a *subalgebra of QP which is a B*-algebra with the B*-norm p; and is

isometrically isomorphic with (A(B0), \\ • \\ BJ-
(3) (B, p) -»{QP, tP) -> {A, t) are sequentially dense continuous injections.

For the proof of the theorem, we shall need to compare, for elements of QP, the
algebra numerical range V{QP, {qa}, a) due to Giles and Koehler (1973) and the
spatial numerical range due to Wood (Definition 2.3). This is given in the
following lemma, the idea of the proof of which is borrowed from Giles and
others (1975).

(3.2) LEMMA. Let A be a complete locally convex algebra and let P = (pa) be in
P{A). Then for each a E QP

WP\a)CLV{Qp,{qa},a)cVoWp\a).

PROOF. For each a, let N(a) = [x G A \pa(x) = 0], X(a) = A/N(a^ a linear
space with norm pa(x(a)) = pa(x)(x(a) = x + N{a) for x E A). Let X(a) be its
Banach space completion. Since a G QP, it defines a continuous linear operator
T; on X(a) by Ta

ax(a) = (ax\a) for x G A.
Again for each a, let Na- {a G QP\ qa(a) = 0}, a two sided ideal of QP. Let

{(QP)a, qa) be the Banach algebra obtained upon completing the normed algebra
(Qp)a = Qp/Na w i t h t h e n o r m <L(*«) = <7«(*) where xa - x + Na (x G QP).
Then

0) V(QP,{qa},a) = \J v{(QP)~a,qa,aa),

a union of Banach algebra numerical ranges.
Now consider the Banach algebra B(X(a)) of all bounded linear operators on

X(a) with the operator norm || • ||a. The mapping 0a: (QP)a-> B(X(a)) defined as
0 (x a ) = T" on (QP)a and extended continuously to (QP)a embeds (QP)a
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isometrically onto a unital subalgebra of B(X(a)). Hence by Bonsall and Duncan
(1971, Theorems 2.4 and 9.4) it follows that for each a, V((QP)a, qa, aa) =
V(B(X(a)), | |a, ra

a) =coF(ra
a) . (Here V(T£) denotes the spatial numericalrange

of the Banach space operator T".)
Further, for each a, let Ba = {x G A \pa(x) < 1} and let A'(a) = {/ G A' | / i s

bounded on Ba}. Then the linear subspace A'(a) of A' is canonically isomorphic
to the dual X'(a) of X(a) under the map / -»fa where /„ on X(a) is defined as
/«(•*(«)) = f(x) (x G ,4). This with the natural map x -» x( a ) embeds the set ma of
Definition (2.3) onto a subset A" of the set

•n{a) = {(z, <p) G X(a) X Z'(a) | <p(z) = />a(z) = 1 , | <p(^) \<Pa(y) fory G * ( a )}

in such a way that the set R = {z G X(a) | (z, <p) G K for some qp G X(a)) is dense
in 5(X(a)) = {z G X( a ) |^a(z) = 1}. Indeed, given z G S(X{a)), there is a se-
quence {x(n) \n= 1,2...} in A such that x$ -* z. Hence pa(x

{n)) -* ̂ a(z) = 1.
For each n, let yin) = x(")//>tt(.x:<")) (which can be assumed to be well defined).
Then j ^ " ' -» z,ptt(y$) — 1. Also, for each n, the Hahn-Banach theorem gives an
/<"> G ̂ ' («) such that | |/a

(n) | | =fa
(n)(yin)) = 1. Then (/">, /<">) G w , , , ^ G R.

Thus £ is dense in S(X(a)). This with Bonsall and Duncan (1971, Theorem 9.3)
gives W » C K(7?),

(2) ~oV{T?) = v{B{x(a)),\-\a,Ta«) = ToW^a).

Now (1) gives Wp(a) C V(QP, {qa}, a), whereas additionally (2) and Bonsall
and Duncan (1971, Theorem 9.4) give V(QP, {qa}, a) Ceo WP\a). Hence the
lemma follows.

It follows from the above lemma and Wood (1977, Propositions 5.4 and 3.9)
that for a G QP, ~co V(QP, {qa}, a) = co WP\a), H(BP, p) - H{A, P) D BP and
QP n H(A, P) C H(QP, {qa}). Here H(BP, p) = {x G BP \ V{BP, p,x) C R}
and H(QP, {qa}) - {x G QP | V(QP, {qa}, x) C R}. We conjecture that co WP(a)
- co V(QP, {qa}, a) and QP n H(A, P) - H(QP, {qa}). In the course of the
proof of the theorem, these will be established under an additional hypothesis.

We shall also need the following version of a result due to the author (1980). It
is a non-commutative extension of a result due to Allan (1967, Lemma 3.2).

(3.3) LEMMA. Let A be a locally convex GB*-algebra with unit ball Bo. Let x G A
and for each n = 1,2,..., xn = x(\ + j;x*x)~1. Then xn G A(B0) and xn — x.

PROOF. xn = Jn(x/ Jn)(l + (x/ Jn)*(x/\/«"))"' which is easily seen to be in
A(B0) by applying a result in Rudin (1974, Theorem 13.13) via the representation
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theorem due to Dixon (1970, Theorem 7.11). Also,

xx*\\ I I + I
fn

G — xx* Bo.

Now by the separate continuity of multiplication in A, for each o-neighbourhood
V in A, there is a o-neighbourhood U such that xx*U C V. As BQ is bounded,
Vr Bo C {/ for sufficiently small r > 0. Hence, for sufficiently large n, x — xn G V
and jcn -» x. Hence the lemma follows.

PROOF OF THE THEOREM. Since A = H(A, P) + iH(A, P), a result due to
Wood (1977, Theorem 8.15) implies that H(A, P) - sym A = {x E A \ x = x*}
and Bo = 5P. Hence the 5*-algebra (A(B0), II • ||B ) is isometrically isomorphic
to {BP, p). The Vidav-Palmer theorem for 5*-algebras gives

(3) H(BP, p) = sym A(B0) = (sym A) n A(B0).

Now by Giles and Koehler (1973, Theorem 3) and (3) above, A(B0) = {a <E
Qp\ V(Qp>{qa}> a) is bounded}. We aim to prove that QP = H(QP, {<?„}) +
iH(QP, {qa}). Let a G QP and for each n, an = a{\ + U*a)~\ By Lemma (3.3),
an G BP C QP and an -» a in the relative topology from that of A. We first show
that (an) is bounded in the topology tP on QP. For that, consider

bn — a — a = a 11 H a*a I = afc(l + A:)'1{
n \ n

where k = a*a/n > 0 in ^4. By taking a Gelfand representation (Dixon, 1971,
Theorem 4.6), k{\ + k)~x G Bo = 5 P so fon G a5 0 C Q F for all n. Then for each a
and for each n,

+ A:)"') = qa(a) as fc(l + k)'1 G 5 P .

It follows that (bn) and so («„) is f^-bounded, say for each a,

(4) qa(an)<ra f o r a 1 1 n' a n d s o m e ra•

Further a can be written as a = h + ik with h, k in H(A, P). Similarly for each
n, an-hn + ikn with hn, kn in H(A, P). As H(A, P) = Sym A, a* - h - ik,
a* = /in — /"A:n. This, on one hand, implies, by the continuity of the involution,
that hn-* h,kn-> k\ on the other hand, since BP is a *subalgebra of A, each of hn

and )tn are in A(B0) n / / ( ^ , P) = H(BP, p). Hence An and kn are in i / (C P , {qa}).
But then for each a and for each n, in the notations of the proof of Lemma 1,
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(hn)a and (kn)a are in H((QP)a, qa), and ( a , ) , = (hn)a + i(kn)a. By the inequal-
ity (1) in (Bonsall and Duncan, 1971, Lemma 5.8, page 50)

(5) qa(hn) = &((*„)«) < eqa((hn)a + i(kn)a) = *?«((«,.)«) = eqa(an).

Let x G ^ b e arbitrary. Then for each a,

pa{hx) = pi\imhnx) = \impa{hnx)

< \hnsupqa(hn)pa(x) ashn G QP
n

< Umsupe^a(an)/>o(jc) by (5)

which shows that h G g P . Similarly jfc G g P . Thus h, k & QP n H(A, P) C
H(QP, {<?„}). It follows that g P = H(QP, {qa}) + iH(QP, {qa}). Note that this
with Giles and Koehler (1973, Corollary 1) also prove that

(6) H(QP,{qa}) = QPnH(A,P).

Now the Vidav-Palmer theorem for ft*-algebras (Giles and Koehler, 1973,
Theorem 6) implies that QP is a fe*-algebra with the involution determined by
sym QP — H(QP, {qa}). It follows from above (6) that QP is a *subalgebra of A,
the induced involution from A agreeing with the Z?*-involution determined by the
{qa} Hermitian decomposition. That the qa satisfy qa{x*x) = qa(x)2 (x G Qp) is
easily seen by representing QP, as in Michael (1952, Theorem 5.1), as the
projective limit of ((QP)a, da) and applying the Vidav-Palmer theorem (Bonsall
and Duncan, 1971, Theorem 6.9) to each of these factor algebras.

Finally it follows from Giles and Koehler (1973, Theorem 6) that BP is dense in
(QP, tP); in fact sequentially dense by Apostol (1971, Theorem 2.3); whereas by a
result due to the author (1980), BP, and so Qp, is sequentially dense in A. This
completes the proof of the theorem.

The following theorem is a converse of Theorem (3.1) and is a partial generali-
zation to the G5*-setting of a 6*-algebra result by Giles and Koehler (1973,
Theorem 6 (v) =» (i)).

(3.4) THEOREM. Let A be a complete hypocontinuous locally convex *algebra with
a continuous involution. The following are equivalent.

(a) A is a GB*-algebra.
(b) There exists a calibration P = (pa) on A such that

(i) QP is a * subalgebra of A,

(ii) (QP, tP) is a b*-algebra with (qa) as a b*-calibration,
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(iii) QP -» A is a sequentially dense continuous injection.

(c) There exists a calibration P — (pa) on A such that

(i) BP is a *subalgebra of A,

(ii) (BP, p)is a B*-algebra,

(iii) Bp -> A is a sequentially dense continuous injection.

PROOF. That (a) = (b) => (c) is contained in the proof of Theorem (3.1). We
show that (c) => (a). By the Vidav-Palmer theorem for B*-algebras (Bonsall and
Duncan, 1971, Theorem 6.7), the involution of the 5*-algebra BP is given by
sym Bp — H(BP, p). Further by the lower semi-continuity of x -> WP(x) (Wood,
1977, Proposition 4.4) in A, H(A, P) is closed and so complete. Let a G A. Then
there exist hn, kn in H(BP, p) C H(A, P) such that hn + ikn = an -» a. Hence
a* — hn — ikn is Cauchy in A, and so are (hn) and (kn). It follows that
hn^hE H(A, P), kn-> k£ H(A, P), a = h + ik. The extended Vidav-Palmer
theorem of Wood (1977, Theorem 8.15) gives (a).

4. Examples

(4.1) Quotient bounded operators on locally convex spaces. Let I b e a separated
locally convex space with a calibration F — (pa \ a e A). Let L(X) be the algebra
of all continuous linear operators on X. As defined in Giles, Koehler, Joseph and
Sims (1975), let B(X, F) be the subalgebra of all universally bounded operators
on X; and let Q(X, F) be the subalgebra of all quotient bounded operators on X.
The seminorms qa{T) — sup{pa(Tx) \pa(x) «s 1} define a Hausdorff lmc topol-
ogy tr on Q(X, T) and the norm pT(T) = sup{pa(Tx)\pa(x) =£ 1 for all a)
defines a norm topology tp on B(X, T). In case (X, T) is complete, each of
B(X, Y) and Q(X, V) is also complete. These algebras depend only on the
calibration F on X and are independent of a specific topology on L( X). We show
that they form respectively the quotient bounded and the universally bounded
elements of L(X) with respect to any of the standard topologies with the natural
calibration.

Let G be a family of bounded subsets of X covering X and satisfying the
defining conditions of Treves (1967, Chapter 32). Let % be a o-neighbourhood
base for X. Then, on L(X), the topology TG of uniform convergence on members
of G is defined by taking a o-neighbourhood base consisting of sets of the form
U(B, V) = {T <= L( X) | T(B) CV) (B GG,VG %). It is also determined by
the calibration Pr c = {pa B j a e i . B E C } where

Pa,B(T) = sup{pa{Tx)\x&B}.
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The cases of interest are G to be

G,: all finite subsets on X,

G2 '• all compact convex subsets of X,

G3: all compact subsets of X,

G4: all bounded subsets of X,

yielding on L(X) respectively the topologies ra of pointwise convergence, ry of
compact convex convergence, TC of compact convergence and TB of bounded
convergence. Throughout by G we mean any one of these families. Then (L( X), TC)
is a locally convex topological algebra. We denote the sets of the quotient
bounded elements and the universally bounded elements of the calibrated algebra
(L(X), PTG) by QPrc and BPTG respectively. As in Section 1, the natural lmc
topology tPr c on QPr c is determined by the seminorms

qa,B(T) = s*V{paB{TS) \pa,B(S) < 1 } ,

whereas the natural norm on BP is pP (T) — supa qa B(T).

ASSERTIONS, (a) QPr c is topologically isomorphic to (Q(X, T), tT).
(b) BPrc is isometrically isomorphic to (B(X, F), pT).

PROOF. Let T&Q(X,T). Then for each a and for each B, pa<B(TS)*z
4a(T)pa,B(S) (S G L{X)) and so T G QPrc with qa,B(T) < qa{T). Hence

(7) hT,G C t.

Conversely let T G QPyc. Then pa B(r5) < qa,B(T)paB(S) for all 5 G L(X),
a G A. Therefore sup{^a(r5x) | x G B) < 9OjB(T)sup{/7a(Sx) | x G B). Let x0 G
Xbe arbitrarily fixed. Take B = {x0} G G. Then

(8) Pa(TSx0) < ^ . { ^ ^ ^ ( S x o ) (S G L(A-)).

Let _y G X. By the Hahn Banach theorem, we can choose / G X', the dual of X,
such thatf(x0) = 1. Define/®^ G L(X) by (/®>0(*) =/(*).F(* G X). Then
( /® >0(*o) = J- Thus given j G X, we can choose S,, G L(X) such that SV(A;0)

= y. This in (7) givespjjy) < qaAxo](T)pa{y) (y G X). Thus 7 G Q(X, T) and

(9) ^ ( r ) < ^ { x ) ( r ) f o r a l l x G X

Hence using (7), <2(Jf, T) = QPrc = ^ (say) and fPrc C / r C /P r c with qa(T) =
qaB(T) (TEA) with B— {x}. So ^r~ ' /> r r - ^ only remains to show that
tprcDh f°r ^—^2,03,^4; and this follows from tPr(_ C / f r ( . Indeed, the
defining seminorms for tP are

qa,B(T) = snp{pajTS)\PaJS) <\,SGL(X)} (T G A).
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Hence, since given F G G,, by taking closed convex hull, if necessary, we can
choose B(F) G G, (; = 2,3,4) such that {qaF\a G A, F C X finite} C {qaB | a
G A, B G (?,}. Thus fPp C| C / ^ (i = 2,3,4).

The proof of (b) is similar.

(4.2) Arens' algebra L"(X) of a finite measure space. The b*-algebra QP of
quotient bounded elements of a complete hypocontinuous locally convex GB*-al-
gebra A may be trivial. Here is an example of a G£*-algebra A with the property
that A does not contain any £>*-subalgebra properly containing the 2?*-algebra
A(B0).

Let (X, 2 , n) be a finite measure space. Let LU(X) = n{<.p<o0L
p(X). As in

Arens (1946), L"(X) is a *algebra under pointwise operations containing LX(X).
Let T" be the locally convex topology on LU(X) defined by the family P =
{II • 11̂  | 1 *^p < oo} of norms/ -> Il/H^ = ( / ^ l / f rfjn)1//>. As the measure space
is finite, it is also determined by P = {II • || „ | n — 1,2,...} or equivalently by
the metric

. , , , S 1 l l / - g l l B
1

 nf, 2" i + l l / - g l l /

Then as in Allan (1967, Example 4), L"(X) is a complete metrizable (and
hence hypocontinuous) locally convex GB*-algebra with unit all Bo= {/G
Lx(X)\\\f\\x<\} and the underlying fi*-algebra(L00(A'), || • H^).

ASSERTIONS, (a) P is a GB*-calibration on L"(X) andBP = QP = L°°(X).
(b) There does not exist a *subalgebra Q of A admitting a b*-topology such that

U°(X) C Q CLa(X).

PROOF, (a) We show that QP C U°{X), since it is clear that LX(X) C BP. Let
/ G QP. Then for all g G L"(X), \\ fg\\n< Mn\\g\\„ (n G N) for some constants
Mn. In particular, \ fxfgdn\^ fx\fg\ d^ < M{fx\g\ dji which shows that g -»
fMfdn is a || • ||, continuous linear functional on LU(X); and hence, since L"(X)
is dense in L^X), it extends uniquely to an element <p G (L1)' = L00 given by
(p(g) = Jxhgdfi (g G //"(A*)) for a unique /; G L0O(A'). Hence/ = h a.e. and so
QP C L ^ X ) . Thus QP = BP- L°°(X). Further, as P is countable, (QP, tP) is a
metrizable fc*-algebra. The open mapping theorem shows that QP and BP are
topologically identical, which in turn are identical to (LCC(X),\\ • \\x) by the
uniqueness of norm on a fi*-algebra.

(b) Let M be the carrier space of L°°(X). With the Gelfand topology, it is a
hyperstonian compact Hausdorff space. Let <p — L0C(A') -> C(M) be the Gelfand
representation < p ( / ) = / : M -» C by/((p) = <p(/) ( ( J P G M ) mapping L
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isomorphically onto C(M), the 5*-algebra of all continuous complex valued
functions on M. Further, the Riesz representation theorem gives a positive finite
regular Borel measure ju on M such that }xfdn = fM<p(f)d(i(f E L°°( X)) with
supp/t = M. This with Lusin's Theorem gives C(M) = L°°(M). Then by Dixon
(1967, Theorem 4.6) <p extends to a ""isomorphism <p' of L"( X) onto a *algebra of
functions (Dixon (1957), Definition 4.5) on M.

Now suppose that there is a *subalgebra Q of L"(X) carrying a Z>*-topology T
such that L°°(X) C Q <Z L"(X), each a continuous injection. Let, as in Apostol
(1971, Section 3), Z be the carrier space of Q. It is a real-compact T2 space with
its Stone-Cech compactification /SZ = M, such that <p', in a suitable sense,
establishes the *isomorphisms U°{X) « Cft(Z) « C(M), Q ~ C(Z) and Lw(Ar)
to a * algebra of extended complex valued functions on Z containing C(Z). Let
<P(g) = Ixgdii (g G L " ( * » . Let F(<p'(g)) = <p(g) (g G L»(X)). Under restric-
tion, f defines a positive functional on C(Z) which, by Feldman and Porter
(1975, Section 2, Theorem B), is given by F(cp'(g)) = $z<p'{g)dP (g G Q) for
some positive Borel measure jSonZ with compact support supp /? = K. Hence for
eachgGL°°(X),

But jxgdp = J\f<p'(g)dp.. Hence (>• = P- That supp/? — K^ M — supp/2 pro-
vides the desired contradiction.

(4.3) Arens' algebra (o-finite measure space). Let (X, 2 , ju) be a a-finite
measure space. Let X= U " I n with, for each n, XnGl,, XnCXn+l and
^(A^) < oo. For 1 <p < oo, let Lf^iX) be the vector space of all those complex
valued measurable functions (modulo equality a.e.) which are locally Lp in the
sense that for each F G 2 with fi(F) < oo, jF\ffd)i< oo. Let U^. be the
algebra under pointwise operations of all locally L°°-functions (defined similarly)
on X. Let L^oc( X) = r\^p<xLfoc(X). Then L^.( X) is a *algebra under pointwise
operations. On the vector space Lf^X), a complete metrizable locally convex
topology T^. is defined by the collection Pp = {\\ • \\k p\k = \,2,...} of semi-
norms, where || / 1 | k = (jXk\ ff d\i)x/p. This induces a locally convex metrizable
* algebra topology r^, onL^ . which is defined by the calibration F = (|| • \\k |
k, p G N}. The topology TJ£. on L0^. is defined by the seminorms
ess. sup,6A-41/(0 | • Then the following assertions are easily verified.

(1) (LfJiX), T,^.) is a C?£*-algebra with G5*-calibration P.
(2) g P is topologically *isomorphic to (Lf^X), T,^.).

(3) BP is isometrically *isomorphic to (L°°(X), || • H^).
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